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Abstract A general model of a rub-impact rotor system is set up and supported by oil film journal bearings.
The Jacobian matrix of the system response is used to calculate the Floquet multipliers, and the stability of
periodic response is determined via the Floquet theory. The nonlinear dynamic characteristics of the system
are investigated when the rotating speed and damping ratio is used as control parameter. The analysis methods
are inclusive of bifurcation diagrams, Poincaré maps, phase plane portraits, power spectrums, and vibration
responses of the rotor center and bearing center. The analysis reveals a complex dynamic behavior comprising
periodic, multi-periodic, chaotic, and quasi-periodic response. The modeling results thus obtained by using
the proposed method will contribute to understanding and controlling of the nonlinear dynamic behaviors of
the rotor-bearing system.
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1 Introduction

The rub-impact of rotor-to-stator often occurs in high-speed rotating machinery such as turbine generator,
hydraulic motor, centrifugal compressor, and aerospace motor. The subsequent rubbing at the contact area
may lead to the shutdown of a motor; the rubbing between a blade and its seals could result in serious
malfunction and catastrophic failure. On the other hand, rotor-to-stator rub is also a secondary effect that is
caused by some other malfunctions such as excessive unbalance, rotor bow, and self-excited instability of
the rotor system; thus, the consideration of rub impact of the dynamic analysis has become more and more
important.

Since the rotor-stator rub is one of the main faults for large rotary machines, the mechanisms and dynamic
behaviors of rub-impact have been widely discussed by many researchers. Ehrich [1] studied the bifur-
cation of a bearing-rotor system identifying a sub-harmonic vibration phenomenon in a rotor system by
means of a simple model of a Jeffcott rotor. He noted that the vibratory response in the transition zone
midway between adjacent zones of sub-harmonic response had all the characteristics of chaotic behavior.
Li and Paidoussis [2] proposed a new model for a shaver rotor-casing system with clearance and mass
imbalance. They developed the Lyapunov exponent technique so as to characterize the topologically dif-
ferent behavior. The effect was illustrated by phase plots, bifurcation diagrams, and Poincaré maps. Muszyn-
ska and Goldman [3] performed an experiment of unbalanced rotor/bearing/stator systems with rubbing.
The vibration behavior of the systems was characterized by orderly harmonic and sub-harmonic responses,
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as well as by chaotic patterns of vibrations. All results substantiated the fact that chaotic vibration zones
decreased with increasing damping. G. Adiletta et al. [4] analyzed the dynamic of a rigid rotor system sup-
ported on plain journal bearings. The investigation was supported by the harmonic analysis and the exam-
ination of the orbits covered by three assigned points along the rotor axis. They proved the motion of a
rotor operating with considerable values of the static eccentricity in any case. Chu and Zhang [5] made an
investigation of vibration characteristics of a rub-impact rotor which included nonlinear rub-impact forces
resulting from eccentric rotation. When the rotating speed was increased, they found that the grazing bifur-
cation, the quasi-periodic motion, and chaos occurred after the rub-impact. Meantime, they proved the evi-
dence that damping can effectively suppress chaotic vibration and reduce vibration amplitude. Dai et al. [6]
designed an experiment involving rotor-stop rubbing and analyzed its vibration responses. The experiment
showed that the full rubbing occurred with serious continuous friction when the amplitude of the excita-
tion force exceeded a certain value. Lu et al. [7] discussed the existence of rub-impact periodic motions
in an eccentric rotor system and analyzed a criterion for the periodicity condition or other conditions for
real rub-impacts. Some results were obtained by theoretical analyses, including the existence of grazing
circle motions and that of single-impact periodic motions. Chu and Lu [8] investigated the nonlinear vibra-
tion of a rub-impact rotor system and observed a variety of periodic motions. The vibration waveforms,
orbits, and Poincaré maps were applied to analyze nonlinear responses and bifurcation characteristics when
the rub-impact occurred. It was concluded that the system motion generally contained multiple harmonic
components.

To get the most accurate solutions of the nonlinear dynamics for the flexible rotor system and use it
in practice, there have been much more researches over the past five years. Luo et al. [9] induced a crack
and rub-impact model for the rotor-bearing system. They used the shooting algorithm for periodic solu-
tion and found different bifurcation forms such as saddle-node bifurcation, periodic- doubling bifurcation,
and the Hopf bifurcation in the system. Shen et al. [10] introduced a general model of a rub-impact rotor-
bearing system with initial permanent bow. The rubbing model was assumed to consist of the radial elastic
impact and the tangential Coulomb type of friction. Results showed different motion styles such as peri-
odic, quasi-periodic and even chaotic vibrations. Yuan et al. [11] analyzed nonlinear dynamic behaviors of
rotor’s radial rub-impact in the presence of turbo- rotor’s clearance-excitation force. They observed much
more complicated dynamic behaviors with the help of bifurcation diagrams, frequency spectrums, Poincare
maps, and frequency waterfalls. Zhang et al. [12] presented a rub-impact micro-rotor mode and investigated
the nonlinear dynamic characteristics in micro-electro-mechanical systems (MEMS) when the rotating speed,
imbalance, damping coefficient, scale length, and fractal dimension were regarded as the control parame-
ters. They found the effects of these parameters on the micro-rotor system responses. Chang-Jian et al. [13]
discussed the dynamic trajectories of rub-impact rotor supported by turbulent journal bearings and lubri-
cated with couple stress fluid under quadratic damping. The phase plane portraits, power spectrum, and
Lyapunov exponent were applied to analyze the dynamic behavior. Results revealed that the motions with
different speed ratios exhibited as periodic, quasi-periodic, and chaotic types. They also [14] made a detailed
analysis of rub-impact rotor system supported by stress fluid film journal bearings. The nonlinear fluid film
force, rub-impact force, and nonlinear suspension were applied to the system. It was concluded that cou-
ple stress fluid used to be lubricant can improve dynamics of rotor-bearing system. Wang [15] developed a
model of the rotor center and journal center of the flexible rotor supported by relative short spherical gas
bearing. Numerical calculation revealed the complex dynamic behavior comprising periodic, sub-harmonic,
quasi-periodic, and chaotic responses of the rotor-journal system. Khanlo et al. [16] conducted an investiga-
tion of the rotating continuous flexible shaft-rigid disk system with rub-impact between the disk and stator.
The proposed method was used to discretize the partial differential equations of motion, and the research
confirmed that the rub-impact occurred at lower speed ratios owing to the Coriolis and centrifugal forcing
effect.

Owing to the above researches, we think that the nonlinear dynamic analysis of rotor-bearing system should
take the rub-impact force and oil film force into consideration. In this paper, attention is paid to the nonlinear
analysis of the unsteady oil film rotor-bearing system with a nonlinear oil film force. The dynamic model
of rotor-bearing systems with rub-impact is established, and the complex nonlinear dynamic phenomena of
the system are discussed along with the change of the rotating speed. Some behaviors curves of different
parameters on the nonlinear dynamic properties, such as bifurcation diagrams, phase plane portraits, Poincare
maps, spectrum analysis diagrams, and time sequence response diagrams of the system, are gained. And
nonlinear chaos behaviors of the system are also discovered.
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Fig. 1 Schematic of the rub-impact rotor system
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Fig. 2 Cross section schematic of the oil film bearing

2 Physical model and governing equations

2.1 Oil film forces of the bearing

The model discussed is a Jeffcott rotor supported on identical oil film bearings at both sides as shown in Fig. 1,
O1 and O2 are the geometric center of the disk and the journal, Om is the mass center of the disk with the
eccentricity e from O1. To analyze the rotor-bearing system, it makes some assumptions that axial and torsional
vibrations are negligible, and the transverse vibration of rotor system is taken into account.

Figure 2 shows the schematic of oil film bearing. Considering the nonlinear oil film force model under the
short bearing theory, the dynamic turbulent Reynolds equation for the pressure p in the lubricating film is [17]:(

R

L

)2
∂

∂z

(
h3 ∂p

∂z

)
= x sin θ − y cos θ − 2

(
x ′ cos θ + y′ sin θ

)
, (1)

L is the length of the bearing, R is the radius of the bearing, h represents the oil film thickness, z is
the non-dimensional axial displacement of the journal center. Integrating Eq. (1), the distribution of oil film
pressure is obtained

p = 1

8

(
L

R

)2 (
x − 2y′) sin θ − (
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(1 − x cos θ − y sin θ)3

(
4z2 − 1

)
. (2)

Equation (2) is written in the hypothesis of zero relative pressure of the lubricant in the cavitated zone and
on both sides of the bearing. The extension of the lubricating film is assumed corresponding to the interval
[α, α + π] of the angular co-ordinate θ , and the angle α is defined by means of the expression

α = arctan
y + 2x ′

x − 2y′ − π

2
sign

(
y + 2x ′

x − 2y′

)
− π

2
sign

(
y + 2x ′) . (3)

The dimensionless components of the fluid film force is given the following expressions, obtained with Eq. (2)
through integration along the lubricated arc of bearing

{
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The solution for fx and fy is based on the following integrals:

I1(x, y, α) =
α+π∫
α

cos2 θ

(1 − x cos θ − y sin θ)3 dθ

I2(x, y, α) =
α+π∫
α

sin2 θ

(1 − x cos θ − y sin θ)3 dθ

I3(x, y, α) =
α+π∫
α

sin θ cos θ

(1 − x cos θ − y sin θ)3 dθ

(5)

A numerical solution of these integrals can be avoided adopting the relationships

G (x, y, α) =
α+π∫
α

dθ
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= 2
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1/2
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2

∂2

∂x∂y
G(x, y, α). (7)

By means of Eqs. (6) and (7), from the expression Eq. (3), it follows

{
fx
fy

}
=

{
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∂x2
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}
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The eventual expression of non-dimensional oil film force can be written as

{
fx
fy

}
= −

[(
x − 2y′)2 + (
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]1/2
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,(9)

where

V (x, y, α) = 2 + (y cos α − x sin α) G (x, y, α)
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S (x, y, α) = x cos α + y sin α
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, (12)

2.2 Rub-impact force

It is assumed that there is an initial clearance of δ between the rotor and stator, and the rotational speed of rotor
is ω. The rubbing model is shown in Fig. 3. From the above assumptions, the radial impact force FN and the
tangential rub force FT could be expressed as

FN (x, y) =
{

0
(e − δ) kc

(for
(for

e < δ),
e ≥ δ),

FT = f FN , (13)



Nonlinear dynamic analysis 417

x

FN
FT

 y 
Rotor 

Stator

Fig. 3 Schematic of rub and impact forces

Fig. 4 Change diagram of the Floquet multiplier and bifurcation diagram of the bearing center. a Change of the Floquet multipliers.
b Bifurcation diagram of bearing center

Fig. 5 Bifurcation diagrams of rotor center with the rotating speed as the control parameter

Fig. 6 Bifurcation diagrams of bearing center with the rotating speed as the control parameter

where e = √
x2 + y2 is the radial displacement of the rotor, f is the friction coefficient between rotor and

stator, kc is radial stiffness of the stator. When rub-impact happens, the rub-impact forces can be written in
x − y co-ordinates as [5]

Fx (x, y) = −FN cos γ + FT sin γ,
FY (x, y) = −FN sin γ − FT cos γ.

(14)

Substitution of Eq. (13) into Eq. (14) gives
{

Fx
Fy

}
= −H(e − δ)

(e − δ)

e

[
1 − f
f 1

]{
x
y

}
(15)
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Fig. 7 Phase plane portrait and Poincaré map of rotor center and bearing center at ω = 400. a Phase plane portrait of rotor center.
b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center. e Vibration response
of rotor center. f Power spectrum of rotor center

where

H (x) =
{

0 , x ≤ 0
1 , x > 0 (16)

Equation (15) indicates that when the rotor displacement e is smaller than δ, there will be no rub-impact
interaction and the rub-impact forces are zero, else the rub-impacting will happen.

2.3 Dynamic equations

It is assumed that (x1, y1) and (x2, y2) are radial displacements in the disk position and in the bearing position.
Taking into account rubbing forces (Fx, Fy) and the oil film forces ( fx, fy), the equation for the system can
be written as

m1 ẍ1 + c1 ẋ1 + k (x1 − x2) = Fx + m2uω2 cos (ωt) ,

m1 ÿ1 + c1 ẏ1 + k (y1 − y2) = Fy + m2uω2 sin (ωt) − m1g,
m2 ẍ2 + c2 ẋ2 + 2k (x2 − x1) = fx ,
m2 ÿ2 + c2 ẏ2 + 2k (y2 − y1) = fy − m2g,

(17)

where m1 and m2 are the mass of the disk and the mass of the rotor at the bearing, c1 and c2 are the damping
coefficient of rotor at the disk and rotor damping coefficient at the bearing, respectively, k indicates the stiffness
coefficient, u represents unbalance, g is the acceleration of gravity.
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Fig. 8 Phase plane portrait and Poincaré map of rotor center and bearing center at ω = 500. a Phase plane portrait of rotor center.
b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center. e Vibration response
of rotor center. f Power spectrum of rotor center

To give the equations a dimensionless form, it can be initially assumed as below

s = μωRL (R/c)2 (L/2R)2 , fX = fx/s , fY = fy/s ,

Y1 = y1/c , X1 = x1/c , Y2 = y2/c , X2 = x2/c , τ = ωt,
(18)

μ is the oil viscosity, and c is the radial clearance of the bearing, then Eq. (17) becomes

Ẍ1 = − c1
ωm1

Ẋ1 − k
ω2m1

(X1 − X2) + FX (X1,Y1)

cω2m1
+ b̄ cos τ,

Ÿ1 = − c1
ωm1

Ẏ1 − k
ω2m1

(Y1 − Y2) + FY (X1,Y1)

cω2m1
− g

cω2 + b̄ sin τ,

Ẍ2 = − c2
ωm2

Ẋ2 − 2k
ω2m2

(X2 − X1) + s
cω2m2

fX
(
X2, Y2, Ẋ2, Ẏ2

)
,

Ÿ2 = − c2
ωm2

Ẏ2 − 2k
ω2m2

(Y2 − Y1) + s
cω2m1

fY
(
X2, Y2, Ẋ2, Ẏ2

) − g
cω2

(19)

The parameters of the rotor-bearing system used are as follows:

m1 = 35 kg , m2 = 4 kg , R = 0.028 m , L = 0.013 m , c = 0.00011 m,

μ = 0.018 pa s , f = 0.10 , c 1 = 2100 N s/m , c2 = 1050 N s/m ,

e = 0.0008 m , k = 2.5 × 107 N m−1 , kc = 3.6 × 107 N m−1 .

(20)

3 Nonlinear bifurcation and stability analysis

The dynamic problem of the proposed system can be summed up the following non-automatic system

Ẋ = F(t, u, X) , (t, u, X) ∈ R × Rm × Rn, (21)
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Fig. 9 Phase plane portrait and Poincaré map of rotor center and bearing center at ω = 630. a Phase plane portrait of rotor center.
b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center. e Vibration response
of rotor center. f Power spectrum of rotor center

where X is state vector of system, u is the system parameter, that is, the rotating speed of the rotor, diameter-
to-width ratio of the bearing, mass eccentricity and so on. The periodic solution of the dynamic system is
transformed as solving stationary point of Poincaré maps and judging stability. Equation (21) can also be
written as

Xk+1 = P(Xk, u). (22)

The curve of the fixed points is described within the given range of parameter u as follows

X = P(X, u). (23)

Equation (23) can be converted into the following equation

H(X, u) = X − P(X, u) = 0. (24)

3.1 Stability of the solutions

To trace the periodic solutions, the Cauchy form of differential equation is considered and then the following
is derived

{
dX
du = −

[
∂ H(X,u)

∂ X

]−1
∂ H(X,u)

∂u ,

X (u0) = X0.
(25)
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Fig. 10 Phase plane portrait and Poincaré map of rotor center and bearing center at ω = 700. a Phase plane portrait of rotor
center. b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center. e Vibration
response of rotor center. f Power spectrum of rotor center

Based on the solution at u = un , a solution can be obtained at u = un+1. Starting from a known solution Xn
at u = un , the prediction of Xn+1 is

{
Xn+1 = Xn −

[
∂ H(Xn ,un)

∂ X

]−1
∂ H(Xn ,un)

∂u �u,

un+1 = un + �u.
(26)

The observed states of the system are usually displacement and velocity disturbances of the center of the rotor.
In order to trace the periodic solutions curve with change of parameter u, the Jacobian ∂ H(Xn, un)/∂ X and
∂ H(Xn, un)/∂u must be found by the observed states at u = un .

Taking the partial derivative of Eq. (24) with respect to X, the following equation is obtained

∂ H

∂ X
= I − ∂ P

∂ X
. (27)

Equation (23) is spread at X = Xn , only the linear terms being remained, to give the following equation

P(X) ≈ P(Xn) + ∂ P(Xn)

∂ Xn
(X − Xn). (28)

Substitution of Eq. (28) into Eq. (22) gives

Xk+1 = ∂ P(Xn)

∂ X
Xk + Cn, (29)

where Cn = P(Xn) − (∂ P(Xn)/∂ X)Xn is a constant column vector.
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Fig. 11 Phase plane portrait and Poincaré map of rotor center and bearing center at ω = 750. a Phase plane portrait of rotor
center. b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center. e Vibration
response of rotor center. f Power spectrum of rotor center

For a d-order system, a series of Poincaré map points left by Xn crossing the Poincaré section at the same
direction, that is, Xk(k = 1, 2, . . . , d + 1) is within a certain neighborhood, Thus, Xk can be written as

⎧⎪⎪⎨
⎪⎪⎩

X1 = ∂ P(Xn)
∂ X X0 + Cn,

X2 = ∂ P(Xn)
∂ X X1 + Cn,

· · ·
Xd+1 = ∂ P(Xn)

∂ X Xd + Cn .

(30)

If Xd+1 = [X1, X2, . . . , Xd+1], Xd = [X1, X2, . . . , Xd ], Eq. (29) can be described as

Xd+1 ≈
[
∂ P(Xn)

∂ X
Cn

]
·
[

Xd

E

]
, (31)

where E = [1, 1, . . . , 1]. From Eq. (31), the following equation is easy to get

[
∂ P(Xn)

∂ X
Cn

]
=

[
Xd

E

]−1

· Xd+1. (32)

Jacobian ∂ H(Xn, un)/∂ X can be determined by Eqs. (27) and (32).
It is assumed that X̃n is one Poincaré map point located on the Poincaré section after one period of disturbing

Xn . Built on observed steady-state periodic solution being Xn , at u = un , one can get

∂ H(Xn, un)

∂u
= X̃n − Xn

�u
. (33)
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Fig. 12 Phase plane portrait and Poincaré map of rotor center and bearing center at ω = 800. a Phase plane portrait of rotor
center. b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center. e Vibration
response of rotor center. f Power spectrum of rotor center

When infinitesimal perturbation �u is exerted on un , i.e., u = un + �u the steady-state periodic solution
Xn , which is located on the Poincaré section, will cross the Poincaré section again after one period. As X̂n is
difficult to be observed in practice, solving the solution of Eq. (33) can be achieved by the following steps.

Jacobian ∂ H(Xn−1)/∂ X and Cn−1 is calculated at u = un−1. If un−1 is within the neighborhood of un ,
one can derive

X̂n ≈ ∂ P(Xn−1)

∂ X
Xn + Cn−1. (34)

Jacobian ∂ H(Xn, un)/∂un can be obtained at u = un

∂ H(Xn, un)

∂un
= ∂ P(Xn−1)/∂x + Cn−1 − Xn

un−1 − un
. (35)

The corresponding characteristic equation satisfies |J − λi I| = 0, where the eigenvalue |λi | of the matrix is
called as the Floquet multiplier of the system.

3.2 Bifurcation and stability analysis

Stability of periodic motion of the system is determined according to the Floquet theory [18,19]. If the value u is
changed, bifurcation of periodic solution and stability of the system are anticipated by the Floquet multipliers.
Concerning stability of Eq. (21), there are the following conclusions: (1) When |λi | < 1(i = 1, 2, . . ., n),
the stable periodic solution is asymptotically stable. (2) If there is λ j which passes the unit circle outwards
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Fig. 13 Phase plane portrait and Poincaré map of rotor center and bearing center at ω = 2,000. a Phase plane portrait of rotor
center. b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center. e Vibration
response of rotor center. f Power spectrum of rotor center

through the point of −1 and other |λi | < 1(i = 1, 2, . . ., n, i �= j), the stable periodic solution will have
period-doubling bifurcation. (3) If there is λ j which passes the unit circle outward through the point of +1
and other |λi | < 1(i = 1, 2, . . ., n, i �= j), the stable periodic solution will have the saddle-node bifurcation.
(4) If there is a pair of conjugate complex characteristic multipliers λ j = a ± jb which pass the unit circle
outward and other |λi | < 1(i = 1, 2, . . ., n, i �= j), the stable periodic solution will have the Hopf bifurcation
or second Hopf bifurcation, and the bifurcation will lead to an invariant torus. Therefore, the Floquet theory
can be applied to judge stability of nonlinear steady-state periodic solutions of Eq. (19). The change diagram
of the Floquet multipliers |λi |max against the rotating speed of the system is shown in Fig. 4a. It can be seen
that when the speed is below 500 rad/s, |λi | is less than 1, the stable periodic solution is asymptotically stable.
But when the rotating speed is changed at the district of (500–790) rad/s, that is, at 700 and 750 rad/s, the
Floquet multiplier |λi |max is calculated to 1.1502(Re( f ) = −1.1502, Im( f ) = 0.0) and 1.0324(Re( f ) =
−1.0324, Im( f ) = 0.0), respectively, the periodic solution crosses the unit circle by (−1, 0), it means that the
period-doubling bifurcation occurs. In particular, as the rotating speed is changed from 800 to 2,000 rad/s, |λi |
is less than 1, the system returns to stable state again. Once the speed is greater than 2,000 rad/s, that is, at 2,100
and 2,350 rad/s, the Floquet multiplier |λi |max is calculated to be 1.0712 (Re( f ) = −1.0712, Im( f ) = 0.0)
and 1.0310(Re( f ) = −1.0310, Im( f ) = 0.0), respectively. It is concluded that the stable periodic solution
of the system has period-doubling bifurcation according to the Floquet theory.

As an illustration, the bifurcation chart is obtained by Runge–Kutta method with parameters in Eq. (20).
As shown in Fig. 4b, when rotating speed is less than 500 rad/s, the motions of the system are stable with
period one. But the system shows double periodic bifurcation when the speed is greater than 500 rad/s. In
the range from 500 to 790 rad/s of rotating speeds, the motions are in period two and multi-periodic. As the
rotating speed is changed from 800 to 2,000, the period-one motion appears again. Once the speed is higher
than 2,000 rad/s, the periodic motions tend to lose their stability, and meantime the rotor vibrations will enter
double periodic bifurcation motion and quasi-periodic motion.
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Fig. 14 Phase plane portrait and Poincaré map of rotor center and bearing center at ω = 2,050. a Phase plane portrait of rotor
center. b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center. e Vibration
response of rotor center. f Power spectrum of rotor center

4 Nonlinear simulation and analysis

4.1 Effect of rotating speed

The rotating speed is one of the most important parameters affecting the dynamic characteristics of a rotor
system. A bifurcation diagram can provide a summary of the essential dynamics of the system and is therefore
a useful way of observing nonlinear dynamic behaviors. Figures 5 and 6 show the bifurcation diagrams of the
system in horizontal and vertical direction, using rotating speeds as the control parameter which ranges from
50 to 2,500 rad/s. It is obvious that the response of the system varies with the rotating speed. When the speed
is small and less than 500, the dynamic behaviors of bearing center and rotor center are synchronous with
period-one motion. Then with the rotor-to-stator rub impact and nonlinear oil film force, the system becomes
irregular and enters into the chaotic region at the district of (500–790) rad/s. With the increasing of the rotating
speed, the system leaves chaos and comes into period-one motion again between (800, 2,000) rad/s. When the
speed is higher than 2,000 rad/s, the system is in complex state, it emerges chaotic motion, period-4 motion,
and quasi-periodic motion in sequence.

To further illustrate dynamic behaviors of the system, phase plane portraits, Poincaré maps, power spec-
trums, and vibration responses are employed. It can be seen that when the speed is less than 500 rad/s., there
is a single point in the Poincaré maps, the phase plane portraits are only one closed circle, and the power
spectrums also have one-peak amplitude. The results mean that the system response is period-one motion.
Meantime, rub-impact phenomenon does not occur as shown in Fig. 7.

When the rotating speed is changed from 500 to 800 rad/s, a series of period-doubling bifurcations occur
as the control parameter is increased before entering the chaos regime. Then, a series of period-doubling
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Fig. 15 Phase plane portrait and Poincaré map of rotor center and bearing center at ω = 2,250. a Phase plane portrait of rotor
center. b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center. e Vibration
response of rotor center. f Power spectrum of rotor center

bifurcations occur until the limit motion with period one. As shown in Fig. 8, when the speed is equal to
500 rad/s, the power spectral function is broadened, there are sixteen single points in the Poincaré maps, and
the phase plane portraits also have sixteen closed circle, indicating that the system is at a period-16 motion.
When the speed is changed from 630 to 700 rad/s, phase plane portraits are disorder, the Poincaré maps show
many discrete points, and the power spectrum is continuous (Figs. 9, 10). Especially at 700 rad/s, the rotor-
stator rub happens, and the Poincaré maps show a special cipher “8” appreciatively. All these results reveal
that the system is in state of chaos in this district. In particular, when the speed changes from 710 to 790 rad/s,
it happens the so-called “period-3” phenomenon. As displayed in Fig. 11, the phase plane portraits are three
closed circle, and also the Poincaré maps have three single points. It can be seen that the system responses
contain periodic and chaotic motion alternately at the interval of 500 < ω < 790 rad/s.

With the speed near 800 rad/s, however, chaotic vibration disappears, the periodic solutions of the system
become stable. As illustrated in Fig. 12, there is a discrete frequency component in the frequency spectrum,
and the dynamic response of the system enters period-1 no-rub-impact motion again. Along with the increase
of rotating speed, the characteristics of the period-one motion will be displayed, and it keeps the state for a
long range of rotating speed until 2,000 rad/s as shown in Figs. 12 and 13.

When the rotating speed continues to increase, the system leaves period-one motion and becomes unstable.
As the speed exceeds 2,050 rad/s, rub-impact phenomenon occurs. With the nonlinear oil film force, the changes
of the system responses become very complex, that is, at 2,050 rad/s, the return points in the Poincaré maps
form a geometrically fractal structure and power spectrum has a broadband. According to these results shown
in Fig. 14, the system is in chaotic motion.

From about 2,250 rad/s, the system motion leaves chaos and comes into period-4 motion with four isolated
points in Poincaré maps and four circles in the phase plane portraits. Figure 15 indicates that the motion is
a sub-synchronous vibration with period-4. When the speed is equal to 2,500 rad/s, there exist two discrete
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Fig. 16 Phase plane portrait and Poincaré map of rotor center and bearing center at ω = 2,500. a Phase plane portrait of rotor
center. b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center. e Vibration
response of rotor center. f Power spectrum of rotor center

frequency components in the frequency spectrum as shown in Fig. 16, the phase plane portraits are regular and
the Poincaré maps have closed curve. These results also prove that the quasi-periodic motion appears in the
system.

4.2 Effect of damping

Because of the existence of damping, the rotor-bearing system is a dissipation system from the physical
viewpoint. For convenience, taking the damping ratio ξ = c1/(2

√
m1k) as control parameter, the bifurcation

diagrams of the rotor system are obtained when the damping ratio ξ is changed from 0.01 to 0.70, where the
other parameters for the computation are the same as Eq. (20). As illustrated in Fig. 17, the dynamic responses
in the horizontal and vertical direction are almost same, and the response of the rotor system undergoes a
complete process from chaos through quasi-periodic motion to period-one motion with the rotating speed
equals 1,000 rad/s.

For various damping ratios, the influence of damping on the rotor’s dynamics has been studied for three
cases; the phase plane portraits and Poincare maps of the system are shown in Figs. 18, 19, and 20.

When the value of damping ratio is equal to 0.13, the phase plane portraits infinitely loop in the enclosed
area, but never duplicates. At the same time, the return points in the Poincaré maps form a geometrically fractal
structure as displayed in Fig. 18. All of these indicate that the system response is chaotic motion. With the
increasing of damping ratio, that is, the damping ratio reaches 0.25, the phase plane portraits become regular,
and the attractors of the Poincare maps have closed curve. It is evident that the system is in quasi-periodic
motion according to these results shown in Fig. 19. When the damping ratio continues to increase, the points
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Fig. 17 The bifurcation diagrams of rotor center with damping ratio as the control parameter

Fig. 18 Phase plane portrait and Poincaré map of rotor center and bearing center at ξ = 0.13. a Phase plane portrait of rotor
center. b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center

Fig. 19 Phase plane portrait and Poincaré map of rotor center and bearing center at ξ = 0.25. a Phase plane portrait of rotor
center. b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center
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Fig. 20 Phase plane portrait and Poincaré map of rotor center and bearing center at ξ = 0.35. a Phase plane portrait of rotor
center. b Poincaré map of rotor center. c Phase plane portrait of bearing center. d Poincaré map of bearing center

of the attractor are decomposed and finally converge to one point. Once damping ratio exceeds 0.35, the
synchronous motion with period-one can be observed as displayed in Fig. 20.

Therefore, the existence of damping has a certain effect on dynamic characteristics of the rotor-bearing
system. It is indicated that increasing damping can effectively suppress chaotic vibration.

5 Conclusions

The effects of the change in the rotating speed and damping ratio on the dynamic characteristics of the rotor
system with rub-impact and oil film journal bearings are studied theoretically in detail. Due to the nonlinearity
of the oil film force, computational methods have been employed to study the dynamical behavior of the system.
Results of numerical calculation in horizontal and vertical directions are given and plotted via phase plane
portraits, Poincaré maps, vibration responses, and the power spectrums for different system parameters. At the
same time, the motion stability of the system is also investigated by numerical methods based on the Floquet
theory. For the presented system, the stability analysis indicates that there exist stable periodic motions in a
large range of rotating speed; however, the rotor system is unstable and shows period-doubling bifurcations in
some range of rotating speed.

The main results show that the responses of the system alternate among synchronous motion with period-
one, multi-periodic, chaos, and quasi-periodic motions as the rotating speed increases. On the other hand, the
numerical results also indicate that the rub-impact force is the main infected factor to the response of the system
along with the increase of rotating speed. Since rub-impact is transient in nature, it gives broadband excitation
and the spectrum of the rub signals shows numerous spectral lines. The results also show that increasing
damping can effectively restrain chaotic motion and improve the system stability. The results developed in this
study allow suitable system parameters to be specified such that the rotor center and the bearing center can
avoid some undesirable vibration behaviors in these types of rotating systems, hence increasing the system
lives.
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