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Abstract This paper develops a full three-dimensional finite element model in order to study the vibrational
behavior of a beam with a non-propagating surface crack. In this model, the breathing crack behavior is sim-
ulated as a full frictional contact problem between the crack surfaces, while the region around the crack is
discretized into three-dimensional solid finite elements. The governing equations of this non-linear dynamic
problem are solved by employing an incremental iterative procedure. The extracted response is analyzed utiliz-
ing either Fourier or continuous wavelet transforms to reveal the breathing crack effects. This study is applied
to a cracked cantilever beam subjected to dynamic loading. The crack has an either uniform or non-uniform
depth across the beam cross-section. For both crack cases, the vertical, horizontal, and axial beam vibrations
are studied for various values of crack depth and position. Coupling between these beam vibration components
is observed. Conclusions are extracted for the influence of crack characteristics such as geometry, depth, and
position on the coupling of these beam vibration components. The accuracy of the results is verified through
comparisons with results available from the literature.

Keywords Full three-dimensional · Finite element · Breathing crack · Frictional contact · Coupling

1 Introduction

Beams are fundamental members in numerous engineering structures and experience loading conditions, which
may cause damages or cracks in overstressed zones. The presence of cracks in structural members, such as
beams, induces local variations in stiffness, the magnitude of which depends on the position and depth of
the cracks. These variations affect the vibrational behavior of the whole structure to a considerable degree.
To ensure the safe and continuous operation of structures, it is important to detect any cracks in their members
in a timely manner. Direct procedures, such as ultrasonic emission and X-radiography analysis, have been
used for this purpose. However, these procedures have proven to be inoperative and unsuitable in certain cases,
since they require expensive and time-consuming inspections [1]. To avoid these disadvantages, during the
past decades, researchers have focused on more efficient procedures in crack detection using vibration-based
methods [2]. Modeling of a crack is an important aspect of these methods.

Most previous studies assume that the crack in a structural member always remains open during vibration
[3–7]. However, this assumption may not be valid when dynamic loadings are dominant. In this case, the crack
breathes (opens and closes) regularly during vibration, inducing variations in the structural stiffness. These
variations cause the structure to exhibit non-linear dynamic behavior [8]. The main distinctive feature of this
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behavior is the presence of higher harmonic components. In particular, a beam with a breathing crack shows
natural frequencies between those of a non-cracked beam and those of a faulty beam with an open crack.
Therefore, in these cases, vibration-based methods should employ breathing crack models to provide accurate
conclusions regarding the state of damage. Several researchers [9–11] have developed breathing crack models
considering only the fully open and fully closed crack states. However, experiments have indicated that the
transition between these two crack states does not occur instantaneously [12]. Abraham and Brandon [13]
represented the interaction forces between two segments of a beam, separated by a crack, using time-varying
connection matrices. These matrices were expanded in Fourier series to simulate the alternation of a crack
opening and closing. However, the implementation of this study requires excessive computer time. Douka et al.
[14,15] considered a simple periodic function to model the time-varying stiffness of a beam. However, this
model is limited to the fundamental mode, and thus, the equation of motion for the beam must be solved.

A realistic model of a breathing crack is difficult to create due to the lack of fundamental understanding
about certain aspects of the breathing mechanism. This involves not only the identification of variables affect-
ing the breathing crack behavior, but also issues for evaluating the structural dynamic response of the fractured
material. It is also not yet entirely clear how partial closure interacts with key variables of the problem. The
actual physical situation requires a model that accounts for the breathing mechanism and for the interaction
between external loading and dynamic crack behavior. When crack contact occurs, the unknowns are the field
singular behavior, the contact region, and the distribution of contact tractions on the closed region of the
crack. The latter class of unknowns does not exist in the case without crack closure. This type of complicated
deformation of crack surfaces constitutes a non-linear problem that is too difficult to be treated with classical
analytical procedures. Thus, a suitable numerical implementation is required when partial crack closure occurs.

Nandi and Neogy [16] studied the plane problem of a beam with an edge crack subjected to a harmonic
load. The crack was simulated as a frictionless contact problem between the crack surfaces. Andrieux and Varé
[17] developed a lumped cracked beam model from the three-dimensional formulation of the general problem
of elasticity with unilateral contact conditions on the crack lips. This model was applied in cracked rotors anal-
ysis so that flexion dominant loading to be investigated particularly. El Arem [18] completed this latter model
by including the shearing effects in the constitutive equations of a cracked beam section in bi-axial flexure.
Buezas et al. [19] dealt with crack detection in structural elements, utilizing a generic algorithm optimization
method. The crack was modeled as a notch or a wedge with a unilateral contact model. Georgantzinos and
Anifantis [20] studied the effect of the crack breathing mechanism on the time-variant flexibility due to the
crack in a rotating shaft that considered quasi-static approximation. They simulated the breathing crack as a full
frictional contact problem. Based on this breathing crack simulation, Bouboulas and Anifantis [21] presented
a two-dimensional finite element model to study the vibrational behavior of a beam with a breathing crack.

This paper continues the previous work of the authors [21]. In particular, a full three-dimensional finite
element model is constructed to study the vibrational behavior of a beam with a non-propagating transverse
surface crack. The beam is discretized into three-dimensional solid finite elements, while the breathing crack
is treated as a full frictional problem between the crack surfaces. This non-linear dynamic problem is solved
using an incremental iterative procedure. The derived response is analyzed using either Fourier or continuous
wavelet transforms to investigate the breathing crack effects. The proposed study is assessed for the case of
a dynamically loaded cantilever beam with a crack of either uniform or non-uniform depth across the beam
cross-section. The beam vertical, horizontal, and axial vibrations are extracted for both crack geometries and
various values of crack depth and position. Conclusions are extracted for the effect of crack characteristics
on the observed coupling of these beam vibration components. The accuracy of the results is demonstrated
through comparisons with results available from the literature. Observations are made to determine the utility
of this study in crack detection techniques.

2 Finite element procedure

In the following, a full three-dimensional beam model with a non-propagating transverse surface crack is dis-
cussed. The crack surfaces are assumed to be planar and smooth and the crack thickness negligible. The beam
material properties are considered linear elastic and the displacements and strains are assumed to be small.
The region around the crack is discretized into three-dimensional solid finite elements. The breathing crack
behavior is simulated as a full frictional contact problem between the crack surfaces, which is an inherently
non-linear problem. Any possible sliding is considered to obey Coulomb’s law of friction, and penetration
between contacting areas is not allowed. The beam undergoes dynamic loading. The governing equations of
this non-linear dynamic problem are solved utilizing an incremental iterative procedure. The extracted response
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Fig. 1 Cracked beam model

is analyzed by employing either Fourier or continuous wavelet transforms. Although the incremental iterative
procedure utilized, contact analysis and Fourier and continuous wavelet transforms are widely known, they
are briefly discussed below for reasons of completeness.

Figure 1 illustrates a Euler-type three-dimensional straight cantilever beam with a rectangular cross-section
b × h and length L . A breathing crack of two different geometries exists at position Lc. The crack has either
a uniform depth a over the x-axis of the global Cartesian coordinate system x, y, z or a non-uniform depth
varying linearly from a value of ay at the plane x = −b/2 to a zero value at a distance ax over the x-axis
(Fig. 2). The morphology of the model is designed in a way that allows for changes in crack characteristics
such as geometry, depth, and position. Thus, results can be extracted for various values of crack characteristics.
A dynamic load is applied to the free end of the beam, acting over the y-axis and downward. The beam is
discretized into finite elements, while the breathing crack behavior is simulated as a full frictional contact
problem between the crack surfaces. Figure 3 shows the finite element meshes of a beam with a uniform and
non-uniform depth crack. For both crack geometries, the beam is discretized into eight-node isoparametric
hexahedral finite elements. Each node of such an element has three degrees of freedom that represent nodal
displacements along the three dimensions. This model allows mesh refinement in the vicinity of the crack.
Similar finite element meshes were developed for all of the crack cases considered in this study.

The crack is composed of two surfaces, which intersect on the crack front. Parts of these two surfaces may
come into contact on an interface. The size of the interface can vary during the interaction between the load
and the structure, but the interface is usually comprised of two parts, that is, an adhesive part and a slipping
part, depending on the friction conditions maintained between the contacting surfaces. In the open crack state,
the corresponding part of the crack surface is subjected to traction-free conditions. The so-called slave–master
concept that is widely used for the implementation of contact analysis is adopted in this work for prediction of
the crack-surface interference. One of the two crack surfaces is considered as the master surface, with the other
as the slave. Both master and slave crack surfaces are defined by the local coordinate systems (Jx1,

Jx2,
Jx3),

with J = I for master surface and J = II for slave surface. The axes Jx3 define the direction of the unit outward
normal vector of the corresponding surfaces. The nodes that belong to the master and slave surfaces are called
the master and slave nodes, respectively. Contact segments that span master nodes cover the contact surface
of the structure. Therefore, the above problem can be regarded as contact between a slave node and a point on
a master segment. This point may be located at a node, an edge, or a point of a master segment. A slave node
makes contact with only one point on the master segment, but one master segment can make contact with one
or more slave nodes at each time. For each contact pair, the mechanical contact conditions are expressed in a
local coordinate system in the direction of the average normal to the boundaries of the bodies. Symbols ui and
Ri , i = 1, 2, 3 denote nodal displacement and force components, respectively, defined on the local coordinate
systems (Jx1,

Jx2,
Jx3), J = I, II. The subscripts that indicate nodal numbers are dropped for simplicity from

this point forward.
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Fig. 2 Geometry of a crack with a uniform and b non-uniform depth

Recalling the equilibrium condition, the force between the components is always expressed by the following
equations:

I Ri + II Ri = 0, i = 1, 2, 3. (1)

In the open crack state, the following traction-free conditions are held between the components:

I Ri = II Ri = 0, i = 1, 2, 3. (2)

From the definition of adhesion, the displacement components on the corresponding crack surfaces are inter-
connected by the equations:

Iui + IIui = 0, i = 1, 2. (3)

When an initial gap g0 exists in the normal direction between the master and slave nodes of the corresponding
node pair, the displacement component along the normal direction is:

Iu3 + IIu3 = g0. (4)
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Fig. 3 Finite element mesh of a beam with a a crack of uniform depth a/h = 0.25 at position Lc/L = 0.5 or b a crack of
non-uniform depth a/h = 0.5 at position Lc/L = 0.25

The slip state does not prohibit the existence of a gap between the crack surfaces, so Eq. (4) is still valid in
this case. However, the tangential force component is defined in terms of friction as:

I Ri ± μI R3 = 0, i = 1, 2 (5)

where μ is the coefficient of Coulomb friction. Equation (5) shows that the tangential force components are
proportional to the normal component. In this sense, the movement in equal scale is prevented even as the
displacement in one tangential direction is small comparing to the displacement in the second one. However,
Eq. (5) constitutes a first estimation of the tangential force components and it is applied only in the first iteration
of the iterative procedure described below. Better approximations are obtained in the subsequent iterations.
Based on this procedure, the obtained tangential force and displacement components are compatible.

In the finite element method (FEM) framework, the finite element equilibrium equations governing the
non-linear dynamic behavior of the three-dimensional beam are:

MÜ + CU̇ + KU = R, (6)

where M,C and K denote the mass, damping, and stiffness matrices, respectively. The time-dependent vectors
Ü, U̇,U and R are the nodal accelerations, velocities, displacements, and external forces, respectively, in terms
of the global Cartesian coordinate system x, y, z.

The non-linear equations (6) are solved using an implicit direct integration scheme [22]. Based on this
method, the time solution under consideration, T , is subdivided into N equal time increments �t = T/N .
Approximate solutions of Eq. (6) are sought at times 0,�t, 2�t, . . . , t, t + �t, . . . , T . Assuming that the
solutions at times 0,�t, 2�t, . . . , t are known, the solution at the next time increment, t + �t , is acquired
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by utilizing the modified Newton–Raphson iteration method. Thus, Eq. (6) is evaluated at time t + �t and
iteration k as [21,22]:

t KT �U(k) = �R(k−1), (7)

with:

t+�t U(k) = t+�t U(k−1) +�U(k), (8)

where the left-hand subscripts denote the time, while the right-hand subscripts in brackets represent the itera-
tion number, with k = 1, 2, 3, . . .. The matrix t KT is a function of the tangent stiffness matrix, mass matrix,
and damping matrix. The incremental nodal force vector �R(k−1) contains the nodal force vector and con-
tributions from the inertia and damping of the system and the vector �U(k) contains the incremental nodal
displacements. In each iteration, except the first, the most recent displacement estimates are used to calculate
the vector�R(k−1) [22,23]. Then, the incremental displacements�U(k) are derived by solving Eq. (7), while
the nodal displacements t+�t U(k) are obtained from Eq. (8).

Considering that the problem has been solved for time t , and consequently, vectors t U and t R are known
for the entire structure. To determine the corresponding displacement and forces vectors at time t + �t , the
Eqs. (1)–(5) are written in incremental form as following:

t+�t (I�Ri
) + t+�t (II�Ri

) = 0, i = 1, 2, 3 (9)
t+�t (I�Ri

) = −t (II Ri
)
, i = 1, 2, 3 (10)

t (Iui
) + t+�t (I�ui

) = t (IIui
) + t+�t (II�ui

)
, i = 1, 2 (11)

t (Iu3
) + t+�t (I�u3

) = t (IIu3
) + t+�t (II�u3

) − g0, (12)
t (I Ri

) + t+�t (I�Ri
) = ±μ (t (I R3

) + t+�t (I�R3
))
. i = 1, 2 (13)

For reasons of simplicity, the iteration number has been omitted from Eqs. (9)–(13). However, the formulation
given below is repeated for all iterations. These equations are transformed to the global Cartesian coordinate
system x, y, z and are then embedded and rearranged into Eq. (7). To determine the corresponding nodal
displacements at time t +�t , the contact conditions must first be satisfied. Therefore, the iterative procedure
employed must be applied by initially using the convergent contact status (union of the adhesive, slipping,
and open parts of the crack surface) of the previous time t . The procedure initially assumes that the coplanar
and normal incremental force components for a master surface at time t +�t are zero. Accurate values of the
incremental forces can be estimated via the iterative procedure [22,23]. The contact state for each node pair
is examined using criteria that check whether any violations related to geometrical compatibility and force
continuity have occurred [20,21]. Where necessary, appropriate changes from open to contact or from adhe-
sion to slip states and vice versa are made to identify the equilibrium state of the contact conditions. The new
contact condition is applied to the node pair closest to the change. If the change is from the open to the contact
state, then the adhesion condition is adjusted. When the iterative procedure converges, the incremental nodal
values t+�t�U and t+�t�R are known for the entire structure. After calculating the total nodal values, the
procedure goes to the next step of the time increment and continues until the final time increment is reached.
The problem solution is then attained.

In order to simplify the computation, conditions associated with the partial closing and opening of the
crack surfaces were modeled through the slideline facility of the Lusas commercial finite element code [23].
Slidelines were comprised of two necessarily non-regular surfaces defined by a number of contact segments
corresponding to the external faces of elements closest to the surfaces. The nodal constraint treatment allows
for the adjustment of contact conditions by setting appropriate constraints. At each increment of the procedure,
this facility tracks the node pairs that are nearly in contact and adjusts the contact constraints. This technique
does not directly couple the nodal degrees of freedom, but instead introduces repellent forces between the
penetrating regions of the two surfaces. Coupling the nodal freedoms in this manner introduces no additional
equations into the solution, and the technique is sufficiently flexible to be implemented within both explicit
and implicit types of finite element codes.
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3 Response analysis

The response extracted from the previously described finite element procedure cannot be examined directly
to distinguish the breathing crack effects. For this reason, fast Fourier and continuous wavelet transforms
are employed. These two popular transforms in signal analysis are briefly discussed below for reasons of
completeness, and more information can be found in references [24,25].

The fast Fourier transform (FFT) is a perfect tool for finding the frequency components in a signal of
stationary nature. Unfortunately, FFT cannot show the time point at which a particular frequency component
occurs. Therefore, FFT is not a suitable tool for a non-stationary signal, such as the impulsive response of the
cracked cantilever beam considered in this study, which requires time-frequency representation. To overcome
this FFT deficiency, the short time Fourier transform (STFT) could be adopted, which maps a signal into a
two-dimensional function of time and frequency. This windowing technique analyzes only a small section of
the signal at a time. However, the information about time and frequency that is obtained has a limited precision
that is determined by the size of the window, which is the same for all frequencies.

Wavelet transforms are a novel and precise way to analyze signals and can overcome the problems that
other signal transforms exhibit. The most important advantage of wavelet transformations is that they have
changeable window dimensions. For low frequencies, the window is wide, while for high frequencies, it is
narrow. Thus, maximum time frequency resolution is provided for all frequency intervals.

The continuous wavelet transform (CWT), as employed in this study, is defined mathematically as:

W fs,u = 1√
s

∞∫

−∞
f (t)ψ∗

(
t − u

s

)
dt, (14)

where f (t) is the signal for analysis, ψ∗(t) is the complex conjugate of the mother wavelet ψ(t), and s and u
are real-valued parameters used to characterize the dilation and translation features of the wavelet.

The CWT has an inverse that permits recovery of the signal from its coefficient W fs,u and is defined as:

f (t) = 1

Cψ

∞∫

−∞

∞∫

−∞
W fs,uψ

(
t − u

s

)
1

s2 dsdu, (15)

where Cψ is a constant depending on the wavelet type.

4 Numerical results and discussions

In this section, the presented method is applied for the cracked cantilever beam model shown in Fig. 1. This
three-dimensional model has length L = 2 m, cross-section b × h = 1 × 10−4m2, modulus of elasticity
E = 2.06 × 1011 Pa, mass density ρ = 7800 kg/m3, and Poisson’s ratio ν = 0.3. For reasons of comparison
and calculation simplicity, the two parameters describing the geometry for a non-uniform depth crack are
considered equal to the parameter representing the geometry of a uniform depth crack, that is, ax = ay = a.
For both crack geometries, the beam vibrational behavior is studied for various values of dimensionless depth
a/h and position Lc/L . Throughout this study, generally moderate and high values of dimensionless crack
depth (a/h ≥ 0.125) are considered, since vibration-based crack detection methods are only slightly sensitive
to small cracks [26]. A downward and vertical (y-axis) impulse loading is applied at the free end of the beam
from time t = 0 to t = �t . As previously mentioned, the beam is discretized into eight-node isoparametric
hexahedral finite elements. Two typical meshes are illustrated in Fig. 3: the first mesh corresponds to a beam
with a uniform depth crack of a/h = 0.25 at position Lc/L = 0.5 and the second mesh corresponds to a
beam with a non-uniform depth crack of a/h = 0.5 at position Lc/L = 0.25. For all crack cases in this study,
the beam finite element meshes are composed of approximately the same number of nodes and elements. For
example, when the beam contains a uniform depth crack of a/h = 0.25 at position Lc/L = 0.5, the finite
element mesh consists of 2,176 eight-node isoparametric hexahedral finite elements and 2,853 nodes. For the
non-cracked beam, the finite element mesh is composed of 2,048 eight-node isoparametric hexahedral finite
elements and 2,673 nodes. Convergence studies show that higher mesh refinements in the neighborhood of
the crack affect the results less than 1.5 % for all studied cases. The non-linear dynamic problem is solved
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by utilizing the finite element procedure presented above. The damping loss factor is very small for the car-
bon steel beam specimens considered in this study. Furthermore, in the modal analysis performed below, the
damping loss factor only affects the amplitude of the response. For these reasons, the damping effects are
neglected (C ≈ 0). At time zero (t = 0), the beam is stationary and un-deformed. The implicit Newmark
time integration scheme is adopted in this finite element procedure with δ = 1/2 and α = 1/4 [22]. The
considered time solution is subdivided into N = 211 equal time increments. Based on convergence studies, the
time increment is taken as�t = 1 × 10−4. The use of smaller values of time increments affects the results by
less than 1.5 %. Numerical experimentations show that, for the smooth crack surfaces considered, the results
are not significantly affected by the values of the coefficient of friction (less than 0.5 %). Hence, the results
presented in the following for a small friction coefficient (μ = 0.1) should be reasonably unaffected for most
of the studied cases. Equation (7) is solved repeatedly until the contact status converges and the incremental
displacements are sufficiently small. Generally, only a few iterations (no more than three) are needed between
two subsequent sequences. This is reasonable, since the crack surfaces are small and the finite element mesh
around the crack is dense. This problem is implemented utilizing the Lusas finite element commercial code
[23]. The output files of this code are large, the handling of which demands parallel computers with multiple
processing and memory units. Furthermore, conventional finite element programs need to be re-designed in
order to take full advantage of parallel computers. For this reason, the response for the first N = 500 time
increments is analyzed using FFT and CWT. The FFT is employed to find the frequency content of the response,
since an eigenvalue analysis is only applicable to linear dynamic models. Unfortunately, the FFT causes the
time information to be lost for a non-stationary signal such as the impulse response of the crack cantilever beam
model. CWT is employed to overcome this deficiency, which provides the time–frequency information of a
signal and enables the extraction of features that vary with time. Trial and error show that the Hanning window
is suitable for FFT, while the biorthogonal 6.8 wavelet family is appropriate for CWT. For reasons of accuracy,
the linear dynamic problem of a beam with a continuously open crack is considered. This problem is solved by
employing the above finite element procedure without considering the contact equations described above. The
eigenvalue analysis of non-cracked and open cracked beams is also considered for the same reasons. These
problems are solved utilizing conventional finite element procedures [22]. Finally, conclusions are extracted
for the utility of this study in crack detection techniques. An accuracy study is implemented for the non-
cracked beam. The first four analytical natural frequencies fiu of the beam are considered [27]. The subscripts
i = 1, 2, 3, 4 represent the order of the natural frequency, while u denotes the non-cracked state of the beam.
The first two natural frequencies are identical, f1u = f2u = 0.209 kHz, and correspond to the first bending
vibration in the horizontal (x − z) and vertical (y − z) planes, respectively. The last two natural frequencies
are also identical, f3u = f4u = 1.31 kHz, and correspond to the second bending vibration in the horizontal
(x − z) and vertical (y − z) planes, respectively. Comparisons are performed with the corresponding numerical
natural frequencies f ∗

iu obtained by the eigenvalue finite element procedure, where ∗ denotes the numerical
results. The percentage differences (( fiu − f ∗

iu)/ f ∗
iu) × 100 of these natural frequencies are between 0.27 %

for the first natural frequency and 0.72 % for the fourth natural frequency. Thus, the analytical and numerical
results are very close. An accuracy study is also implemented by employing the numerical results f ∗

iu , which
are the natural bending frequencies extracted from the FFT of the corresponding displacement response. Com-
parisons are performed with the analytical natural frequencies fiu noted above. The percentage differences
of these natural frequencies are between 0.56 and 2.35 % for the first and fourth natural frequencies, respec-
tively. Thus, the results obtained using the FFT are very close to the analytical values. Comparisons with the
previous study show that the accuracy of the natural frequencies obtained with the eigenvalue finite element
procedure is higher than that obtained with the FFT. An accuracy study is also implemented for a beam with
an open crack of uniform depth a/h = 0.5 at position Lc/L = 0.5. The first four natural frequencies are
obtained based on the FFT of the vertical and horizontal displacement responses. These results are compared
with the corresponding natural frequencies extracted from the eigenvalue finite element procedure. The per-
centage differences of the first four natural bending frequencies are between 0.17 and 4.2 % for the first and
fourth natural frequencies, respectively. To obtain a first insight into the cracked beam vibrational behavior,
an eigenvalue analysis is performed considering the crack always open. The breathing crack approach is not
employed, since it introduces non-linearities that make the eigenvalue analysis inapplicable. However, there
are instances during the beam free vibration at which the breathing crack is open. Based on the deformed mesh
of the employed eigenvalue finite element procedure, the vibration modes of the beam are extracted for both
crack geometries and for various values of crack depth and position. Coupled vibration modes are observed
for all crack cases considered. For example, Fig. 4 depicts the two different coupled vibration modes of the
beam with a uniform depth crack of a/h = 0.5 at position Lc/L = 0.5. The un-deformed shape of the beam
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Fig. 4 Coupled bending-torsion vibration modes for the beam with an always open uniform depth crack of a/h = 0.5 at position
Lc/L = 0.5 with a untwisted, or b twisted crack surfaces

(solid lines) is also shown in this figure for comparison. It seems that these two vibration modes result from
coupling between the bending and torsion vibration modes. In these two vibration modes, the crack surfaces
are either untwisted along the z-axis and exactly facing each other or twisted along the z-axis (Fig. 4). Figure 5
illustrates the two different coupled vibration modes of the beam with a non-uniform depth crack of a/h = 1
at position Lc/L = 0.25. These two modes derive from coupling of the longitudinal and torsion vibration
modes or coupling between the bending and torsion vibration modes. The crack surfaces in these two coupled
vibration modes are either untwisted along the z-axis and exactly facing each other or twisted along the z-axis,
as in the case of a uniform depth crack (Fig. 5a).

Figure 6 illustrates the impulsive displacement response in the horizontal (x-axis), vertical (y-axis), and
axial (z-axis) directions versus response time for the beam with an either uniform or non-uniform depth breath-
ing crack of a/h = 0.5 at position Lc/L = 0.25. For reasons of visibility, the horizontal response for the
uniform depth crack is magnified by a scale of 103 (Fig. 6a). It seems that for both crack cases the amplitude of
the vertical vibration is greater than the corresponding amplitudes of the horizontal and axial vibrations. This
is reasonable, since the cracked beam is excited along the vertical direction. A comparison between Fig. 6a, b
shows that the crack geometry affects the amplitudes of the vibration components. The most significant change
is observed in the amplitude of the horizontal vibration. In particular, the amplitude of the horizontal vibration
for the non-uniform depth crack is much greater than the amplitude of the horizontal vibration for the uniform
depth crack. Thus, the non-uniform depth crack causes more intense coupling than the uniform depth crack.

To get more insight into the cracked beam vibrational behavior, Fig. 7 depicts the instantaneous deformed
shape for a beam with a uniform depth crack of a/h = 0.75 at position Lc/L = 0.25 when the crack is
partially closed. Apart from the instantaneous deformed shape of the fractured beam, Fig. 7 also illustrates
the un-deformed shape of the non-cracked beam for comparison and a detail showing the crack state. The dis-
placements in the detail are magnified by a scale of 2. It seems that the beam vibrates like a two-dimensional
structure. This happens due to the geometric symmetry of the crack surfaces in respect to the direction of the
excitation. Figure 8 shows the instantaneous deformed shape for a beam with a non-uniform depth crack of
a/h = 1 at position Lc/L = 0.25 when the crack is partially closed. It is seems that the geometric asymmetry
of the crack surfaces in respect to the direction of the excitation causes coupling between transverse bending
and torsion (along the z-axis) vibration modes. It is observed from Fig. 9, showing a perspective view of the
cracked beam, that the beam also undergoes bending over the horizontal direction. Based on Figs. 7, 8, and 9,
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Fig. 5 Coupled a longitudinal-torsion (untwisted crack surfaces) b bending-torsion (twisted crack surfaces) vibration modes for
the beam with an always open non-uniform depth crack of a/h = 1 at position Lc/L = 0.25

it is deduced that the non-uniform depth crack causes coupling between bending and torsion vibration modes.
This coupling is un-steady due to the breathing crack effects. Furthermore, it seems that the portions of the
beam on the left and right of the crack vibrate in different ways at the same time.

4.1 FFT analysis

Figure 10 depicts the FFTs of the horizontal, vertical, and axial acceleration response for a beam with either
a uniform depth crack of a/h = 0.5 at position Lc/L = 0.25 or a non-uniform depth crack of a/h = 0.5 at
position Lc/L = 0.5. In Fig. 10b, the axial response is magnified by a scale of 10 for visibility. Furthermore,
the vertical dash-dot lines represent the frequency content of the non-cracked beam. In particular, the first
line from the left represents the loci of the two identical natural frequencies for the first bending vibrations
over the horizontal and vertical planes. The next dash-dot line represents the loci of the two identical natural
frequencies for the second bending vibrations over the horizontal and vertical planes. These natural frequencies
are evaluated from the FFT of the acceleration response, which is not plotted in this figure for clarity. For both
crack cases, the first two primary peaks of the FFTs for the horizontal and vertical responses correspond to the
first two bending vibrations over the horizontal and vertical planes, respectively. The remaining primary peaks
of the illustrated FFTs in Fig. 10 are caused due to the coupled vibrations of the fractured beam, vibrations of
the beam portions on the left and the right of the crack, and breathing crack effects. Identification of these fre-
quencies requires more investigation, which is beyond the scope of this work. A comparison between Fig. 6a, b
shows differences in the values of amplitudes. Although the value of the crack depth is the same for both crack
cases, the values of amplitudes for the uniform depth crack are much greater than the corresponding values for
the non-uniform depth crack. This is due to the different geometry of the cracks and not because of their differ-
ent positions along the beam. The above study was implemented for both crack geometries and various values
of crack depth and position. As expected [21], the natural frequencies decrease as the crack depth increases.
Furthermore, the effect of the crack on the natural frequencies weakens as the distance between the crack and
the cantilever end increases. The purpose of this study was to numerically simulate the breathing crack mech-
anism and its interaction with the vibrational behavior of a beam. Thus, the implementation of very expensive
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Fig. 6 Time response when a breathing crack with a a uniform depth or b non-uniform depth of a/h = 0.5 is present at position
Lc/L = 0.25

Fig. 7 Instantaneous deformed shape of a beam with a breathing crack of uniform depth a/h = 0.75 at position Lc/L = 0.25

and time-consuming experiments of a cantilever beam with a breathing crack is beyond the scope of this study.
However, to validate the results of the present study, the behavior of the impulsive displacement response is
considered. In comparison with the displacements of the open crack model, the displacement values for the
breathing crack model are generally smaller. This is reasonable since the breathing of a crack causes changes
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Fig. 8 Instantaneous deformed shape of a beam with a breathing crack of non-uniform depth a/h = 1 at position Lc/L = 0.25

Fig. 9 Instantaneous deformed shape of a beam with a breathing crack of non-uniform depth a/h = 1 at position Lc/L = 0.25

in the structural stiffness during the response cycle. Similar conclusions are presented in reference [28]. In
what follows, the accuracy of the presented study is shown through comparisons of the natural frequencies
obtained from the FFT of the vertical acceleration response with the corresponding frequencies available from
the literature. The FFT of the vertical accelerations is not given here, for brevity reasons. However, it is similar
to those presented in Fig. 10. Herein, the dimensionless fundamental bending natural frequency over vertical
direction of the cantilever beam, f1c/ f1u , is evaluated for a uniform depth breathing crack with three different
values of a/h at position Lc/L = 0.25. Subscript c denotes the cracked beam. The results of this study are
illustrated in Fig. 11. For each value of the crack depth, the frequency range is presented by an error bar. The
upper values of these bars correspond to the frequency for the fully closed crack state, while the lower values
correspond to the frequency for the fully open crack state. Between the frequencies for fully closed and fully
open crack lie the corresponding frequencies for always open crack [29]. To study further the accuracy of the
presented study, the two lower bending natural frequencies over vertical direction of the cantilever beam with
a breathing uniform depth crack of a/h = 0.5 at position Lc/L = 0.5 are evaluated (Table 1). It is derived
from Table 1 that the results of the present study are generally close to the results of Nandwana and Maiti
[30] and Kisa and Brandon [31]. It is noteworthy that the study of Nandwana and Maiti [30] has applied for a
Timoshenko beam. Furthermore, the results from the work of Kisa and Brandon [31] correspond to an internal
crack of the same severity with the studied crack case. The internal crack constitutes a good approximation of
a fully closed crack.

4.2 CWT analysis

In this subchapter, the CWT is employed to investigate the effect of a breathing crack on the beam vibrational
behavior. Three-dimensional contour maps of the CWTs for the impulsive displacements over three directions
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Fig. 10 Frequency response of the acceleration for a a uniform depth breathing crack of a/h = 0.5 at position Lc/L = 0.25 or
b a non-uniform depth crack of a/h = 0.5 at position Lc/L = 0.5

are discussed for various crack scenarios. In these contour maps, the symbol s denotes the scale space, u stands
for the time space, and W fs,u represents the wavelet coefficients. The scale may conceptually be considered
the inverse of the frequency. Though there is no exact mathematical relation for this, with approximation it
can de stated as fa = fc/s�t , where fa is the pseudo frequency corresponding to scale s in kHz, fc is the
central frequency of the wavelet in kHz, and �t is the time increment [32]. Based on this approximation,
scales, and consequently pseudo frequencies, are correlated to the natural frequencies obtained by the corre-
sponding FFT. Then, the values of the wavelet coefficients at these scales are determined from the contour
maps for the entire time solution of interest. The contour maps presented below consist of two regions of
different morphology and extent. In the first region, the map approaches the plane s − u (nearly zero values
of wavelet coefficients), while in the second (remaining) map region, the map consists of a number ridges.
Figure 12a shows the contour map of the CWT for the impulsive vertical displacement response of a beam
with a uniform depth crack of a/h = 0.875 at position Lc/L = 0.5. A number of vertical consecutive but
non-uniform ridges is observed along scale axis and for u ≥ 200. These ridges appear maximum values of
wavelet coefficients at s ≈ 48( fa = 0.17 kHz) that corresponds to the first bending vibration over the vertical
plane. The higher maximum value of wavelet coefficients, W fs,u ≈ 8 × 107, occurs at s ≈ 48 and u ≈ 350.
Figure 12b illustrates a corresponding contour map of the horizontal response. For u ≥ 200 and s ≤ 64, the
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Fig. 11 Fundamental bending frequency over vertical direction of the cantilever beam with a uniform depth breathing crack
of three different depths located at Lc/L = 0.25

Table 1 First two bending natural frequencies over vertical direction of the cantilever beam for a uniform depth crack of a/h = 0.5
at position Lc/L = 0.5

f1c/ f1u f2c/ f2u

Nandwana and Maiti [30] 1.000 0.992
Present study 0.992 0.957
% Difference of natural frequency −0.80 −3.53
Kisa and Brandon [31] 0.980 0.925
Present study 0.992 0.957
% Difference of natural frequency 1.22 3.46

Fig. 12 CWT of the a vertical displacement and a horizontal displacement for a beam with a uniform depth breathing crack
of a/h = 0.875 and Lc/L = 0.5
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Fig. 13 CWT of the a vertical displacement and b horizontal displacement for a beam with a non-uniform depth breathing crack
of a/h = 0.5 and Lc/L = 0.25

map consists of a number of vertical and nearly uniform ridges. The maximum values of wavelet coefficients,
W fs,u ≈ 5 × 107, for these ridges are observed at s ≈ 32( fa = 0.25 kHz) which corresponds to the first
bending vibration over the horizontal plane. Figure 13 shows the corresponding contour maps of the vertical
and horizontal responses for a non-uniform depth crack of a/h = 0.5 at position Lc/L = 0.25. For the vertical
response, a number of uniform ridges appear along time axis and for s ≤ 84. The maximum wavelet coefficient
value, W fs,u ≈ 0.6, appears along s ≈ 42( fa = 0.19 kHz) corresponding to the first bending vibration over
the vertical plane (Fig. 13a). For the horizontal response, a number of ridges are observed along time axis and
for s ≤ 48. The height of these ridges increases over the considered time. This happens because the response
is in a transient state within the considered time. The maximum wavelet coefficient value W fs,u ≈ 0.12 is
observed at s ≈ 41( fa = 0.198 kHz) and u = 450. This later value of scale corresponds to the first bending
vibration over horizontal plane. For both studied crack cases, the contour maps of the CWTs for the impulsive
axial displacement response are not presented since similar conclusions to those for the vertical response are
extracted. Furthermore, higher maximum values of the wavelet coefficients appear in the vertical directions
than in the other two directions. This is reasonable, since the beam is excited along the vertical axis. Coupling
of vibration components occurs in domain (s, u) at which the values of the wavelet coefficients of impul-
sive responses over three dimensions are simultaneously nonzero. The impulsive displacement responses over
three directions were evaluated for different crack cases to investigate the effect of crack geometry, depth, and
position on vibrational behavior using the CWT. Differences regarding the maximum values of the wavelet
coefficients, the map morphology (the extent of the regions and shape of ridges), and the extent of coupling
domain (s, u) are observed.

5 Conclusions

The work reported in this paper is part of ongoing research to develop precise crack detection techniques. In
particular, a full three-dimensional finite element model was formulated to study the vibrational behavior of a
beam with a breathing crack. This model was discretized into a number of conventional finite elements, while
the breathing crack was treated as a full frictional contact problem between the crack surfaces. An iterative
incremental procedure was applied to solve this non-linear problem. The derived time response was analyzed
using various integral transforms including FFT and CWT. This study assessed an impulsive loading beam
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with either a uniform or non-uniform depth crack. For both crack geometries, the beam vibrational behavior
was investigated for various values of crack depth and position. The results of this study are in agreement
with results available from the literature. Coupling between fundamental vibration modes is observed, which
constitutes the main benefit of this full three-dimensional finite element model over a corresponding two-
dimensional model. The coupling depends on the crack characteristics such as geometry, depth, and position.
This analysis correlates the natural beam frequencies obtained by the FFT to the scales of contour maps. The
values of the wavelet coefficients at these scales are determined from the contour maps for the time solution
of interest. Thus, this study shows that FFT and CWT can be used as tools for crack detection techniques.
These conclusions encourage the authors of this study to investigate the influence of more compound issues
in vibration problems like plasticity and crack propagation. These issues are under investigation and will be
the subject of future work for the authors.
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