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Abstract The inverse of a linear differential operator is an integral operator with a kernel which is commonly
known as the Green’s function of the differential operator. Therefore, the knowledge of the Green’s function
of a linear problem leads directly to an integral representation of its solution. Any Green’s function is split into
a singular part that carries the localized singularity of the Dirac measure and a regular part that is controlled
by the Dirichlet boundary condition. In some relatively simple cases, this regular part can be interpreted as
the contribution of imaginary sources which lie in the complement of the fundamental domain. If a problem
is associated with the Laplace operator, such as the biharmonic operator or the Papkovitch potentials, which
both govern Linear Elastostatics, the construction of such Green’s functions are of extremely large importance.
All these are well-behaving procedures as long as we live in the highly symmetric geometry represented by
the spherical system. But, if we live in a directional-dependent environment, such as the one imposed by the
ellipsoidal geometry, the above procedures become extremely complicated, if not impossible. In the present
work, the Green’s functions and their Kelvin image systems are obtained for the interior and the exterior regions
of an ellipsoid. It is amazing, although not unjustified, that besides the point image source, that is needed for
the isotropic spherical case, in the case of ellipsoidal domains, the necessary image system involves a full
two-dimensional distribution of imaginary sources to account for the anisotropic character of the ellipsoidal
domains.

Keywords Green’s function · Ellipsoidal harmonics · Kelvin’s transformation · Images

1 Introduction

Green, in his monumental essay on Electricity and Magnetism [8], introduced the foundations of what it is
known today as Mathematical Physics. One of his achievements there was to formulate mathematically the
principle of superposition for linear problems. This formulation provided the ground on which Linear Algebra
was built a few decades later. In the case of partial differential equations, where the solution set is an infinite-
dimensional functional space, linearity and superposition is incorporated in Green’s function, which is nothing
more than the mathematical realization of the physical property that some quantities have, according to which
the effects of individual sources at some point are added together. Standard references for Green’s functions,
among others, are [2,7,14,17].

In the same essay, Green also set the rudiments of the theory of images for a boundary value problem, a
method that replaces the boundary conditions of a problem with a set of sources that lie in the complementary
domain. Nevertheless, it was Kelvin [20–22] who gradually transformed this idea to an intelligent method for
solving boundary value problems. Besides its mathematical effectiveness, the method of images provides a
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deep physical understanding, mainly through the symmetries that are present in each particular problem. A
first attempt to construct the interior ellipsoidal Green’s function was reported in [6] while the corresponding
problem for a spherical shell can be found in [19]. The complete solution of the problem, both for the interior
and exterior ellipsoidal domains, is presented here.

There are many problems in Mechanics of Solids and Fluids that are formulated in terms of harmonic
functions [1,10,12,13,15,18]. Elastostatics and potential flow are two well-known such cases. In fact, for the
case of Elastostatics, there are many approaches that utilize solutions of the Laplace equation. One of them
is the well-known differential representation of the displacement field known as Papkovitch representation of
the displacement field in terms of a vector and a scalar harmonic function [9]. Therefore, any representation
of a harmonic function is readily applicable to many different problems in Mechanics and Physics.

This paper is organized as follows. Section 2 provides a very short introduction to the ellipsoidal coordinate
system and to the ellipsoidal harmonics at the level of notation. Then, in Sects. 3 and 4, the interior and exterior
Green’s function for the Laplacian in ellipsoidal geometry, as well as their image systems, are constructed.
In order to be able to compare the form of the Green’s function in spherical and ellipsoidal coordinates, we
provide the form of the corresponding results for the sphere as well. A final Sect. 5 states the obtained results
and compares the character of the Green’s functions in every particular case.

2 Elements of ellipsoidal harmonics

In an anisotropic environment, the ellipsoid plays the role that the sphere plays in an isotropic one. Since
there is a unique isotropic but infinitely many anisotropic behaviors, it follows that there are infinitely many
ellipsoidal coordinate systems, one for every anisotropic structure. A spherical system is identified by a center
and a unit sphere. An ellipsoidal system is identified by a center, an orientation, and the three semi-axes of the
reference ellipsoid, which plays the role of the unit sphere. Given the orientation of the three principal axes,
the ellipsoidal system is defined in terms of three semi-axes a1, a2, a3, 0 < a3 < a2 < a1 < ∞, which define
the reference ellipsoid

x2
1

a2
1

+ x2
2

a2
2

+ x2
3

a2
3

= 1 (1)

where a1, a2, a3 specify the semi-focal distances

h1 =
√

a2
2 − a2

3, h2 =
√

a2
1 − a2

3, h3 =
√

a2
1 − a2

2 (2)

related by

h2
1 − h2

2 + h2
3 = 0. (3)

The ellipsoidal coordinate system (ρ, μ, ν) [11], associated with the fundamental ellipsoid (1), is connected
to the Cartesian system (x1,x2, x3) via the formulae

x1 = ρμν

h2h3
, h2 < ρ < +∞ (4)

x2 =
√

ρ2 − h2
3

√
μ2 − h2

3

√
h2

3 − ν2

h1h3
, h3 < μ < h2 (5)

x3 =
√

ρ2 − h2
2

√
h2

2 − μ2
√

h2
2 − ν2

h1h2
, 0 < ν < h3. (6)

The variable ρ, which corresponds to the radial spherical coordinate, defines a family of confocal ellipsoids,
and the variables μ and ν, which correspond to the angular spherical coordinates, define two confocal fami-
lies of hyperboloids of one and two sheets, respectively. The metric coefficients of the ellipsoidal system are
given by

hρ = ‖rρ‖ =
√

ρ2 − μ2
√

ρ2 − ν2
√

ρ2 − h2
3

√
ρ2 − h2

2

(7)
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√

μ2 − h2
3

√
h2

2 − μ2
(8)

hν =‖ rν‖ =
√

ρ2 − ν2
√

μ2 − ν2
√

h2
3 − ν2

√
h2

2 − ν2
(9)

where the lower index denotes partial differentiation with respect to the indicated variable.
Lamé used an ingenious technique to separate variables for the Laplace equation [11]. In fact, he proved

that all three separated ordinary differential equations are identical and the only difference among them is the
domain where each one is defined. Hence, an interior eigen-solution of the Laplace equation has the form

Em
n (ρ, μ, ν) = Em

n (ρ)Em
n (μ)Em

n (ν) (10)

where Em
n is the Lamé functions of the first kind of degree n = 0, 1, 2, . . . , and of order m=1,2,…,2n+1.

Similarly, an exterior eigen-solution has the form

Fm
n (ρ, μ, ν) = Fm

n (ρ)Em
n (μ)Em

n (ν) (11)

where Fm
n is the Lamé functions of the second kind, which is given by the elliptic integral

Fm
n (ρ) = (2n + 1)Em

n (ρ)

∞∫

ρ

dx

[Em
n (x)]2

√
x2 − h2

3

√
x2 − h2

2

= (2n + 1)Em
n (ρ)I m

n (ρ). (12)

The functions Em
n (ρ, μ, ν) and Fm

n (ρ, μ, ν) are called Lamé products or interior and exterior ellipsoidal
harmonics, respectively.

The surface ellipsoidal harmonics

Sm
n (μ, ν) = Em

n (μ)Em
n (ν), n = 0, 1, 2, . . ., m =1, 2, . . . , 2n + 1 (13)

form a complete set of eigen-functions [11] over the surface Sρ of any ellipsoid, ρ = constant, and they satisfy
the orthogonality relation ∮

Sρ

Sm
n (μ, ν)Sm′

n′ (μ, ν)lρ(μ, ν)dsρ(μ, ν) = γ m
n δnn′δmm′ (14)

with respect to the weighting function

lρ(μ, ν) = 1√
ρ2 − μ2

√
ρ2 − ν2

(15)

where

dsρ(μ, ν) = hμhνdμdν (16)

defines the differential surface element on the ellipsoid. The constant γ m
n is the normalization constant of the

surface harmonic Sm
n .

Therefore, any smooth function f defined over Sρ has the expansion

f (μ, ν) =
∞∑

n=0

2n+1∑

m=1

cm
n Sm

n (μ, ν) (17)

with the coefficients cm
n given by

cm
n = 1

γ m
n

∮

Sρ

f (μ, ν)Sm
n (μ, ν)lρ(μ, ν)dsρ(μ, ν). (18)

The harmonics Sm
n (μ, ν) over the surface of an ellipsoid correspond to the harmonics Y m

n (θ, ϕ) over the sur-
face of a sphere. For an introduction to the theory of ellipsoidal harmonics we refer to the book: Ellipsoidal
Harmonics. Theory and Applications, written by the present author and published by Cambridge University
Press.
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3 The interior Green’s function

For comparison reasons, we first remind the form of the Green’s function in spherical coordinates. The interior
Green’s function for the Laplace operator in spherical geometry is defined as the solution of the boundary
value problem

�r Gi
s(r, r0) = δ(r − r0), r < a (19)

Gi
s(r, r0) = 0, r = a (20)

with a being the radius of the sphere and a unit source point r0 lying in the interior of the sphere. As it is well
known, the solution of this problem is given by [3]

Gi
s(r, r0) = − 1

4π

1

|r − r0| +
∞∑

n=0

n∑
m=−n

1

2n + 1

rn
0 rn

α2n+1 Y m
n (r̂)Y m

n (r̂0)
∗ (21)

where Y m
n denotes the normalized complex form of surface spherical harmonics [16]. It is also known [20]

that the sum on the right hand side of (21) can be interpreted as the contribution of an image point of strength
−α/r0, which is located at the exterior point

r ′
0 = α2

r2
0

r0. (22)

For the case of the ellipsoid (1), the corresponding Green’s function Gi
e has to solve the problem

�r Gi
e(r, r0) = δ(r − r0), ρ < a (23)

Gi
e(r, r0) = 0, ρ = a (24)

where the ellipsoidal representations of the observation point r and the interior source point r0 are given by
(ρ, μ, ν) and (ρ0, μ0, ν0), respectively. In view of the expansion [4,5]

− 1

4π

1

|r − r0| = −
∞∑

n=0

2n+1∑

m=1

1

2n + 1

1

γ m
n

{
Em

n (ρ0, μ0, ν0)F
m
n (ρ, μ, ν), ρ0 < ρ

Em
n (ρ, μ, ν)Fm

n (ρ0, μ0, ν0), ρ < ρ0
(25)

we can assume the representation

Gi
e(r, r0) = −

∞∑

n=0

2n+1∑

m=1

1

2n + 1

1

γ m
n
Em

n (ρ0, μ0, ν0)F
m
n (ρ, μ, ν)

+
∞∑

n=0

2n+1∑

m=1

1

2n + 1

1

γ m
n

Bm
n Em

n (ρ0, μ0, ν0)E
m
n (ρ, μ, ν) (26)

which holds for ρ0 < ρ < a1. Then the boundary condition implies that

Bm
n = Fm

n (a1)

Em
n (a1)

(27)

and the Green’s function is written as

Gi
e(r, r0) = − 1

4π

1

|r − r0| +
∞∑

n=0

2n+1∑

m=1

1

2n + 1

1

γ m
n

Fm
n (a1)

Em
n (a1)

Em
n (ρ0, μ0, ν0)E

m
n (ρ, μ, ν). (28)

Let’s attempt now to construct an image system that will generate the same potential as the one given by the
series expansion on the right hand side of Eq. (28). We observe that the lack of symmetry, in the ellipsoidal
case, is reflected upon the dependence of the constants Bm

n on both the degree n and the order m, while the
corresponding constants, in the case of the sphere, were dependent only on n. This observation makes the
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identification of an image system for the ellipsoid substantially more difficult than for the sphere.The deter-
mination of a monopolic image demands the calculation of four independent numbers, three for its location
and one for its strength. Let us then put one such monopolic image at the point (ρ′

0, μ
′
0, ν

′
0) with strength Q,

and let us calculate these four unknown quantities by demanding that the four first terms of the potential

Ui
e(r) = −Q

∞∑

n=0

2n+1∑

m=1

1

2n + 1

1

γ m
n
Fm

n (ρ′
0, μ

′
0, ν

′
0)E

m
n (ρ, μ, ν) (29)

generated by this monopole, coincide with the four first terms of the expansion on the right hand side of (28).
That is, we demand that

− Q I 1
0 (ρ′

0) = I 1
0 (a1) (30)

−QE1
1(ρ

′
0, μ

′
0, ν

′
0)I 1

1 (ρ′
0) = E1

1(ρ0, μ0, ν0)I 1
1 (a1) (31)

−QE2
1(ρ

′
0, μ

′
0, ν

′
0)I 2

1 (ρ′
0) = E2

1(ρ0, μ0, ν0)I 2
1 (a1) (32)

−QE3
1(ρ

′
0, μ

′
0, ν

′
0)I 3

1 (ρ′
0) = E3

1(ρ0, μ0, ν0)I 3
1 (a1) (33)

where I m
n denote the elliptic integrals defined in Eq. (12).

If we express the strength as

Q = − I 1
0 (a1)

I 1
0 (ρ′

0)
(34)

and write the internal harmonics of the first degree in terms of Cartesian coordinates, we can rewrite the Eqs.
(31)–(33) as

x ′
01

I 1
1 (ρ′

0)

I 1
0 (ρ′

0)
= x01

I 1
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I 1
0 (a1)

(35)

x ′
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0)
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0)
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(36)

x ′
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I 3
1 (ρ′

0)

I 1
0 (ρ′

0)
= x03

I 3
1 (a1)

I 1
0 (a1)

. (37)

Since the image r ′
0 lies on the ellipsoid ρ = ρ′

0 we have

x
′2
01

ρ
′2
0

+ x
′2
02

ρ
′2
0 − h2

3

+ x
′2
03

ρ
′2
0 − h2

2

= 1 (38)

and if we insert the expressions (35)–(37), for the coordinates x ′
01, x ′

02, x ′
03, in (38) we obtain the expression

x2
01

ρ
′2
0

I 1
1 (a1)

2

I 1
1 (ρ′

0)
2

+ x2
02

ρ
′2
0 − h2

3

I 2
1 (a1)

2

I 2
1 (ρ′

0)
2

+ x2
03

ρ
′2
0 − h2

2

I 3
1 (a1)

2

I 3
1 (ρ′

0)
2

= I 1
0 (a1)

2

I 1
0 (ρ′

0)
2
. (39)

This is a highly nonlinear algebraic equation for the determination of the ellipsoidal variable ρ′
0. In fact, since

the source r0 is located in the interior of the reference ellipsoid, the continuous function

f (ρ′
0) = x2

01

ρ
′2
0

I 1
1 (a1)

2

I 1
1 (ρ′

0)
2

+ x2
02

ρ
′2
0 − h2
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2
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0)
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2

I 3
1 (a1)

2

I 3
1 (ρ′

0)
2

− I 1
0 (a1)

2

I 1
0 (ρ′

0)
2

(40)

assumes the value

f (a1) = x2
01

a2
1

+ x2
02

a2
2

+ x2
03

a2
3

− 1 < 0 (41)

and in view of the asymptotic forms
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I 1
0 (ρ′

0) = O

(
1

ρ′
0

)
(42)

I m
1 (ρ′

0) = O

(
1

ρ
′3
0

)
, m = 1, 2, 3 (43)

as ρ′
0 → ∞, we also have

lim
ρ′

0→∞
f (ρ′

0) = ∞. (44)

Consequently, there exists a root of Eq. (39) in the interval (a1, ∞), which specifies the ellipsoid on which the
image point lies.

Once the value ρ′
0 is known, Eq. (34) determines the strength of the image, and Eqs. (35)–(37) determine

its exact location. In fact, if we define the dyadic

D̃
i
G(ρ′

0) = I 1
0 (ρ′

0)

I 1
0 (a1)

3∑

m=1

I m
1 (a1)

I m
1 (ρ′

0)
x̂m ⊗ x̂m (45)

then the image point is given by

r ′
0 = D̃

i
G(ρ′

0) · r0. (46)

Formula (46) provides the Cartesian coordinates of r ′
0 once the ellipsoidal coordinate ρ′

0 is known. Never-
theless, in order to calculate the other two ellipsoidal coordinates μ′

0 and ν′
0, we need to solve the system

(31)–(33).
Next, we investigate the image system that will represent the part of the expansion (29) that corresponds

to the terms n � 2. This part of the expansion will be represented by the potential generated by a distribution
of monopoles with density di (ρ′

1, μ
′
1, ν

′
1), over an exterior confocal ellipsoid specified byρ = ρ′

1. We will
demonstrate in the sequel that it is possible to choose this surface distribution in such a way, as to provide no
contribution to the monopolic (n = 0) and the dipolic (n = 1) terms of the potential. This is desirable, since
the n = 0 and n = 1 terms have already been matched with the corresponding terms coming from the image
point at r ′

0. Then, in the presence of the monopolic image and the surface distribution, the generated potential
reads

V i
e (r) =

∞∑

n=0

2n+1∑

m=1

I 1
0 (a1)

I 1
0 (ρ′

0)

1

γ m
n
Em

n (ρ′
0, μ

′
0, ν

′
0)I m

n (ρ′
0)E

m
n (ρ, μ, ν)

−
∞∑

n=0

2n+1∑

m=1

1

2n + 1

1

γ m
n

Cm
n Em

n (ρ, μ, ν) (47)

where

Cm
n =

∮

Sρ′
1

Fm
n (ρ′

1, μ, ν)di (ρ′
1, μ, ν)dS(μ, ν)

= (2n + 1)I m
n (ρ′

1)Em
n (ρ′

1)

∮

Sρ′
1

Sm
n (μ, ν)di (ρ′

1, μ, ν)dS(μ, ν) (48)

and Sρ′
1

denotes the ellipsoid ρ = ρ′
1. It is obvious from the expression (48) that the vanishing of the n = 0

term demands that the total charge on Sρ′
1

is equal to zero, and that the n = 1 terms also vanish if we choose a
symmetric distribution with its centroid at the origin.
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Hence, by comparison, we arrive at the following values of the integrals
∮

Sρ′
1

Sm
n (μ, ν)di (ρ′

1, μ, ν)dS(μ, ν)

= I m
n (ρ′

0)

I m
n (ρ′

1)Em
n (ρ′

1)

[
I 1
0 (a1)

I 1
0 (ρ′

0)
Em

n (ρ′
0, μ

′
0, ν

′
0) − I m

n (a1)

I m
n (ρ′

0)
Em

n (ρ0, μ0, ν0)

]
(49)

for every n � 2 and m = 1, 2, . . . , 2n + 1. The function di/ lρ′
1
, where lρ′

1
is the weighting function on the

ellipsoid Sρ′
1
, can be expanded as

di (ρ′
1, μ

′
1, ν

′
1)

lρ′
1
(μ′

1, ν
′
1)

=
∞∑

n=2

2n+1∑

m=1

Dm
n Sm

n (μ′
1, ν

′
1) (50)

from which we obtain, by orthogonality, the values

Dm
n = 1

γ m
n

∮

Sρ′
1

Sm
n (μ, ν)di (ρ′

1, μ, ν)dS(μ, ν). (51)

But these integrals are known from (49) and therefore, the density on the image ellipsoid is given by

di (ρ′
1, μ

′
1, ν

′
1) = lρ′

1
(μ′

1, ν
′
1)

∞∑

n=2

2n+1∑

m=1

1

γ m
n

I m
n (ρ′

0)

I m
n (ρ′

1)Em
n (ρ′

1)

[
I 1
0 (a1)

I 1
0 (ρ′

0)
Em

n (ρ′
0, μ

′
0, ν

′
0)

− I m
n (a1)

I m
n (ρ′

0)
Em

n (ρ0, μ0, ν0)

]
Sm

n (μ′
1, ν

′
1). (52)

Therefore, the image system for the Green’s function, in the interior of an ellipsoid, consist of a monopole
at the point r ′

0, given by the solution of (39) and, (45), (46), with strength Q, given in (34), and a surface
distribution of monopoles with density di , given in (52), over an exterior confocal ellipsoid ρ′

1 > a1.
In the case of the sphere, we have

I 1
0 (x) = 1

x
(53)

I m
1 (x) = 1

3x3 , m = 1, 2, 3 (54)

Eq. (39) is reduced to

r0r ′
0 = α2 (55)

while the dyadic is reduced to

D̃
i
G(r ′

0) = r
′2
0

α2 Ĩ . (56)

Then, the mapping (46) reads

r ′
0 = r

′2
0

α2 r0 = α2

r2
0

r0 (57)

and recovers the Kelvin image of the source.
It can be shown that, as the ellipsoid degenerates to a sphere

Em
n (ρ′

0, μ
′
0, ν

′
0)

Em
n (ρ0, μ0, ν0)

→
(

α2

r2
0

)n

(58)
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and

I 1
0 (a1)

I 1
0 (ρ′

0)

I m
n (ρ′

0)

I m
n (a1)

→
(

α2

r
′2
0

)n

. (59)

Hence, in the spherical limit, the coefficients of the expansion (52) vanish, and therefore, the surface distribution
of images disappears. Consequently the spherical case is fully recovered.

Note that, as it was expected, the ellipsoid is endowed with a distinct behavior in every direction, and

this is encoded in the form of the dyadic D̃
i
G . Formula (46) is the ellipsoidal generalization of the Kelvin

transformation.

4 The exterior Green’s function

In the case of the exterior of a sphere of radius α and a unit source r0 lying outside the sphere, the Green’s
function satisfies the boundary value problem

�r Ge(r, r0) = δ(r − r0), r > a (60)

Ge(r, r0) = 0, r = a (61)

Ge(r, r0) = O

(
1

r

)
, r → ∞. (62)

Following exactly the same steps as in the interior case, with the appropriate expansions in spherical harmonics,
we arrive at the solution

Ge
s(r, r0) = − 1

4π

1

|r − r0| +
∞∑

n=0

n∑
m=−n

1

2n + 1

α2n+1

rn+1
0 rn+1

Y m
n (r̂)Y m

n (r̂0)
∗ (63)

which holds for r > α.
In order to construct an image system for this case, we consider a monopole, with strength Q, at the interior

to the sphere point r ′
0, which provides the potential

U e
s (r) = −Q

∞∑

n=0

n∑
m=−n

1

2n + 1

r
′n
0

rn+1 Y m
n (r̂)Y m

n (r̂0)
∗. (64)

Comparing the two expansions on the right hand sides of Eqs. (63) and (64), we obtain

α2n+1

rn+1
0

= −Qr
′n
0 , n � 0 (65)

and if we choose Q = −r ′
0/α, as in (34), we obtain

(
α2

r0

)n+1

= r
′n+1
0 , n � 0 (66)

which implies that the location of the image is again at the Kelvin image (22) of the source.
Note that, as r → ∞,

Ge
s(r, r0) = 1

4πr

(
α

r0
− 1

)
+ O

(
1

r2

)
(67)

where we have used the normalized form Y 0
0 (r̂) = (4π)−1/2.

Next, we consider the Green’s function for the exterior of the reference ellipsoid, that is for ρ > a1 and a
source point r0 = (ρ0, μ0, ν0) with ρ0 > a1. Working as before with the appropriate interchanges between
interior and exterior ellipsoidal harmonics, we produce the representation

Ge
e(r, r0) = − 1

4π

1

|r − r0| +
∞∑

n=0

2n+1∑

m=1

1

2n + 1

1

γ m
n

Em
n (a1)

Fm
n (a1)

Fm
n (ρ0, μ0, ν0)F

m
n (ρ, μ, ν). (68)
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In building the image system for the expansion on the right hand side of (68), we start with a monopole in the
interior of the ellipsoid and calculate its position r ′

0 and strength Q from the demand that the terms n = 0 and
n = 1 of the potential it generates, coincide with the corresponding terms of the regular part of the expansion
in (68). The monopolic image will generate the potential

U e
e (r) = −Q

∞∑

n=0

2n+1∑

m=1

1

2n + 1

1

γ m
n
Em

n (ρ′
0, μ

′
0, ν

′
0)F

m
n (ρ, μ, ν). (69)

Hence, the strength has to be

Q = − I 1
0 (ρ0)

I 1
0 (a1)

(70)

and from the n = 1, we obtain the relations

I 1
0 (a1)I m

1 (ρ0)x0m = I 1
0 (ρ0)I m

1 (a1)x ′
0m, m = 1, 2, 3. (71)

Therefore, if we define the dyadic

D̃
e
G(ρ0) = I 1

0 (a1)

I 1
0 (ρ0)

3∑

m=1

I m
1 (ρ0)

I m
1 (a1)

x̂m ⊗ x̂m (72)

which now depends on ρ0, then the position of the image is given by

r ′
0 = D̃

e
G(ρ0) · r0. (73)

We also assume a continuous distribution of monopoles on the interior confocal ellipsoid ρ′
1 < a1, with density

de(ρ′
1, μ

′
1, ν

′
1). As in the interior case, we can pick up the density in such a way so that the n = 0 and n = 1

terms vanish. Then, in an exterior neighborhood of the boundary, we would have

V e
e (r) =

∞∑

n=0

2n+1∑

m=1

I 1
0 (ρ0)

I 1
0 (a1)

1

γ m
n
Em

n (ρ′
0, μ

′
0, ν

′
0)I m

n (ρ)Em
n (ρ, μ, ν)

−
∞∑

n=0

2n+1∑

m=1

1

2n + 1

1

γ m
n

Gm
n F

m
n (ρ, μ, ν) (74)

where

Gm
n =

∮

Sρ′
1

Em
n (ρ′

1, μ, ν)de(ρ′
1, μ, ν)dS(μ, ν)

= Em
n (ρ′

1)

∮

Sρ′
1

Sm
n (μ, ν)de(ρ′

1, μ, ν)dS(μ, ν). (75)

The terms for n � 2 should recover the corresponding part of the expansion in (68) and that demands that
∮

Sρ′
1

Sm
n (μ′

1, ν
′
1)d

e(ρ′
1, μ

′
1, ν

′
1)dS(μ′

1, ν
′
1) = I 1

0 (ρ0)

I 1
0 (a1)

Em
n (ρ′

0, μ
′
0, ν

′
0)

Em
n (ρ′

1)
− I m

n (ρ0)

I m
n (a1)

Em
n (ρ0, μ0, ν0)

Em
n (ρ′

1)

(76)

for every n � 2and m = 1, 2, . . . , 2n + 1. Working as in the interior case, we can calculate the density of the
surface distribution and obtain

de(ρ′
1, μ

′
1, ν

′
1) = lρ′

1
(μ′

1, ν
′
1)

∞∑

n=2

2n+1∑

m=1

1

γ m
n

[
I 1
0 (ρ0)

I 1
0 (a1)

Em
n (ρ′

0, μ
′
0, ν

′
0) − I m

n (ρ0)

I m
n (a1)

Em
n (ρ0, μ0, ν0)

]
Sm

n (μ′
1, ν

′
1)

Em
n (ρ′

1)
.

(77)

Therefore, the image system for the Green’s function, in the exterior of an ellipsoid, consist of a monopole at
the point r ′

0, given in (72), (73), with strength Q, given in (70), and a surface distribution of monopoles with
density de, given in (77), over an interior confocal ellipsoid ρ′

1 < a1.
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5 Conclusions

In the present work, we construct the Green’s function for the Laplace operator in the case where the funda-
mental domain is either the interior or the exterior of an ellipsoid. In addition, we propose Kelvin type image
systems that represent the regular parts of the corresponding Green’s functions. In the highly symmetric case
of a sphere, these systems consist solely of a single point source located at the Kelvin image point of the
source. On the other hand, the complete loss of rotational symmetries in the case of the ellipsoid demands an
additional two-dimensional distribution of imaginary sources on a confocal ellipsoid outside the fundamental
domain.

Two basic remarks are in order here. In the first place by comparing the dyadics D̃
i
G(ρ′

0), given in (45) and
D̃

e
G(ρ0), given in (72), we immediately observe that they are both invertible and that

D̃
i
G(ρ′

0)
−1 = D̃

e
G(ρ′

0). (78)

This shows that if the r ′
0 is the image point for the interior source r0, then r0 is the image point for the exterior

source r ′
0. Indeed, because of (80), we have that

r ′
0 = D̃

i
G(ρ′

0) · r0 = D̃
i
G(ρ′

0) · D̃
e
G(ρ′

0) · r ′
0 = Ĩ · r ′

0. (79)

Furthermore, the invertibility of these dyadics imply that for each source point, there exists a unique image
point, that is the function f , defined in (40) has a unique solution ρ′

0 in the interval (a1,∞). Consequently, we
obtain the same relations between source and image points as that in the case of the sphere.

The second remark has to do with the fact that there is an important difference, in the process of calculating
the image systems, between the interior an the exterior problems for the ellipsoid. In calculating both the
strength and the position of the isolated monopole in the interior case, we need first to solve Eq. (39) to obtain
ρ′

0, while in the exterior problem, everything is given in terms of ρ0 which corresponds to the source point,
and therefore, it is known. Hence, it is easier to find the image system for the exterior than the interior Green’s
function. This difference is not easily recognizable in the case of the sphere, because of the trivial way that
the two variables r0 and r ′

0 are connected. Indeed, in the case of the sphere, formula (46) gives

r ′
0 = r

′2
0

α2 r0 (80)

for the interior problem, and formula (73) gives

r ′
0 = α2

r2
0

r0 (81)

for the exterior problem, and we can trivially switch from one to the other via the Kelvin relation r0r ′
0 = α2.

Since the Green’s function in a given domain is basically equivalent to the solution of the Dirichlet problem
for the Laplace equation in this domain, it follows that the knowledge of the Green’s function in any ellipsoidal
coordinate system can be used to generate the corresponding solutions in many boundary value problems
related to harmonic functions in ellipsoidal geometry. Furthermore, by choosing appropriately the orientation
and the size of a particular ellipsoid, we can always approximate any convex body by the ellipsoid. Hence, the
proposed construction covers a large domain of applications in Mechanics as well as in Physics.
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