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Abstract This paper focuses on the free vibration analysis of thick, rotating laminated composite conical shells
with different boundary conditions based on the three-dimensional theory, using the layerwise differential
quadrature method (LW-DQM). The equations of motion are derived applying the Hamilton’s principle. In
order to accurately account for the thickness effects, the layerwise theory is used to discretize the equations of
motion and the related boundary conditions through the thickness of the shells. Then, the equations of motion
as well as the boundary condition equations are transformed into a set of algebraic equation applying the DQM
in the meridional direction. This study demonstrates the applicability, accuracy, stability and the fast rate of
convergence of the present method, for free vibration analyses of rotating thick laminated conical shells. The
presented results are compared with those of other shell theories obtained using conventional methods and
a special case where the angle of the conical shell approaches zero, that is, a cylindrical shell and excellent
agreements are achieved.

Keywords Rotating conical shell · Layerwise theory · Natural frequency · Differential quadrature method

1 Introduction

Rotating laminated conical shells are increasingly being used in many engineering applications such as the drive
shafts of gas turbines, high-speed centrifugal separators, motors and rotor systems because of their strength
to weight ratio. Hence, it is of a great importance to understand the vibration behavior of rotating laminated
conical shells for the design of aforementioned structures. Most studies were restricted to the vibration analysis
of non-rotating and rotating conical shells based on classical laminated shell theory (CLT). They include the
works by Sivadas [1] and Lam and Hua [2] on the rotating conical shells with simply supported boundary
condition as well as a discussion on influence of boundary condition on rotating conical shell by Lam and
Hua [3] and Ng et al. [4]. For non-rotating conical shell, many papers are involved to discuss the influence of
boundary conditions on the frequency characteristics, particularly the works done by Sivadas and Ganesan [5],
Thambiratnam and Zhuge [6] and Tong [7,8]. This theory cannot be used for thick shells and even thin shells
when the number of circumferential waves increases as a result of neglecting shear deformation and rotary
inertia effects in CLT. The refinement of thin-shell theories has resulted in a number of the so-called first- and
higher-order shear deformation theories to include the effects of transverse shear deformation [9–13]. These
theories behave much more accurately than the thin-shell theories for the analysis of slightly thick shells but are
still inadequate for the analysis of thick shells. In order to analyze the thick conical shells precisely, the three-
dimensional theory should be used to account all the transverse stress and strain components. The literature
shows that the dynamic analysis of rotating conical shells based on 3-D theory is complex and the common

M. Talebitooti (B)
Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering,
Iran University of Science and Technology, Narmak, 16846-13114 Tehran, Iran
E-mail: mtalebi@iust.ac.ir



766 M. Talebitooti

method used for classical shell theories cannot be able to solve these problems [14–17]. In these researches,
numerical methods such as the finite element, the Ritz and the series solutions are the most methods used for
vibration and buckling analysis of conical shells.

In recent years, the new numerical method so-called hybrid layerwise differential quadrature method
(LW-DQM) is employed to discretize the governing equations of structures [18–21]. In contrast to the equiv-
alent single-layer theories (ESLT), the layerwise theories develop the separate displacement field expansions
through the each subdivision. The displacement components are continuous through the laminate thickness but
their derivatives with respect to the thickness coordinate may be discontinuous at various points through the
thickness, thereby allowing for possibility of continuous transverse stress at interfaces separating contradictory
materials [11,22].

The differential quadrature method (DQM) is an efficient numerical technique, which was originated by
Bellman [23] to solve linear and nonlinear differential equations. The basic idea of the DQ method is that the
partial derivative of a function with respect to a variable at a given discrete point can be approximated as a
weighted linear sum of the function values at all discrete points in the domain of that variable. The mathematical
fundamentals and recent developments of the DQ method as well as its major applications in engineering are
discussed by Shu [24]. It is worthwhile to note that the interest of researches [4,25–31] in this procedure is
increasing due to its great simplicity and versatility.

The literature clearly shows that there is no investigation on vibration of rotating laminated conical shells
with arbitrary boundary conditions and three-dimensional theory of elasticity, in spite of the fact that the
quantity of critical speed and vibration of conical shells is important to their applications. Hence, in this study,
based on the 3-D theory, a hybrid LW-DQ method for free vibration analysis of rotating laminated conical shell
with arbitrary boundary conditions is developed. The accuracy, convergence and versatility of the algorithm
are proved via different examples for both thin and thick shells. Also, the effects of geometrical parameters,
laminations scheme and different boundary conditions are demonstrated.

2 Problem formulation

2.1 Geometrical configuration

The rotating conical shell, as shown in Fig. 1, is considered to be thick, laminated and composed of an arbitrary
number of layers. In this figure, α is the cone angle, L is the length, h is the thickness, a and b are the mean radii
at two ends, and � is the constant angular velocity of conical shell about its symmetrical and horizontal axis.
The reference surface of the conical shell is taken to be at its middle surface where an orthogonal co-ordinate
system (x, θ, z) is fixed, and r = r(x, z) is a radius at any co-ordinate point (x, θ, z). The displacement of the
shell in the x, θ and z directions are denoted by u, v and w, respectively.

2.2 Displacement field in layerwise theory

The displacement field for closed conical shells in the circumferential direction can be expanded as follows:

u (x, θ, z, t) =
∞∑

n=1

Un (x, z) cos (nθ + ωt)

v (x, θ, z, t) =
∞∑

n=1

Vn (x, z) sin (nθ + ωt)

w (x, θ, z, t) =
∞∑

n=1

Wn (x, z) cos (nθ + ωt) (1)

where n represents the circumferential wave number.
In order to build a high degree of transverse discretization generality into the model, the layerwise laminate

theory of Reddy [11] is extended to be used here. The layerwise concept of Reddy is very general in that
the number of subdivisions through the thickness can be greater than, equal to, or less than the number of
material layers, and the pattern of layerwise interpolation through thickness is very easy to build into the finite
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Fig. 1 Configuration of the conical shell and displacement representation used in the layerwise theory

element method. In this theory, the variation of the displacements Un, Vn and Wn through the thickness can be
represented to a certain desired level of accuracy by simply increasing the order of the transverse interpolation
polynomials

Un (x, z) =
Nz∑

i=1

Uin (x) ψi (z)

Vn (x, z) =
Nz∑

i=1

Vin (x) ψi (z)

Wn (x, z) =
Nz∑

i=1

Win (x) ψi (z) (2)

where Uin(x), Vin(x) and Win(x) denote the unknown displacement components at the node i th in the x, θ and
z-direction, respectively; Nz represents the number of nodes in the z-direction of the shell, which depends on
the number of considered mathematical layers Nl through the thickness and nodes per layer Npl in the thickness
direction as Nz = Nl(Npl − 1)+ 1. Also, ψi (z) is a piecewise continuous Lagrange interpolation function in
terms of the thickness coordinate z in the i th mathematical layer and is assumed to take the following form:

ψi (z) =

⎧
⎪⎪⎨

⎪⎪⎩

0 z ≤ zi−1
z−zi−1

hi−1
zi−1 ≤ z ≤ zi

zi+1−z
hi

zi ≤ z ≤ zi+1

0 z ≥ zi+1

(3)

where hi is the thickness of the i th layer and zi denotes the global thickness coordinate of the i th layer. Due to
this independent interpolation through thickness, this layerwise theory reduces the 3-D problem to a 2-D one.
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Table 1 Mechanical properties of the material

Modulus of elasticity (GPa) Poisson’s ratio Modulus of rigidity (GPa) Density (kg/m3)

E11 = 125 υ12 = 0.4 G12 = G23 = 5.9 ρ = 1, 643
E22 = E33 = 10 υ13 = υ23 = 0.2 G13 = 3

Table 2 Convergence behavior of the fundamental frequency parameter f = ωb
√
ρh/A11 of laminated conical shells with

clamped boundary condition (m = 1, L = 3 m, a = 1 m, α = 15◦, [0◦/90◦], OM = 10 rev/s, Cs-Cl)

h/a NGP Nl = 2 Nl = 4 Nl = 6 Nl = 8
f a
b f b

f fb f f fb f f fb f f

0.02 6 0.12439 0.11135 0.12420 0.11116 0.12416 0.11112 0.12414 0.11110
n = 5 8 0.12026 0.10722 0.12007 0.10703 0.12002 0.10698 0.12001 0.10697

10 0.11765 0.10461 0.11745 0.10441 0.11741 0.10436 0.11739 0.10435
12 0.11629 0.10325 0.11609 0.10305 0.11605 0.10301 0.11603 0.10299
14 0.11549 0.10244 0.11529 0.10225 0.11524 0.10220 0.11523 0.10218
16 0.11501 0.10197 0.11481 0.10177 0.11477 0.10173 0.11475 0.10171
18 0.11480 0.10176 0.11460 0.10156 0.11456 0.10151 0.11454 0.10150

0.1 6 0.25231 0.23158 0.25184 0.23111 0.25166 0.23093 0.25159 0.23086
n = 3 8 0.24748 0.22674 0.24701 0.22627 0.24681 0.22607 0.24673 0.22600

10 0.24571 0.22495 0.24522 0.22448 0.24502 0.22427 0.24494 0.22419
12 0.24525 0.22449 0.24476 0.22401 0.24454 0.22379 0.24445 0.22370
14 0.24512 0.22436 0.24462 0.22387 0.24439 0.22363 0.24429 0.22354
16 0.24504 0.22428 0.24454 0.22378 0.24430 0.22354 0.24420 0.22345
18 0.24499 0.22423 0.24447 0.22372 0.24423 0.22348 0.24414 0.22338

a fb = Frequency of backward wave
b f f = Frequency of forward wave

Table 3 Convergence behavior of the fundamental frequency parameter f = ωb
√
ρh/A11 of laminated conical shells with

clamped boundary condition (m = 1, L = 3m, a = 1m, α = 30◦, [0◦/90◦], OM = 10 rev/s, Cs-Cl)

h/a NGP Nl = 2 Nl = 4 Nl = 6 Nl = 8
fb f f fb f f fb f f fb ff

0.02 6 0.09929 0.08795 0.09869 0.08735 0.09855 0.08721 0.09850 0.08716
n = 7 8 0.09233 0.08106 0.09174 0.08047 0.09160 0.08033 0.09155 0.08028

10 0.08811 0.07684 0.08749 0.07622 0.08734 0.07607 0.08729 0.07602
12 0.08591 0.07465 0.08528 0.07402 0.08514 0.07387 0.08508 0.07382
14 0.08485 0.07358 0.08422 0.07295 0.08407 0.07280 0.08401 0.07275
16 0.08457 0.07330 0.08393 0.07266 0.08378 0.07251 0.08372 0.07246
18 0.08468 0.07342 0.08405 0.07278 0.08389 0.07263 0.08384 0.07257

0.1 6 0.30696 0.28330 0.30655 0.28290 0.30640 0.28276 0.30635 0.28270
n = 3 8 0.30041 0.27674 0.29999 0.27633 0.29983 0.27617 0.29977 0.27611

10 0.29831 0.27461 0.29788 0.27418 0.29770 0.27401 0.29763 0.27394
12 0.29796 0.27425 0.29751 0.27381 0.29732 0.27362 0.29724 0.27354
14 0.29782 0.27411 0.29737 0.27366 0.29716 0.27345 0.29707 0.27337
16 0.29771 0.27400 0.29725 0.27355 0.29703 0.27333 0.29694 0.27324
18 0.29764 0.27392 0.29717 0.27346 0.29694 0.27324 0.29686 0.27315

2.3 Energy equations of the shell

The strain energy of the laminated composite conical shell is expressed as

U sh
ε = 1

2

∫∫∫

vol

εT [C̄]εrdzdθdx (4)

where r = r (x, z) = a + x sin α + z cosα and the strain vector ε based on the three-dimensional theory of
elasticity can be written as follows:

εT = {
εx εθ εz γθ z γxz γxθ

}
(5)
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Fig. 2 Convergence behavior of the natural frequency of laminated conical shell with clamped boundary condition (L = 2 m,
a = 0.5 m, n = 3, α = 15◦, [0◦/90◦/0◦], Cs-Cl). a h = 50 mm, b h = 250 mm

The linearized strain-displacement relations are

ε = D · χ (6)

where the differential operator D and the vector of displacement χ are defined as follows:

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x 0 0
Sα
r

1
r
∂
∂θ

Cα
r

0 0 ∂
∂z

0 ∂
∂z − Cα

r
1
r
∂
∂θ

∂
∂z 0 ∂

∂x
1
r
∂
∂θ

∂
∂x

−Sα
r

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

;
χT = {u, v, w}
Sα = sin α
Cα = cosα

(7)

and [C̄] = [T ]−1[C][T ] is the transformed stiffness matrix for a laminated shell, in which [C] is the principle
material stiffness matrix and [T ] is the transformation matrix [11,12].

It should be noted that the work is carried out on the shell due to the centrifugal force generated by rotation.
The work done on the shell can be written as

U sh
h = 1

2

L∫

0

2π∫

0

h
2∫

− h
2

N sh
θ

r2

{[(
vCα − ∂w

∂θ

)]2

+
[(
∂v

∂θ
+ wCα

)]2
}

rdzdθdx (8)
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Fig. 3 Convergence behavior of the natural frequency of laminated conical shell with clamped boundary condition (L = 2 m,
a = 0.5 m, n = 3, α = 30◦, [0◦/90◦/0◦], Cs-Cl). a h = 50 mm, b h = 250 mm

where N sh
θ is the initial hoop stress due to centrifugal force and is defined as

N sh
θ = ρ (z) r2�2 (9)

The kinetic energy of the rotating conical shell is expressed as

T = 1

2

L∫

0

2π∫

0

h
2∫

− h
2

ρ (z) �V . �V rdzdθdx (10)

where �V is the velocity vector at any point of the shell and given by

�V = �̇r +
(
�Cα�i −�Sα �k

)
× �r (11)

Here, (·) presents differentiation with respect to time.
In Eq. (11), the displacement vector is written as

�r = u�i + v �j + w�k (12)

where �i, �j and �k, respectively, denote the unit vectors in the x, θ and z directions in the non-rotating frame.
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Fig. 4 Convergence behavior of the natural frequency of laminated conical shell with clamped boundary condition (L = 2 m,
a = 0.5 m, n = 3, α = 45o, [0◦/90◦/0◦], Cs-Cl). a h = 50 mm, b h = 250 mm

Table 4 Comparison of frequency parameter f = ωR
√
ρ
(
1 − υ2

)
/E for a isotropic laminated cylindrical shell with simply

supported boundary condition (m = 1, L/R = 1, υ = 0.3, Ss-Sl)

H/R H/L
0.1 0.2 0.4
n = 1 n = 2 n = 1 n = 2 n = 1 n = 2
Loy
and
Lam
[33]

Present Loy
and
Lam
[33]

Present Loy
and
Lam
[33]

Present Loy
and
Lam
[33]

Present Loy
and
Lam
[33]

Present Loy
and
Lam
[33]

Present

0.2 0.5859 0.5849 0.4208 0.4223 0.9947 0.9921 0.9212 0.9253 2.0664 2.0415 2.1326 2.1432
0.4 0.2646 0.2629 0.3465 0.3417 0.6188 0.5916 0.5806 0.5769 1.2351 1.2216 1.2637 1.1832
0.6 0.1479 0.1475 0.4252 0.4051 0.4032 0.3965 0.5273 0.5114 0.9063 0.8929 0.95010 0.9328

Substituting Eqs. (11) and (12) into Eq. (10), the kinetic energy expression of the shell can be expanded in
the form

T sh = 1

2

L∫

0

2π∫

0

h
2∫

− h
2

ρ(z)
[
(u̇)2 + (v̇)2 + (ẇ)2

+�2 (v2 + 2uwCαSα + u2S2
α + w2C2

α

)

+2�Sα (u̇v − v̇u)+ 2�Cα (ẇv − v̇w)] rdzdθdx (13)

where S2
α = sin2 α and C2

α = cos2 α.
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Table 5 Comparison of fundamental frequency parameter f = (
ωL2/100 h

)√
ρ/E22 for cross-ply laminated cylindrical shell

under various boundary conditions (h/R = 0.2, L/R = 2, m = 1)

S-S S-C C-C C-F

[0◦, 90◦]
CST [34] 0.1630 0.1841 0.2120 0.0938
FSDT [34] 0.1552 0.1697 0.1876 0.0914
HSDT [34] 0.1566 0.1726 0.1928 0.0921
LW-DQ (present) 0.1371 0.1531 0.1718 0.0909

[0◦, 90◦, 0◦]
CST [34] 0.2073 0.2662 0.3338 0.1099
FSDT [34] 0.1779 0.1945 0.2129 0.0988
HSDT [34] 0.1777 0.1972 0.2191 0.0995
LW-DQ (present) 0.1729 0.1903 0.2108 0.0992

[0◦, 90◦]5
CST [34] 0.1958 0.2304 0.2752 0.1077
FSDT [34] 0.1899 0.2012 0.2137 0.1004
HSDT [34] 0.1900 0.2027 0.2166 0.1010
LW-DQ (present) 0.1802 0.1977 0.2104 0.1379
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Fig. 5 Variation of the natural frequencies for the thick composite cylindrical shell with the circumferential wave number.
Comparison between results of present study and those reported in Ref. [32] (L = 4 m, R = 1 m, N G P = 10, Nl = 12,
h = 15 mm, [0◦/90◦/0◦], Ss-Sl)

2.4 Governing equations of motion

The governing differential equations of motion can be derived by using Hamilton’s principle

t1∫

t0

δ (�) dt =
t1∫

t0

(
δT sh − δU sh

ε − δU sh
h

)
dt = 0 (14)

Substituting Eqs. (4), (8) and (13) into Eq. (14), the equations of motion and the related boundary conditions
for free vibration analysis of arbitrary rotating laminated conical shell can be derived as follows:

δUin : π
{(

Fi j
55 + n2Ci j

66 + S2
αCi j

22 − Bi j
11
∂2

∂x2 + Gi j ∂
2

∂t2 + Gi j�2S2
α

)
U jn

+
[
−
(

n Ai j
12 + n Ai j

66

) ∂

∂x
+ nSα

(
Ci j

22 + Ci j
66

)
+ 2Gi j�Sα

∂

∂t

]
Vjn

+
[
−
(

CαAi j
12 + E ji

13 − Ei j
55

) ∂

∂x
+
(

SαCαCi j
22 + SαD ji

23 + Gi j�2SαCα
)]

W jn

}
= 0 (15)

δVin : π
{[

n
(

Ai j
12 + Ai j

66

) ∂

∂x
+ nSα

(
Ci j

22 + Ci j
66

)
− 2Gi j�Sα

∂

∂t

]
U jn
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Table 6 Comparison of frequency parameter f = ωb
√(

1 − υ2
)
ρ/E for a non-rotating isotropic conical shell with Cs-Cl

boundary condition (m = 1, υ = 0.3, h/b = 0.01, Lsinα/b = 0.5)

n α = 45◦ α = 60◦
Irie [35] Lam and Hua [3] Present Irie [35] Lam and Hua [3] Present

1 0.8120 0.8452 0.8171 0.6316 0.6449 0.6352
2 0.6696 0.6803 0.6724 0.5523 0.5568 0.5549
3 0.5430 0.5553 0.5453 0.4785 0.4818 0.4807
4 0.4570 0.4778 0.4594 0.4298 0.4361 0.4318
5 0.4095 0.4395 0.4121 0.4093 0.4202 0.4113

Table 7 Comparison of frequency parameter f = ωb
√(

1 − υ2
)
ρ/E for a non-rotating isotropic conical shell with Ss-Cl

boundary condition (m = 1, υ = 0.3, h/b = 0.01)

Cone angle n L sin α/b = 0.5 L sin α/b = 0.75
Irie et al. [35] Ng et al. [4] Present Irie et al. [35] Ng et al. [4] Present

α = 30◦ 1 0.8760 0.8808 0.8794 0.7451 0.7452 0.7546
2 0.6278 0.6241 0.6290 0.4510 0.4530 0.4651
3 0.4574 0.4537 0.4585 0.2990 0.2998 0.3143
4 0.3551 0.3506 0.3565 0.2545 0.2520 0.2657
5 0.3073 0.3017 0.3086 0.2661 0.2620 0.2720

α = 45◦ 5 0.3834 0.3804 0.3831 0.3150 0.3147 0.3198
6 0.3747 0.3691 0.3740 0.3437 0.3475 0.3464
7 0.3997 0.3924 0.3988 0.3883 0.3898 0.3902
8 0.4489 0.4411 0.4479 0.4454 0.4458 0.4478
9 0.5142 0.5063 0.5134 0.5133 0.5195 0.5168

+
[

n2Ci j
22 + Fi j

44 −
(

Di j
44 + D ji

44

)
Cα + Ci j

44C2
α − Bi j

66
∂2

∂x2

+Ci j
66S2

α + Gi j�2 (1 − C2
α − n2)+ Gi j ∂

2

∂t2

]
Vjn

+
[

n
(

D ji
23 +

(
Ci j

44 + Ci j
22

)
Cα − Di j

44

)
− 2Gi j�Cα

(
∂

∂t
+�n

)]
W jn

}
= 0 (16)

δWin : π
{[(

CαAi j
12 + Ei j

13 − Ei j
55

) ∂

∂x
+ SαCαCi j

22 + SαDi j
23 + Gi j�2SαCα

]
U jn

+
[

n
(

Di j
23 +

(
Ci j

44 + Ci j
22

)
Cα − D ji

44

)
+ 2Gi j�Cα

(
∂

∂t
−�n

)]
Vjn

+
[
Ci j

22C2
α +

(
D ji

23 + Di j
23

)
Cα + Fi j

33

+n2Ci j
44 − Bi j

55
∂2

∂x2 + Gi j ∂
2

∂t2 − Gi j�2n2
]

W jn

}
= 0 (17)

Geometrical and natural boundary conditions at both ends are derived as:
Either

Uin = 0

or

N in
x = π

[(
Ai j

12Cα + E ji
13

)
W jn + n Ai j

12Vjn +
(

Bi j
11
∂

∂x
+ Ai j

12Sα

)
U jn

]
= 0 (18)

Either

Vin = 0

or

Min
xθ = π

[
−n Ai j

66U jn + Bi j
66
∂Vjn

∂x
− SαAi j

66W jn

]
= 0 (19)
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Fig. 6 Variation of natural frequency of backward waves with circumferential mode number for rotating conical shells with
different stacking sequence layered (L = 3 m, a = 0.5 m, h = 10 mm, α = 30◦, � = 5(rev/s), Ss-Cl)

Either

Win = 0

or

Min
xz = π

[
E ji

55U jn + Bi j
55
∂W jn

∂x

]
= 0 (20)

where

Ai j
kl =

h
2∫

− h
2

Cklψiψ j dz, Bi j
kl =

h
2∫

− h
2

Cklψiψ j rdz

Ci j
kl =

h
2∫

− h
2

Ckl
ψiψ j

r
dz, Di j

kl =
h
2∫

− h
2

Cklψ
′
iψ j dz

Ei j
kl =

h
2∫

− h
2

Cklψ
′
iψ j rdz, Fi j

kl =
h
2∫

− h
2

Cklψ
′
iψ

′
j rdz

Gi j =
h
2∫

− h
2

ρψiψ j rdz (21)

2.5 Differential quadrature discretization

The DQ method is a numerical method with flexibility given for the arrangement of the grid points in the
domain of interest. It also possesses higher-order interpolation characteristics. In order to use the DQ method
to discretize the governing equations in the meridional direction x , each nodal surface is discretized into a set
of Nx grid points in this direction [4]. A brief review of the DQ method is presented in “Appendix A”. Using
the DQ-discretization rules at each domain and boundary condition grid point, it can be deduced that
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Fig. 7 Variation of natural frequency with geometric ratio h/a for cross-ply laminated conical shell with different cone angle in
mode a n = 2, b n = 6 (L = 4 m, a = 1 m, m = 1, � = 0, Cs-Sl, [0◦/90◦/0◦])
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δUinm : π
{(

Fi j
55 + n2Ci j

66 + S2
αCi j

22 + Gi j ∂
2

∂t2 + Gi j�2S2
α

)
U jnm − Bi j

11

Nx∑

l=1

C̃2
mlU jnl

−
(

n Ai j
12 + n Ai j

66

) Nx∑

l=1

C̃1
ml Vjnl +

[
nSα

(
Ci j

22 + Ci j
66

)
+ 2Gi j�Sα

∂

∂t

]
Vjnm

−
(

CαAi j
12 + E ji

13 − Ei j
55

) Nx∑

l=1

C̃1
ml W jnl

+
(

SαCαCi j
22 + SαD ji

23 + Gi j�2SαCα
)

W jnm

}
= 0 (22)

δVinm : π
{

n
(

Ai j
12 + Ai j

66

) Nx∑

l=1

C̃1
mlU jnl +

[
nSα

(
Ci j

22 + Ci j
66

)
− 2Gi j�Sα

∂

∂t

]
U jnm

+
[
n2Ci j

22 + Fi j
44 −

(
Di j

44 + D ji
44

)
Cα + Ci j

44C2
α + Ci j

66S2
α

+Gi j ∂
2

∂t2 + Gi j�2 (1 − C2
α − n2)

]
Vjnm − Bi j

66

Nx∑

l=1

C̃2
ml Vjnl

+
[

n
(

D ji
23 +

(
Ci j

44 + Ci j
22

)
Cα − Di j

44

)
− 2Gi j�Cα

(
∂

∂t
+�n

)]
W jnm

}
= 0 (23)

δWinm : π
{(

cosαAi j
12 + Ei j

13 − Ei j
55

) Nx∑

l=1

C̃1
mlU jnl

+
[(

SαCαCi j
22 + SαDi j

23

)
+ Gi j�2SαCα

]
U jnm

+
[

n
(

Di j
23 +

(
Ci j

44 + Ci j
22

)
Cα − D ji

44

)
+ 2Gi j�Cα

(
∂

∂t
−�n

)]
Vjnm

+
[(

Ci j
22C2

α +
(

D ji
23 + Di j

23

)
Cα + Fi j

33 + n2Ci j
44

)
+ Gi j

(
∂2

∂t2 −�2n2
)]

W jnm

−Bi j
55

Nx∑

l=1

C̃2
ml W jnl

}
= 0 (24)

Either

Uinm = 0

or

N in
x = π

[(
Ai j

12Cα + E ji
13

)
W jn + n Ai j

12Vjn + Ai j
12SαU jn + Bi j

11

Nx∑

l=1

C̃1
mlU jnl

]
= 0 (25)

Either

Vinm = 0

or

Min
xθ = π

[
−n Ai j

66U jn + Bi j
66

Nx∑

l=1

C̃1
ml Vjnl − SαAi j

66W jn

]
= 0 (26)

Either

Winm = 0
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or

Min
xz = π

[
E ji

55U jn + Bi j
55

Nx∑

l=1

C̃1
ml W jnl

]
= 0 (27)

In present paper, one of the following boundary conditions or some combinations of them is considered as
follows:

(a) Clamped

Uin = Vin = Win = 0 (28)

(b) Simply supported

Vin = Win = N in
x = 0 (29)

(c) Free

N in
x = Min

xθ = Min
xz = 0 (30)

Thus, the whole system of differential equation has been discretized and the global assembling leads to the
following set of linear algebraic equations:

{
[M]ω2} {d} + {[G]ω} {d} + [Kdd ] {d} + [Kdb] {b} = 0 (31)

In the above equations, vectors {d} and {b} with dimensions 3Nz(Nx − 2) and 6Nz denote the unknowns
at the sampling points in the interior domain and those on the boundary. The dimensions of [M], [Kdd ] and
[G] are N∗ × N∗(N∗ = 3Nz(Nx − 2)) and dimension of [Kdb] is N∗ × 6Nz .

In a similar manner, the discretized form of the boundary conditions become

[Kbd ] {d} + [Kbb] {b} = 0 (32)

The dimension of [Kbd ] is 6Nz × N∗ and dimension of [Kbb] is 6Nz × 6Nz .
Using Eq. (32) to eliminate the boundary degrees of freedom {b} from Eq. (31), it can be concluded as

{
[M]ω2} {d} + {[G]ω} {d} + {

[Kdd ] − [Kdb] [Kbb]−1 [Kbd ]
} {d} = 0 (33)

Equation (33) is a non-standard eigenvalue equation. For a given frequency, it can be transformed equiva-
lently into a standard form of eigenvalue equation as follows:

⎛

⎜⎜⎜⎝

[
0 I

−K −G

]

︸ ︷︷ ︸
A∗

−
[

I 0
0 M

]

︸ ︷︷ ︸
B∗

ω

⎞

⎟⎟⎟⎠

{
d
ωd

}
= 0 (34)

where I is a N∗ × N∗ identity matrix.
Using a conventional eigenvalue approach, the standard eigenvalue Eq. (34) can be solved, and 2N∗

eigenvalues are obtained. From these eigenvalues, the two eigenvalues for which the absolute of real values
are the smallest are chosen. One of these eigenvalues is negative and corresponds to backward wave, and the
other one is positive and corresponds to forward wave. In the case of a stationary conical shell, these two
eigenvalues are identical and the vibration of the conical shell is a standing wave motion.
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3 Numerical results and discussion

At this section, the backward and forward waves are presented as a solid line and a dashed line, respectively;
the unit of rotating speed � is rps (rps, revolution per second). In addition, five boundary conditions are
considered here for the rotating conical shell. These boundary conditions are the fully clamped (Cs-Cl), fully
simply supported (Ss-Sl), simply supported at small edge-clamped at large edge (Ss-Cl), clamped at small
edge-simply supported at large edge (Cs-Sl), and clamped at small edge-free at large edge (Cs-Fl). Moreover,
unless otherwise stated, all layers are assumed to be of the same thickness and material and material properties
of the shell used in the present study are listed in Table 1.

Several examples are demonstrated to show the verification and efficiency of the results along with the
convergence of the present analysis. The results obtained via the LW-DQ method are compared with those of
other shell theories for conical shells. Additionally, the present results are particularly compared with those of
Malekzadeh et al. [32] for laminated cylindrical shell, by taking α = 0 into the present formulations. Then,
the effects of boundary conditions, rotating speed on the natural frequency of conical shells are investigated.

3.1 Convergence checking

In Tables 2 and 3, the convergence behaviors of the non-dimensional fundamental frequency parameter
f = ωb

√
ρh/A11 of forward and backward waves for rotating cross-ply [0◦/90◦] laminated conical shell

constrained with Cs-Cl boundary condition with cone angles 15◦ and 30◦ are presented, respectively. The
convergence behaviors versus the number of grid points (NGP) along the meridional direction and the number
of mathematical layers through the thickness of the shell (Nl) are examined. The results are performed for
two different ratios of thickness to mean small radius of the shell, h/a. In these case studies, the fundamental
frequencies are occurred in circumferential mode numbers 5 and 3 for h/a ratios 0.02 and 0.1, respectively.
The fast rate of convergence of the method is quite evident.

Also, the convergence behaviors of the method for conical shells with two different values of thicknesses
for three different cone angles 15◦, 30◦ and 45◦ are presented in Figs. 2, 3 and 4, respectively. As it is well
anticipated from these figures, with increasing the thickness, the convergence behaviors have been postponed.
It should be noted that based on the presented results, it was found that the trend of convergence for conical
shell with different cone angles is approximately the same.

3.2 Validation

In order to validate the results, firstly, the formulation is customized for an isotropic cylindrical shell with fully

simply supported boundary condition. The results of the first two frequency parameters f =ωR
√
ρ
(
1−υ2

)
/E

of thick cylindrical shells, listed in Table 4, are compared with those of LW-exact solutions by Loy and Lam
[33] for different H/L and H/R.

The further comparisons are demonstrated with the work done by Khdeir et al. [34] which considers
different theories of HSDT, FSDT, and CST for the non-rotating shells. The fundamental frequency parameter
f = (

ωL2/100h
)√

ρ/E22 of symmetric and antisymmetric cross-ply laminated cylindrical shells under
various boundary conditions are listed in Table 5. The trend of the results listed in this table indicates the
accuracy of the present work as it is based on 3D theory of elasticity.

The third comparison is done with the work done by Malekzadeh et al. [32] which considers the LW-DQ
method for a non-rotating laminated cylindrical shell with fully simply supported boundary condition. As
depicted in Fig. 5, comparing the results shows the excellent accuracy of the present work.

Lastly, with taking � = 0 into the formulations, the present results have been compared with those of
Refs. [3,4,35] for a non-rotating thin conical shell with Ss-Sl and also Ss-Cl boundary conditions as listed in
Tables 6 and 7, respectively.

3.3 Parameter studies

The previous sections demonstrate the fast convergence behavior and reliability of the present method. Here,
the effects of ply angle, thickness and rotating speed on the natural frequency of the laminated conical shells
with different boundary conditions are considered.
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The effect of ply angle of symmetric angle-ply laminated conical shells for different values of circumfer-
ential wave numbers are shown in Fig. 6. Seven patterns are defined to designate stacking sequence of plies.
Pattern [0◦/45◦/0◦] results in high natural frequencies particularly at lower circumferential modes. However,
monitoring the other patterns gives a new idea about the middle ply and that when the angle-ply approaches
from 0 to 90 provides the high natural frequencies at high circumferential modes. This is due to the fact that
they contain the layers which made the structure stiffer in circumference at high circumferential wave numbers
where the wavelength decreases.

The influence of geometric ratio h/a on natural frequency of the conical shells with different cone angles,
α, are illustrated in Fig. 7. As depicted, increasing the cone angle leads to a decrease in natural frequency of
the shell due to more outspread mass and less curvature stiffness. It can also be concluded that the increasing
the geometric ratio h/a may enhance the natural frequency of the shell, particularly those occurred in high
circumferential mode numbers as a shortening the waves.

Figure 8 shows the influence of the thickness of shell on natural frequency of conical shell with different
rotating speed. From the figure, it is seen that with increasing rotating speed, the difference of natural frequency
between backward and forward waves increases monotonically for different thicknesses. It is also observed
that in high rotating speed, the frequencies of the shells generally decrease with increasing rotating speed for
both forward and backward waves. This is due to the fact that the inertia terms generated by rotation of the
shell become more significant rather than the stiffening terms influenced by initial hoop tension.

4 Conclusion

In this paper, the three-dimensional free vibration analysis of thick rotating laminated conical shells is developed
using a mixed LW-DQM. Hamilton’s principle with the layerwise theory is used to discretize the through-
thickness form of the equation of motion and the related boundary conditions of the conical shell. Then,
the equations of motion as well as the boundary condition equations are transformed into a set of algebraic
equation applying the DQM in the meridional direction. It is found that the this approach present a fast rate
of convergence and yield accurate results when compared with those of available in the literature and these
documented results constitute a useful reference source. It is concluded that the mixed LW-DQM can be used
as a robust, effective and accurate numerical method for analysis of thick rotating laminated conical shells.

Appendix A: the basic idea of the DQ method

The DQM is based on a simple mathematical concept that any sufficiently smooth function in a domain can be
expressed approximately as an (N − 1)th order polynomial in the overall domain. In other words, at a discrete
mesh point in a domain, the derivative of a sufficiently smooth function with respect to a coordinate direction
can be approximated by taking a weighted linear sum of the functional values at all the discrete mesh points
in the coordinate direction. Thus, the partial derivatives of a function f (x) as an example, at a point (xi ), are
expressed as Shu [24]

∂s f (x)

∂xs

∣∣∣∣
x=xi

=
N∑

j=1

C̃s
i j f

(
x j
)
, i = 1, 2, . . . , N . (A. 1)

where N is the NGP and f can be taken u, v and w in the present study and C̃s
i j are the respective weighting

coefficient related to the sth order derivative and is obtained as follows:
If s = 1, namely for the first-order derivative,

C̃1
i j = M (1) (xi )(

xi − x j
)

M (1)
(
x j
) for i 
= j and i, j = 1, 2, . . . N (A. 2)

and

C̃1
i i = −

N∑

j=1( j 
=i)

C̃1
i j for i = 1, 2, . . . , N (A. 3)
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where M (1) (x) is the first-order derivative of M (x) and they can be defined as

M (x) =
N∏

j=1

(
x − x j

)
M (1) (xk) =

N∏

j=1( j 
=k)

(
xk − x j

)
(A. 4)

If s> 1, namely for the second- and higher-order derivatives, the weighting coefficient are obtained, using
the following simple recurrence relationship:

C̃s
i j = r

(
C̃1

i j · C̃s−1
i i − C̃s−1

i j
xi −x j

)
for i 
= j and i, j = 1, 2, . . . , N ; s = 2, 3, . . . , N − 1 (A. 5)

and

C̃s
ii = −

N∑

j=1( j 
=i)

C̃s
i j for i = 1, 2, . . . , N (A. 6)

Because the coordinate distribution and the number of discrete grid points (NGP) can be chosen arbitrarily
in the implementation of the DQM, the following distributions of the grid points in the meridional x direction
will be used in the present formulation.

xi = L

2

(
1 − cos

(
i − 1

N − 1
π

))
, i = 1, 2, . . . , N (A. 7)
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