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Abstract The vibration of a cantilever beam with constant thickness and linearly tapered sides is solved using
a novel accurate, efficient initial value numerical method. The effects of tip mass, base fixity, and taper on the
natural frequencies are determined. This geometrically anisotropic beam vibrates in a mixture of modes in two
perpendicular directions.
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1 Introduction and formulation

The vibration of a cantilever with tip mass is important in a wide variety of mechanical applications. For
strength reasons usually the cantilever is tapered, being wider at the base and narrower at the tip. The vibra-
tions of a class of linearly tapered beams were first studied by Kirchkoff [1] who expressed the solutions in
terms of what is now known as Bessel functions.

Ignoring rotational inertia and shear deformation, the Euler–Bernoulli small-deflection beam equation can
be shown to be (e.g. Magrab [2])
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Here x ′ is the axial distance from the base of the cantilever, y′ is the transverse deflection, EI is the flexural
rigidity,ρ is the mass per length, and t ′is the time. Let

E I (x ′) = E I0l(x ′), ρ(x ′) = ρ0r(x ′) (2)

where E I0 is the maximum of EI and ρ0 is the maximum of ρ, both occurring at the base. Consider a harmonic
vibration with frequency ω′

y′ = w′(x ′)eiω′t ′ (3)

Normalize all lengths by the beam length L , the time by L2√ρ0/E I0 and drop primes. Equation 1 becomes
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Fig. 1 a The cantilever beam of constant thickness and tapered sides. b Cross-section at the base

Here

ω = ω′L2
√

ρ0/E I0 (5)

is the non-dimensional frequency. Let

z = 1 − cx, 0 ≤ c ≤ 1 (6)

where c is the degree of taper. Assume power law variations of rigidity and density

l(z) = zm, r(z) = zn (7)

Equation (4) becomes

c4 d2

dz2
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]
− ω2znw = 0 (8)

Kirchkoff considered the cases m = 4, n = 2 which represents a conical beam, and m = 3, n = 1 which is a
beam with constant thickness and linear width. In general, if m = n + 2 Eq. (8) can be factored into
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Each one of the brackets in Eq. (9) is a Bessel operator. When n is an integer, the exact solution is

w = z−n/2[C1 Jn(u) + C2Yn(u) + C3 In(u) + C4 Kn(u)], u = 2
√

ωz/c (10)

Here J an Y are Bessel functions and I and K are modified Bessel functions. Many papers have extended
Kirchkoff’s work, notably Sanger [3].

Consider the vibration of a cantilever beam with constant thickness and linearly varying width. Figure 1a
shows the beam with a tip mass and a rotational spring-hinged base. Note the beam can vibrate in two different
directions. If vibration is about the axis A–A, which is perpendicular to the direction of thickness, then m = 1,
n = 1. If vibration is about the axis B–B, which is in the direction of thickness, then m = 3, n = 1.

For the m = 3, n = 1 case, using the exact solution of Kirchkoff, Mabie and Rogers [4] computed the
frequencies for a cantilever beam with tip mass. Sankaran et al. [5] and Lee [6] added a spring-hinged base,
and the problem is considered solved.

However, the m = 1, n = 1 case does not have simple Bessel-type solutions, and numerical methods are
needed. Wang [7] expressed the solution in terms of hypergeometric functions, but the frequencies need to be
evaluated by infinite series expansions. Downs [8] used a complicated dynamic discretization method which
subdivides the beam into segments. Naguleswaran [9] used Frobenius series expansions but have convergence
problems. None of the previous reports considered tip mass or base flexibility.

The purpose of the present paper is to present the complete frequencies for the cantilever beam, which has
constant thickness and linearly varying width and with a tip mass and a spring- hinged base. We shall use a
novel initial value method which will be accurate and efficient.
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Table 1 First three frequencies for a beam with constant thickness and linearly tapered width (m = n = 1) with clamped base
and no tip mass

c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.999
ω1 3.5160 3.6310 3.7629 3.9160 4.0970 4.3152 4.5853 4.9317 5.3976 6.0704 7.1422

{3.9160} (4.5857) [4.3152] [4.5853] [4.9316] (5.3969) [6.0704] {7.1565}
[4.0970] {4.5853} [5.3976] {6.0704}

{5.3976}
ω2 22.035 22.254 22.502 22.786 24.021 23.519 24.021 24.687 25.656 27.299 30.970

{22.786} (24.021) [23.519] [24.021] [24.687] (25.656) [27.299] {31.041}
[23.119] {24.021} [25.656] {27.299}

{25.656}
ω3 61.697 61.910 62.153 62.436 62.776 63.199 63.751 64.527 65.747 68.115 75.653

{62.436} [62.776] [63.199] [63.751] [64.527] [65.747] [68.115] {75.487}
{63.752} {65.747} {68.115}

Values in parentheses are from Wang [7], square brackets from Naguleswaran [9] and flower brackets from Downs [8]

2 The initial value method

The boundary conditions for a spring-hinged base at x ′ = 0 with rotational spring constant k is

w = 0, E I
∂2 y′

∂x ′2 = k
∂y′

∂x ′ (11)

or in normalized form at z = 1

w = 0,−c
d2w

dz2 = γ
dw

dz
(12)

where γ = kL/E I0 is the normalized spring constant. At the tip at x ′ = L the moment is zero and the shear
balances the tip mass M
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or in normalized form at z = 1 − c

d2w

dz2 = 0, −c3(1 − c)m d3w

dz3 + νω2w = 0 (14)

Here ν = M/ρ0L is a mass ratio. Equation (8) is to be solved with the boundary conditions Eqs. (12), (14).
The boundary value problem is inconvenient since the four boundary conditions are evenly divided at both

ends of the beam. We shall adapted an initial value method originally suggested Barasch and Chen [10] for
rotating plates but seldom advocated. Let

w = C1w1(z) + C2w2(z) (15)

where w1 and w2 each satisfies four initial conditions including Eq. (12). Furthermore, w1 and w2 have
independent initial conditions, i.e.,

w1(1) = 0,
dw1

dz
(1) = 1,
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dz3 (1) = 0 (16)
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dz3 (1) = 1 (17)

Then Eq. (8) is integrated by the Runge–Kutta method backwards from z = 1 to z = 1 − c for both w1 and
w2. Eq. (14) gives, for non-trivial solutions, the condition∣∣∣∣∣∣∣∣

d2
w1

dz2 |1−c
d2

w2
dz2 |1−c

−c3(1 − c)m d3
w1

dz3 |1−c −c3(1 − c)m d3
w2

dx3 |1−c

+νω2w1 |1−c +νω2w2 |1−c

∣∣∣∣∣∣∣∣
= 0 (18)



174 C. Y. Wang

Table 2 Frequencies for the m = 3, n = 1 case

ν\c 0.1 0.3 0.5 0.7 0.9
(a) γ = ∞ or clamped base
0 3.5587 3.6668 3.8238 4.0817 4.6307

21.338 19.881 18.317 16.625 14.931
58.980 53.322 47.265 40.588 32.833

0.1 2.9591 2.9304 2.8737 2.7494 2.3864
18.533 16.766 14.276 12.432 9.3434
52.660 46.696 40.299 33.229 24.688

1 1.5121 1.4084 1.2804 1.1112 0.8435
15.587 14.195 12.681 10.957 8.7053
48.441 43.342 37.887 31.817 24.254

10 0.5212 0.4770 0.4258 0.3626 0.2700
14.931 13.700 12.340 10.760 8.6377
47.722 42.834 37.564 31.652 24.209

(b) γ = 10
0 3.0280 3.1718 3.3649 3.6557 4.2131

18.785 17.592 16.318 14.952 13.642
53.120 48.135 42.813 36.968 30.237

0.1 2.5474 2.5719 2.5771 2.5292 2.2733
16.358 14.873 13.188 11.177 8.4699
47.433 42.135 36.451 30.165 22.559

1 1.3282 1.2616 1.1713 1.0408 0.8131
13.660 12.486 11.208 9.7465 7.8234
43.446 38.938 34.126 28.782 22.123

10 0.4607 0.4296 0.3912 0.3406 0.2606
13.035 12.010 10.876 9.5518 7.7547
42.751 38.444 33.810 28.619 22.078

(c) γ = 1
0 1.6111 1.7400 1.9109 2.1573 2.5741

15.700 14.569 13.395 12.198 11.211
48.574 43.778 38.708 33.222 27.101

0.1 1.3870 1.4566 1.5345 1.6149 1.6463
13.564 12.168 10.607 8.7692 6.2999
43.162 38.054 32.611 26.644 19.533

1 0.7578 0.7545 0.7432 0.7149 0.6335
10.973 9.8234 8.5861 7.1999 5.4475
39.199 34.847 30.245 25.203 19.056

10 0.2674 0.2613 0.2523 0.2374 0.2050
10.327 9.3168 8.2176 6.9678 5.3526
38.492 34.340 29.918 25.030 19.006

(d) γ = 0.1
0 0.5626 0.6137 0.6823 0.7811 0.9430

14.949 13.793 12.597 11.395 10.456
47.744 42.954 37.899 32.444 26.402

0.1 0.4883 0.5202 0.5592 0.6080 0.6689
12.852 11.429 9.8385 7.9629 5.4107
42.360 37.255 31.818 25.862 18.777

1 0.2720 0.2765 0.2808 0.2843 0.2835
10.333 9.0257 7.7117 6.2137 4.2593
38.383 34.026 29.424 24.392 18.279

10 0.09678 0.09669 0.09641 0.09571 0.09335
9.5576 8.4839 7.3012 5.9328 4.1128

37.669 33.513 29.092 24.215 18.227

The frequencies are obtained by bisection to satisfy Eq. (18). The errors of both Runge–Kutta and bisection
can be prescribed to any accuracy.

We shall compare our numerical method with existing reports for the special case of a clamped base and
zero tip mass (m = n = 1) which has no exact solution. The c = 1 case is approximated by c = 0.999 in our
numerical computation. We see that all results agree for 0.5 ≤ c ≤ 0.9. However, for 0.1 ≤ c ≤ 0.4, the values
from the “exact” hypergeometric series and the Frobenius series fail. The method of dynamic discretization
seems to be accurate but tedious to implement. For c = 1, Eq. (8) is singular at x = 1, where all methods
encounter some difficulty. Our values for c = 0.999 are deemed correct (Table 1).
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Table 3 Frequencies for the m = 1, n = 1 case

ν\c 0.1 0.3 0.5 0.7 0.9
(a) γ = ∞ or clamped base
0 3.6310 3.9160 4.3152 4.9317 6.0704

22.254 22.786 23.519 24.687 27.299
61.910 62.436 63.199 64.527 68.115

0.1 3.0245 3.1534 3.3084 3.4980 3.7298
19.374 19.393 19.370 19.263 18.938
55.374 55.028 54.584 54.001 53.130

1 1.5505 1.5337 1.5110 1.4793 1.4308
16.304 16.431 16.586 16.765 16.914
50.924 50.997 51.101 51.245 51.363

10 0.5350 0.5212 0.5054 0.4869 0.4631
15.614 15.841 16.102 16.395 16.665
50.158 50.367 50.611 50.901 51.170

(b) γ = 10
0 3.0715 3.3261 3.6780 4.2111 5.1633

19.548 20.016 20.663 21.700 24.019
55.694 56.140 56.807 58.004 61.304

0.1 2.5882 2.7164 2.8711 3.0920 3.3010
17.063 17.077 17.050 16.941 16.626
49.822 49.462 49.005 48.407 47.516

1 1.3539 1.3488 1.3392 1.3228 1.2932
14.258 14.349 14.457 14.573 14.642
45.622 45.636 45.672 45.738 45.762

10 0.4702 0.4611 0.4502 0.4372 0.4199
13.602 13.785 13.990 14.211 14.393
44.882 45.025 45.196 45.400 45.568

(c) γ = 1
0 1.6173 1.7630 1.9600 2.2480 2.7300

16.383 16.721 17.218 18.076 20.119
51.019 51.355 51.907 52.985 56.134

0.1 1.3933 1.4803 1.5870 1.7219 1.8995
14.193 14.117 13.991 13.771 13.335
45.425 44.975 44.420 43.715 42.696

1 0.7624 0.7717 0.7804 0.7879 0.7926
11.505 11.461 11.405 11.317 11.126
41.255 41.151 41.060 40.986 40.854

10 0.2692 0.2679 0.2661 0.2638 0.2603
10.828 10.869 10.903 10.912 10.827
40.504 40.528 40.570 40.635 40.649

(d) γ = 0.1
0 0.5628 0.6147 0.6844 0.7851 0.9496

15.628 15.929 16.387 17.204 19.203
50.176 50.491 51.021 52.079 55.211

0.1 0.4886 0.5212 0.5615 0.6130 0.6818
13.477 13.367 13.201 12.936 12.449
44.612 44.139 43.560 42.828 41.778

1 0.2722 0.2773 0.2827 0.2883 0.2940
10.765 10.667 10.545 10.372 10.070
40.428 40.297 40.177 40.072 39.906

10 0.0969 0.09701 0.0971 0.0972 0.0972
10.061 10.046 10.011 9.9323 9.7326
39.671 39.668 39.682 39.716 39.697

3 Results

Since the cantilever beam can vibrate about two different axes (A–A and B–B), one needs to consider both
sets of frequencies. We first generate the exact frequencies for m = 3, n = 1 from Eqs. (10), (12) and (14).
The results from our numerical method Eq. (18) completely agree with those of the exact method, further
confirming the accuracy.

For completeness, the results for m = 3, n = 1 are tabulated in Table 2, which are more comprehensive
than previous reports. Table 2 is also used for the calculations of the complete lowest frequencies of the beam.

The corresponding results for the m = 1, n = 1 case, computed by the initial value method, are given in
Table 3.
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Table 4 Lowest frequencies for c = 0.5, γ = ν = 1

a/b = 0.1 a/b = 1 a/b = 10
0.07432* 0.7432* 0.7804
0.7804 0.7804 7.4318*
0.8586* 8.5861* 11.405
3.0245* 11.405 41.060
6.6228* 30.245* 85.861*
Asterisk shows vibration is about the B–B axis, otherwise it is about the A–A axis

4 Discussions

The tapered cantilever beam with tip mass and spring-hinged base is fundamental in mechanical vibrations.
Our accurate frequency tables would be useful for the design of such structures.

From our Tables, the following can be concluded. For the m = 3, n = 1 vibration about the axis B–B,
we find frequencies decrease with increased tip mass ν and decreased base fixity γ . The increase in taper c
decreases frequency, except perhaps the fundamental frequency. For the m = 1, n = 1 vibration about the
axis A–A, the effects of ν and γ are similar to the m = 3, n = 1 case. However, the effect of taper is quite
complex and is found to increase or decrease the frequency.

In practice, a cantilever beam can oscillate in both A–A or B–B directions, which have different E I0, but
the frequencies can only be compared with the same normalization. Consider the base cross-section shown
in Fig 1b, where the width and thickness are a and b, respectively. For vibration about A–A and B–B, the
rigidities are proportional to

E IA ∼ ab3, E IB ∼ a3b (19)

Let E I0 = E IA, then the frequencies in Table 3 are unchanged. Using the same E IA to normalize the frequen-
cies in Table 2, we find the actual frequencies should be multiplied by the aspect ratio a/b. As an example,
lets take the beam with c = 0.5, γ = ν = 1. The lowest five frequencies are listed in Table 4. Notice only for
base aspect ratio one, the values can be directly compared.

Notice vibrations in either direction can be excited. This property is peculiar to geometrically anisotropic
beams but seldom acknowledged by previous researchers. Such a new perspective is illustrated in Table 4.

We advocate a novel, seldom noticed, efficient, accurate initial value method. As shown in Sect. 2, the
method is more advantageous than all existing methods. Aside from linear taper studied in this paper, the
method can also be applied to other non-uniform tapers and functionally graded beams.
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