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Abstract A micro-scale free vibration analysis of composite laminated Timoshenko beam (CLTB) model is
developed based on the new modified couple stress theory. In this theory, a new anisotropic constitutive relation
is defined for modeling the CLTB. This theory uses rotation–displacement as dependent variable and contains
only one material length scale parameter. Hamilton’s principle is employed to derive the governing equations
of motion and boundary conditions. This new model can be reduced to composite laminated Bernoulli–Euler
beam model of the couple stress theory. An example analysis of free vibration of the cross-ply simply supported
CLTB model is adopted, and an explicit expression of analysis solution is given. Additionally, the numeri-
cal results show that the present beam models can capture the scale effects of the natural frequencies of the
micro-structure.

Keywords Composite laminated beam · Timoshenko beam · Modified couple stress theory · Material length
parameter · Scale effect · Vibration · Natural frequency

1 Introduction

Experimental works made by Fleck et al. [1], Ma and Clarke [2], Stolken and Evans [3], Chong and Lam
[4], Lam et al. [5], and McFarland and Colton [6] show that size effects play an important role in micro-scale
structures of materials ranging from thin copper wires, silver single crystal, nickel beams, or epoxy polymeric
beams. As the conventional continuum theory cannot explain or solve the problems of the scale effects, theories
for micro-structures need to be developed.

Theories for micro-structures include couple stress theory and strain gradient theory. A series of researches
in the couple stress/strain gradient theories have been made. The couple stress theories (e.g., [7–10]) and the
strain gradient theories (e.g., [11–15]) have been established. Recently, unlike the couple stress theories men-
tioned above, Yang et al. [16] proposed a modified couple stress theory (C1 theory). In this modified couple
stress theory, the stress tensor is symmetric. In the past few years, many researchers have been attracted to
this theory. For example, Park and Gao [17] studied the static behaviors of the Bernoulli–Euler micro-scale
beam, and Kong et al. [18] developed this model for vibration analysis; Ma et al. [19] developed the Timo-
shenko micro-scale beam model for static bending and free vibration; Tsiatas [20] studied the static behaviors
of the Kirchhoff micro-scale plate model and Yin et al. [21] developed this model for vibration analysis;
a nonclassical Mindlin plate model is developed by Ma et al. [22].

Jomehzadehei et al. [23], based on a modified couple stress theory, analyzed the size-dependent vibration of
micro-plates. Wang et al. [24], based on the strain gradient elasticity theory, proposed a Kirchhoff micro-plate
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model. Lately, Reddy et al. developed models of functionally graded beams and nonlinear formulations based
on the nonlocal/couple stress theory [25,26]. The couple stress theory is used by Reddy [25] to analyze func-
tionally graded beams. The nonlocal nonlinear formulations for beams and plates were developed by Reddy
[26] and Reddy et al. [27] based on the modified couple stress theory proposed a nonlinear third-order theory
of functionally graded plates.

More recently, a new micro-model for bending analysis of composite laminated beams with the first-order
shear deformation has been developed in the first time by Chen et al. [28], based on the new modified couple
stress theory. Chen et al. [29] have also established a model of composite laminated Reddy plate based on a
new modified couple stress theory. The composite laminated Reddy beam model based on a modified couple
stress theory has also been established by Chen et al. [30]. In this model, a new curvature tensor is defined for
establishing the constitutive relations of laminated beam for anisotropy materials.

The objective of this paper is to develop the micro-scale composite laminated Timoshenko beam (CLTB)
model for dynamic analysis, based on the new modified couple stress theory. The rest of this paper is organized
as follows. In Sects. 2, 3, the modified couple stress theory, the displacement field, and the constitutive equations
are described. In Sect. 4, using Hamilton’s principle, the governing equations of motion and corresponding
boundary conditions are obtained. Then, in Sects. 5 and 6, the free vibration problem of a cross-ply simply
supported micro beam is solved and the numerical results are analyzed. This paper concludes with a summary
in Sect. 7.

2 Modified couple stress theory

The modified couple stress theory proposed by Yang et al. [16] contains only one additional material length
scale parameter. In this theory, the constitutive relations can be given as:

{
σij = λεkkδij + 2μεij,

mij = 2μ�2χij,
(1)

where {
εij = 1

2

(
ui,j + uj,i

)
,

χij = 1
2

(
ωi,j + ωj,i

)
,

(2)

and σij, εij, mij, χij are the stress tensor, strain tensor, couple stress moment tensor, and the symmetric curvature
tensor, respectively. In Eqs. (1) and (2), λ and μ are the elastic coefficients, � is the micro-material’s constants,
δij is the Kronecker delta, u (ui ) is the displacement vector, and ω (ωi ) is the rotation vector as

ω = 1

2
curl u. (3)

In the modified couple stress theory, both the curvatures (χij = χji) and the couple stress moments (mij = mji)
are symmetric; however, it can be used only for isotropic materials.

3 Basic equations of composite laminated beam of new modified couple stress theory

3.1 Displacement field and strain

Using the Cartesian coordinate system (x, y, z) as shown in Fig. 1, where the x-axis is coincident with the
centroidal axis of the undeformed beam, the displacement field in a Timoshenko beam can be described by
Reddy [31] as follows:

⎧⎨
⎩

u(x, z, t) = u0(x, t) − zθ(x, t),
v = 0,
w = w(x, t),

(4)

where θ is the angle of rotation around the y-axis of the cross-section.
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Fig. 1 Schematic diagram of Timoshenko beam

The rotational displacements are

⎧⎨
⎩

ωx = 1
2

(
w,y − v,z

) = 0
ωy = 1

2

(
u,z − w,x

) = − 1
2

(
θ + ∂w

∂x

)
ωz = 1

2

(
v,x − u,y

) = 0
(5)

where ωy is the rotational displacement of the centroidal axis which is unrelated to z. Equation (5) shows that
the rotational displacement of this model is constant along the thickness direction.

From Eqs. (2), (4), and (5), the strain–displacement and the couple strain–displacement relationships can
be described as follows:

⎧⎪⎨
⎪⎩

εx
γxz
χxy
χyx

⎫⎪⎬
⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂x
∂u
∂y + ∂v

∂x
∂ωx
∂y + ∂ωy

∂x
∂ωx
∂y + ∂ωy

∂x

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u0
∂x − z ∂θ

∂x
∂w
∂x − θ

− 1
4

(
∂θ
∂x + ∂2w

∂x2

)
− 1

4

(
∂θ
∂x + ∂2w

∂x2

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6)

3.2 Constitutive relations for composite laminated beam based on the new modified couple stress theory

In this section, a new modified couple stress theory for anisotropic materials will be established, in which the
constitutive relations for anisotropic micro-composite plate/beam are proposed. In this theory, rotation displace-
ments are dependent variables (C1 theory), and two different length scale parameters, one related to fiber and one
related to matrix, are introduced to establish the modified couple stress theory model for composite plate/beam.
The following will elaborate on the establishment of the new constitutive equation of anisotropic materials

Adding a rotation balance condition in the equilibrium equations (i.e., the rotational equilibrium rotating
about the micro-impurity) is the foundation for the couple stress theory. In the laminated plate or beam, the
micro-scale material constants �2

b and �2
m are related to the fiber and matrix of the same ply, respectively. �2

b
represents the micro-scale material constant of the fiber rotating in the y–z plane where the fiber cross-section
and the matrix interact, and the fiber is viewed as the impurity affecting the rotational equilibrium, as shown in
Fig. 2. �2

m is the micro-scale material constant within the matrix rotating about the impurity in the x–z plane,
as shown in Fig. 3.

In the couple stress theory, the constitutive equation is only contributed to shear stress and is uncoupled with
the micro-scale parameters of the shear modules; unlike in the strain gradient theory, where the microscopic
parameters of the constitutive equation have a coupling effect.
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Fig. 2 y–z plane fiber cross-section

Fig. 3 Fiber within x–z plane

According to the isotropic modified couple stress theory and the classical couple stress theory, a new
constitutive equation could be built, and the relationship between couple stress and curvatures is defined as
follows: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mx = m̃x = 2C44�
2
b

∂ωx
∂x ,

my = m̃ y = 2C55�
2
m

∂ωy
∂y ,

mxy = 1
2

(
m̃xy + m̃yx

) = C44�
2
b

∂ωx
∂y + C55�

2
m

∂ωy
∂x ,

m̃yx = 1
2

(
m̃xy + m̃yx

) = C44�
2
b

∂ωx
∂y + C55�

2
m

∂ωy
∂x .

(7)

where C44 = G12, C55 = G22 are the shear modules, in y–z and x–z planes, respectively.
Equation (7) can be expressed in matrix form:

⎧⎪⎨
⎪⎩

mx
my
mxy
myx

⎫⎪⎬
⎪⎭ =

⎡
⎢⎢⎣

2C44�
2
kb

2C55�
2
km

C44�
2
b C55�

2
m

C44�
2
b C55�

2
m

⎤
⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ωx
∂x
∂ωy
∂y
∂ωx
∂y
∂ωy
∂x

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8)

where the x-axis direction is coincident with the fiber’s plying direction. In Eq. (8), the curvatures χij = ωi,j

(i.e., χ12 = ∂ωx′
∂y′ , χ21 = ∂ωy′

∂x ′ ) are asymmetric; however, couple stress moments are symmetric as seen in
mx′y′ = my′x′ .

For isotropic materials,

C44 = G12 = C55 = G22 = G, �b = �m = � (9)

From Eqs. (7, 8), we can see

mxy = 1

2

(
m̃xy + m̃yx

) = G�2 ∂ωx

∂y
+ G�2 ∂ωy

∂x
(10)

which is equivalent to Eq. (1), namely, for isotropic materials, the new modified couple stress theory is equiv-
alent to the modified couple stress theory proposed by Yang et al.

For anisotropic modified couple stress theory, the curvatures can be written as

χ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ωx
∂x
∂ωy
∂y
∂ωx
∂y
∂ωy
∂x

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2w
∂x∂y

− ∂2w
∂x∂y

∂2w
∂y2

− ∂2w
∂x2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11)
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A laminate beam is made up of a group of single layers bonded to each other. For the composite laminated

beam, in the local coordinate (x ′, y′, z) of kth layer, the curvatures ∂ωx′
∂y′ and

∂ωy′
∂x ′ should be expressed as

independent components in terms of the micro-scale material constants �2
kb and �2

km related to the fiber and
matrix of the same ply, respectively. The constitutive relations in Eq. (1) are for isotropic materials. A new
expression of the constitutive relations is defined for the kth ply as follows:

{
mx′y′
my′x′

}
=
[

Ck
44�

2
kb Ck

55�
2
km

Ck
44�

2
kb Ck

55�
2
km

]{ ∂ωx′
∂y′
∂ωy′
∂x ′

}
(12)

where Ck
44 = Gk

13, Ck
55 = Gk

23.
The stress–strain relations for the kth lamina in the local coordinate

(
x ′, y′, z

)
can be written as:

σ ′k = Ckε′k (13)

where

σ ′k =
[
σ k

x′ σ k
y′ τ k

x′z τ k
y′z mk

x′y′ mk
y′x′
]T

(14)

ε′k = [
εx′ εy′ γx′z γy′z χx′y′ χy′x′

]T (15)

in which τ denotes shear stress, τ k
xy is neglected, and

ε′k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εx′
εy′
γx′z′
γy′z′
χx′y′
χy′x′

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′
∂x ′
∂v′
∂y′
∂u′
∂z + ∂w

∂x ′
∂v′
∂z + ∂w

∂y′
∂ωx′
∂y′
∂ωy′
∂x ′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

Ck =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ck
11 Ck

12

Ck
21 Ck

22

Ck
44

Ck
55

�2
kbCk

44 �2
kmCk

55

�2
kbCk

44 �2
kmCk

55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

where x ′ aligns with the direction of the fiber in the kth layer. Referring to the book by Reddy [32], we have

Ck
11

= Ek
1

(1−(vk
12

)2)
, Ck

12
= vk

12
Ek

2

(1−vk
12

vk
21

)
, Ck

22 = Ek
2

(1−(vk
22

)2)
, Ck

44 = Gk
13

, Ck
55 = Gk

23
, vk

21 = Ek
2

vk
12

Ek
1

. Here, Ek
1 and Ek

2

are the elastic modules; Gk
13 and Gk

23 are shear modules; vk
12

, vk
21

are the Poisson ratios; �2
kb and �2

km are the
material micro-structural constants related to the fiber and matrix.

After coordinating the transformation, the stress–strain relations of the kth layer in the global coordinate
(x, y, z) can be written as

σ k = Qkε (18)

where

σ k = [
σ k

x σ k
y τ k

xz τ k
yz mk

xy mk
yx

]T
(19)

ε = [
εx εy γxz γyz χxy χyx

]T (20)

Qk = TkT CkTk (21)
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The coordinate transformation matrix Tk is expressed as

Tk =

⎡
⎢⎢⎢⎢⎢⎣

m2 n2

n2 m2

m n
−n m

m2 −n2

−n2 m2

⎤
⎥⎥⎥⎥⎥⎦

(22)

where m = cos φk, n = sin φk , and φk is fiber angle with respect to the x-axis.
As εy = γyz = 0 for beam, the 2nd and 3rd columns as well as 2nd and 3rd rows Qk need not to be

considered in the strain energy. With them eliminated, Qk becomes

Qk =

⎡
⎢⎢⎣

Qk
11

Qk
44

�2
k Q̂k

44 �2
k Q̂k

55
�2

k Q̂k
44 �2

k Q̂k
55

⎤
⎥⎥⎦ (23)

Furthermore, carrying out the matrix multiplication in Eq. (23) for the isotropic as well as the anisotropic
beam, we could obtain

⎧⎪⎪⎨
⎪⎪⎩

Qk
11 = Ck

11m4 + Ck
22n4 + 2

(
Ck

12 + 2Ck
66

)
m2n2,

Qk
44 = Ck

44m2 + Ck
55n2 + 2

(
Ck

12 + 2Ck
66

)
m2n2,

�2
k Q̂k

44 = �2
kbCk

44m4 + �2
kmCk

55n4 + (
�2

kbCk
44 + �2

kmCk
55

)
m2n2,

�2
k Q̂k

55 = �2
kbCk

44n4 + �2
kmCk

55m4 + (
�2

kbCk
44 + �2

kmCk
55

)
m2n2

(24)

For the cross-ply laminates, φk = 0 or π/2 which leads to mn = 0, the Eq. (24) becomes

⎧⎪⎪⎨
⎪⎪⎩

Qk
11 = Ck

11
m4 + Ck

22n4,

Qk
44 = Ck

44m2 + Ck
55n2,

�2
k Q̂k

44 = �2
kbCk

44m4 + �2
kmCk

55n4,

�2
k Q̂k

55 = �2
kbCk

44n4 + �2
kmCk

55m4

(25)

In practice, �b � �m and one assume �m = 0. Then, Eq. (25) for cross-ply laminated beams can be further
simplified as:

⎧⎪⎪⎨
⎪⎪⎩

Qk
11 = Ck

11
m4 + Ck

22n4,

Qk
44 = Ck

44m2 + Ck
55n2,

�2
k Q̂k

44 = �2
kCk

44m4,

�2
k Q̂k

55 = �2
kCk

44n4

(26)

where �k = �kb.
However, for isotropic beams, �kb = �km = �, Ck

11
= Ck

22 = E and Q̂k
44 = Ck

44 = G, Q̂k
55 = Ck

55 = G. Thus,
Eq. (26) can be simplified to be

⎧⎪⎪⎨
⎪⎪⎩

Qk
11 = E,

Qk
44 = G,

�2
k Q̂k

44 = �2G,

�2
k Q̂k

55 = �2G,

(27)

where E is the elastic module and G the shear module. Then, substituting Eq. (27) into Eq. (23), the result is
the same as shown in Eq. (1b), which is used for isotropic materials.
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4 Governing motion equations of composite laminated Timoshenko beam based on the new modified
couple stress theory

4.1 Hamilton’s principle for composite laminated beam of modified couple stress theory

The Hamilton’s principle can be used to identify the equilibrium conditions and the boundary conditions. For
the composite laminated beam in Fig. 1, if unit width (i.e., b = 1) is assumed, the principle can be expressed by

T∫
0

[δK − (δU − δW )]dt = 0 (28)

where

δK =
L∫

0

⎡
⎣ n∑

k=1

zk+1∫
zk

ρk
(

∂u
∂t

)T

δ
∂u
∂t

dz

⎤
⎦ dx, (29)

δU =
L∫

0

⎡
⎣ n∑

k=1

zk+1∫
zk

(
σ k
)T

δεdz

⎤
⎦ dx, (30)

δW =
∫
�

f̄
T
δudv +

∫
∂�

T̄
T
δuds. (31)

In Eq. (29), ρk is the mass density of the kth ply material, and in Eq. (31), f̄ and T̄ are the prescribed body
force and boundary traction vectors, respectively.

Substituting Eq. (6) into the Eq. (30), by the integration on z and x coordinates in the section of beam, the
first variation of the total strain energy in the beam becomes

δU =
L∫

0

⎡
⎣ n∑

k=1

zk+1∫
zk

(
σ k

x δεx + τ k
xzδγxz + 2mk

xyδχxy

)
dz

⎤
⎦ dx

=
L∫

0

{
−∂ N

∂x
δu0 +

[
−∂ Q

∂x
− 1

2

∂2Y

∂x2

]
δw +

[
∂ M

∂x
− Q + 1

2

∂Y

∂x

]
δθ

}
dx

+
{

Nδu0 +
[

Q + 1

2

∂Y

∂x

]
δw −

[
M + Y

2

]
δθ − Y

2
δ

(
∂w

∂x

)}∣∣∣∣
x=L

x=0
(32)

where

{N , M, Q, Y } =
n∑

k=1

zk+1∫
zk

{
σ k

x , zσ k
x , τ k

xz, mk
xy

}
dz (33)

are the stress and the couple stress resultants.
Under the modified couple stress theory, the external virtual work can be expanded as

δW =
L∫

0

( fuδu0 + fwδw + fcδw)dx + (
N̄δu0 + V̄ δw + M̄δθ

)∣∣x=L
x=0 , (34)

where f u and f w are the x- and z-components of the body force per unit length beam; f c is the body moment
about the z-axis per unit length of the beam; N̄ , V̄ , and M̄ are the applied axial force, transverse force,
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and bending moment at the two ends of the beam, respectively. Moreover,

L∫
0

fcδωdx = −1

2

L∫
0

fcδ
(
θ + w,x

)
dx = −1

2

⎛
⎝

L∫
0

fcδθdx + fcδw|x=L
x=0 −

L∫
0

∂ fc

∂x
δwdx

⎞
⎠ . (35)

The first variation of kinetic energy is

δK =δ

L∫
0

1

2
ρ

{(
∂u1

∂t

)2

+
(

∂u2

∂t

)2

+
(

∂u3

∂t

)2
}

dx = δ

L∫
0

1

2
ρ

{[
∂ (u0 − zθ)

∂t

]2

+
(

∂w

∂t

)2
}

dx . (36)

Substituting Eqs. (32), (34), and (36) into the Eq. (28), we have

T∫
0

L∫
0

{(
∂ N

∂x
+ fu − m0

∂2u0

∂t2

)
δu0 +

[
∂ Q

∂x
+ 1

2

∂2Y

∂x2 + 1

2

∂ fc

∂x
+ fw − m0

∂2w

∂t2

]
δw

+
(

−∂ M

∂x
+ Q − 1

2

∂Y

∂x
− 1

2
fc − m2

∂2θ

∂t2

)
δθ

}
dxdt

+
T∫

0

{(
N̄ − N

)
δu0 +

[
−Q − 1

2

∂Y

∂x
− fc

2
+ V̄

]
δw

+
[

Y

2
+ Ȳ

]
δ

(
∂w

∂x

)
+
[

M + Y

2
+ M̄

]
δθ

}∣∣∣∣
x=L

x=0
dt

+
L∫

0

[
m0

(
∂u0

∂t
δu0 + ∂w

∂t
δw

)
+ m2

∂θ

∂t
δθ

]∣∣∣∣∣∣
t=T

t=0

dx = 0. (37)

From Eq. (37), the equations of motion can be obtained as

⎧⎪⎨
⎪⎩

∂ N
∂x + fu = m0

∂2u0
∂t2 ,

ks
∂ Q
∂x + 1

2
∂2Y
∂x2 + 1

2
∂ fc
∂x + fw = m0

∂2w
∂t2 ,

− ∂ M
∂x + ks Q − 1

2
∂Y
∂x − 1

2 fc = m2
∂2θ
∂t2 .

(38)

the traction boundary conditions at x = 0 and x = L are

⎧⎪⎪⎨
⎪⎪⎩

N = N̄ ,

Q + 1
2

∂Y
∂x + 1

2 fc = V̄ ,

−Y
2 = Ȳ ,

−M − Y
2 = M̄,

(39)

and the displacement boundary conditions are

⎧⎪⎪⎨
⎪⎪⎩

u0 = ū0,
w = w̄,
∂w
∂x = ∂w̄

∂x ,

θ = θ̄ .

(40)
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4.2 Equations of motion in terms of displacements for the composite laminated Timoshenko beam of
modified couple stress theory

Substituting geometric Eq. (6) and stress–strain relations in Eq. (13) into Eq. (33), we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N = Q̄11
∂u0
∂x − J̄11

∂θ
∂x ,

M = J̄11
∂u0
∂x − Ī11

∂θ
∂x ,

Q = Q̄44
(

∂w
∂x − θ

)
,

Q2 = Ī44
(

∂w
∂x − θ

)
,

Y = − 1
2�2

a
¯̄Q44

(
∂θ
∂x + ∂2w

∂x2

)
,

(41)

where
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{
Q̄jj, Ījj

} = ∑n
k=1

{
zk+1 − zk,

z3
k+1−z3

k
3

}
Qk

jj ( j = 1, 4),

J̄11 = ∑n
k=1

z2
k+1−z2

k
2 Qk

11,¯̄Q44 = ∑n
k=1 (zk+1 − zk) Q̂k

44,

�2
a = �2

k Q̂k
44

∑n
k=1

z−
k+1zk

¯̄Q44
.

(42)

The equations of motion in terms of displacements as u0, w and rotation as θ of the composite laminated
Timoshenko beam of couple stress theory can be obtained as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q̄11
∂2u0
∂x2 − J̄11

∂2θ
∂x2 + fu = m0

∂2u0
∂t2 ,

ks Q̄44

(
∂2w
∂x2 − ∂θ

∂x

)
− �2

a
¯̄Q44
4

(
∂4w
∂x4 + ∂3θ

∂x3

)
+ 1

2
∂ fc
∂x + fw = m0

∂2w
∂t2 ,

− J̄11
∂2u0
∂x2 + Ī11

∂2θ
∂x2 + ks Q̄44

(
∂w
∂x − θ

)+ �2
a

¯̄Q44
4

(
∂3w
∂x3 + ∂2θ

∂x2

)
− 1

2 fc = m2
∂2θ
∂t2 .

(43)

For the same materials of each layer, we can take � = �k (k = 1, 2, 3) and �2
a = �2.

If we substitute θ = ∂w
∂x and ∂2θ

∂t2 = 0 into Eq. (43), the equations of motion in terms of displacement of the
composite laminated Bernoulli–Euler beam (CLBB) model of couple stress theory can be obtained as follows:

⎧⎨
⎩

Q̄11
∂2u0
∂x2 − J̄11

∂3w
∂x3 + fu = m0

∂2u0
∂t2 ,

J̄11
∂3u0
∂x3 −

(
Ī11 + �2 ¯̄Q44

)
∂4w
∂x4 + fw = m0

∂2w
∂t2 .

(44)

Introducing the relations of u0 = 0, ¯̄Q44 = G A, and Ī11 = E I [28] into Eq. (44), the equation of motion in
terms of displacement of isotropic Bernoulli–Euler beam model of the couple stress theory may be written as
follows:

(E I + �2G A)
∂4w

∂x4 + m0
∂2w

∂t2 + fw = 0 (45)

which is identical to the result as in the reference of Kong et al. [18]. In this case, we can see the new modified
couple stress theory can be used for isotropic materials.

The new equations (43), (44), and (45) can help us explain the size effects. Moreover, by letting � = 0, the
new models can be reduced to the corresponding classical beam models.

5 Free vibration

To illustrate the size effects of the new model, a simply supported beam model is analyzed. The corresponding
boundary conditions are
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Fig. 4 Simply supported beam

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0 |x=0 = u0 |x=L = 0,
w |x=0 = w |x=L = 0,

∂2w
∂x2

∣∣∣∣ x = 0 = ∂2w
∂x2

∣∣∣∣ x = L = 0,

∂θ
∂x

∣∣∣∣ x = 0 = ∂θ
∂x

∣∣∣∣ x = L = 0.

(46)

5.1 Natural frequency of Timoshenko beam model

A simply supported beam as shown in Fig. 4 is used for the natural vibration analysis with all external forces
vanished (i.e., fu = 0, fw = 0, and fc = 0; and N̄ = 0, V̄ = 0, and M̄ = 0). In order to simplify pro-
cesses for analysis of the scale effects with respect to the deflection w, we can assume fu = 0, N = 0 and
u = u0(x, t) ≡ 0 for any x ∈ [0, L]. The trial functions are assumed [31] as follows:

⎧⎪⎪⎨
⎪⎪⎩

w(x, t) =
∞∑

n=0
W V

n sin
( nπx

L

)
eiωnt ,

θ(x, t) =
∞∑

n=0
�V

n cos
( nπx

L

)
eiωnt ,

(47)

where ωn is the vibration frequency, W V
n and �V

n are the Fourier coefficients, and i is the usual imaginary
number satisfying i2 = −1.

If we substitute Eq. (47) into Eq. (43), we have

(K − λM)

{
W V

n
�V

n

}
= 0, (48)

where λ = ω2
n , for any fixed values of n. The elements of coefficient matrix K and M, which refer to stiffness

matrix and mass matrix, respectively, are given as

K =
⎡
⎣ 4n4π4 L2ks Q̄44+�2n4π4 ¯̄Q44

4L4
�2n3π3 L ¯̄Q44−4nπ L3ks Q̄44

4L4

�2n3π3 ¯̄Q44−4nπ L2ks Q̄44
4L3

4n2π2 L Ī11+4ks L3 Q̄44+�2n2π2 L ¯̄Q44
4L3

⎤
⎦ , (49)

M =
[

m0
m2

]
, (50)

where {
m0 = ρbh,

m2 = ρbh3/12.
(51)

For nontrivial solutions of W V
n (�= 0) and �V

n ( �= 0), it is required that the determinant of the coefficient matrix
of Eq. (48) vanishes, which leads to

C2λ
2 + C1λ + C0 = 0, (52)
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where⎧⎪⎪⎨
⎪⎪⎩

C2 = −m0m2,

C1 = 1
4L6

(
4ksn2π2 L4 Q̄44m2+�2n4π4L2 ¯̄Q44m2+4n2π2 L4 Ī11m0+4ks L6 Q̄44m0 + �2n2π2 L4 ¯̄Q44m0

)
,

C0 = − 1
4L6

(
4n4π4ks L2 Ī11 Q̄44 + 4�2n4π4ks L2 Q̄44

¯̄Q44 + �2n6π6 Ī11
¯̄Q44

)
.

(53)

The λ can be obtained from Eq. (52)

λ =
−C1 +

√
C2

1 − 2C2C0

2C2
. (54)

The positive solution of ωn determined from Eq. (54) is the nth order natural frequency of the simply supported
beam.

For the isotropic Timoshenko beam, the elastic constants become as follows: Q̄44 = G A, ¯̄Q44 =
G A, Ī11 = E I, and I = bh3

12 . To substitute these constants into Eq. (52), the equation becomes as
⎧⎨
⎩

C2 = −m0m2,

C1 = 1
4L6

((
4n2π2ks L4G A+�2n4π4L2G A

)
m2+(4n2π2L4 E I +4ks L6G A+�2n2π2L4G A

)
m0
)
,

C0 = − 1
4L6

(
4n4π4ks L2 E I G A + 4�2n4π4ks L2 (G A)2 + �2n6π6 E I G A

)
.

(55)

They are identical to the results as shown in the reference of Ma et al. [19]. This also illustrates the validity of
the new modified couple stress theory used for isotropic materials.

The natural frequency of the simply supported classical CLTB model can be obtained from Eqs. (52) and
(53), when l = 0, and Eq. (53) is written as⎧⎨

⎩
C2 = −m0m2,

C1 = 1
L2

(
ksn2π2 Q̄44m2 + (

n2π2 Ī11 + ks L2 Q̄44
)

m0
)
,

C0 = − 1
L4 n4π4ks Ī11 Q̄44.

(56)

5.2 Natural frequency of Bernoulli–Euler beam model

Similarly, when we substitute Eq. (47) into Eq. (44), we can have the natural frequency of CLBB model of the
modified couple stress theory, which is as follows:

ωn =
√

Ī11 + �2 ¯̄Q44

m0L4 (nπ)2 . (57)

By letting � = 0, the new model then reduces to the classical CLBB model

ωn =
√

Ī11

m0L4 (nπ)2 . (58)

For the isotropic Bernoulli–Euler beam, the elastic constants become ¯̄Q44 = G A and Ī11 = E I. Substituting
these constants into Eq. (57), the natural frequency of isotropic Bernoulli–Euler beam model can be obtained as

ωn =
√

E I + �2G A

m0L4 (nπ)2 . (59)

This is identical to the result as shown in the reference Kong et al. [18].
As illustrated above, the natural frequencies of the simply supported CLTB model of the modified couple

stress theory can be reduced to the classical CLTB model and the isotropic Timoshenko beam model of the
modified couple stress theory. Similarly, the natural frequency of the simply supported CLBB model of the
modified couple stress theory can be reduced to the classical CLBB model and the isotropic Bernoulli–Euler
beam model of the modified couple stress theory.
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Table 1 Natural frequency of the CLTB model

ωn (MHz) Classical Present

� = 0.0 � = 0.1 � = 0.5 � = 1.0 � = 1.5 � = 3 � = 6 � = 9

ω1 5.00999 5.00999 5.00999 5.00999 5.02991 5.05964 5.14782 5.33854
ω2 17.6324 17.6324 17.6380 17.6465 17.6664 17.7651 18.1466 18.7617
ω3 33.9470 33.9470 33.9544 33.9765 34.0147 34.2184 35.0186 36.2960
ω4 51.6120 51.6130 51.6256 51.6643 51.7291 52.0807 53.4528 55.6327
ω5 69.6326 69.6333 69.6534 69.7151 69.8176 70.3676 72.5114 75.8933

Table 2 Natural frequency of the CLBB model

ωn (MHz) Classical Present

� = 0.00 � = 0.1 � = 0.5 � = 1.0 � = 1.5 � = 3 � = 6 � = 9

ω1 5.28539 5.28544 5.28645 5.28959 5.29483 5.32304 5.43439 5.61509
ω2 21.1416 21.1417 21.1458 21.1583 21.1794 21.2922 21.7376 22.4603
ω3 47.5686 47.5690 47.5780 47.6063 47.6534 47.9073 48.9095 50.5358
ω4 84.5663 84.5671 84.5832 84.6334 84.7172 85.1685 86.9503 89.8414
ω5 132.135 132.136 132.162 132.240 132.371 133.076 135.860 140.377
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Fig. 5 Natural frequency of Timoshenko beam model

6 Numerical results and discussion

To illustrate the size effects of the composite laminated micro-beams, both the CLTB model and the CLBB
model, different numerical results are compared in the present study.

Consider the three-layer ([90◦/0◦/90◦]) micro-beams with the size of width b = 25 × 10−6 m, length
L = 200 × 10−6 m, thickness h = 25 × 10−6 m, and the material constants [33]: E2 = 6.9 × 109 Pa, E1 =
25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = ν13 = ν23 = 0.25, in which subscripts 1 and 2 represent the
direction of fiber and matrix, respectively. In addition, the density of the beam is taken to be ρ = 1, 578 kg/m3.
In order to explore the effect of length scale parameter on free vibration behavior of micro-beams, different
values of material length scale parameter � are taken, and the corresponding natural frequencies are shown in
Tables 1 and 2. It is obvious that as material length scale parameter � increases, natural frequency increases
accordingly, especially for high-order frequency.

To further illustrate the size effects, we change the sizes of the beam into width b = 2h, length L = 20h,
and the material length scale parameter � = 4 × 10−6 m. The first and fifth natural frequencies of both present
and classical Timoshenko beam models vary with h′ (i.e., h′ = h/� = h/(4 × 10−6 m)) are given in Fig. 5,
which show that the natural frequencies of the present Timoshenko beam model in the couple stress theory are
more than the classical beam model. For various values of h/�, the first and fifth natural frequencies of both
present and classical Bernoulli–Euler beam models with h′ are given in Fig. 6, which show that the natural
frequencies of the Bernoulli–Euler beam model in the couple stress theory are more than the classical beam
model.
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Fig. 6 Natural frequency of Bernoulli–Euler beam model

7 Conclusions

A new modified couple stress theory is developed for establishing the model of composite laminated
Timoshenko beam. This theory contains the rotation and displacement as dependent variables and the only one
material length scale parameter for micro-structures. In this theory, a new constitutive relation for laminated
beam with anisotropic materials is defined. The present beam model can be viewed as a simplified couple
stress theory in engineering mechanics. An example as analysis of the free vibration of the cross-ply simply
supported CLTB model is adopted.

Numerical results show that the present beam model can capture the scale effects of micro-structures.
The numerical results given by the CLTB model and the CLBB model show that the natural frequency of the
nonclassical beam model is always higher than that of the classical beam model.
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