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Abstract An exact analysis of frictional contact of anisotropic piezoelectric materials indented by a rigid flat
or semi-parabolic stamp is conducted. Fundamental solutions that can lead to the real values of physical quanti-
ties are detailed for each eigenvalue distribution. The complicated mixed boundary value problems are reduced
into a singular integral equation of the second kind in terms of the unknown surface contact stress beneath
the stamp. Employing excellent properties of Jacobi Polynomials, the exact solution of the reduced second
kind singular integral equation can be obtained. Exact and explicit expressions of various surface stresses and
electric displacement are given in terms of elementary functions. Relationships between the applied load and
contact area are derived, and stress intensity factors at stamp edges are given. Numerical results are presented
to show the effects of the friction coefficient on various surface stresses and electric displacement. The present
investigation could provide a scientific basis for the theoretical and experimental test of contact behaviors of
anisotropic piezoelectric materials.

Keywords Frictional contact · Anisotropic piezoelectric materials · Rigid stamp · Singular integral equation ·
Exact solutions

1 Introduction

Piezoelectric materials can deform when subjected to an electric field and, conversely, they generate electric
charge when subjected to a mechanical loading (Sosa and Castro [19]). Due to their coupling electromechanical
properties, piezoelectric materials are widely used in sensors and actuators in the field of smart materials and
structures. A lot of theoretical studies on piezoelectric materials have been done, e.g. Ding et al. [3–5].

However, subjected to a highly localized loading exerted by a rigid body, piezoelectric materials could lose
their serviceability. Thus, contact problems of piezoelectric materials have drawn much attention of research-
ers. Matysiak [15] investigated contact over a piezoelectro-elastic half-space indented by a rigid conducting
stamp. Podilchuk and Tkachenko [16] obtained the explicit solution of the problem of a rigid stamp with a
semi-parabolic cross-section and flat base pressed into an elastic piezoelectric ceramic half-space. Giannako-
poulos and Suresh [8] presented a general theory for the axisymmetric indentation of piezoelectric solids within
the contexts of conducting and insulting stamps. Chen [1] conducted a contact analysis for a three-dimensional
transversely isotropic piezoelectric half-space. Ramirez and Heyliger [18] applied the local/global stiffness
matrix framework to investigate the contact problem with piezoelectric materials exhibiting hexagonal sym-
metry, which generate only real eigenvalues. Later, Ramirez [17] used the same approach to investigate the
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contact problem with piezoelectric materials, which can generate complex eigenvalues. Wang and Han [22]
gave exact solutions of the axisymmetric contact problem of a piezoelectric layer with a circular indenter on
its surface. Recently, Wang et al. [23] investigated the contact of a piezoelectric layer with a finite thickness
indented by insulting or conducting stamps on its surface, in which thickness effect on contact behavior was
addressed. All above-mentioned contact problems involving piezoelectric materials were smooth.

Frictional shear stress may arise inside the contact region between rigid stamp and piezoelectric materials.
Thus, some researchers devoted to frictional contact problems of piezoelectric materials. For example, Kara-
petian et al. [12] conducted nanoelectromechanics analysis of frictional piezoelectric indentation. Makagon
et al. [14] addressed the indentation and frictional sliding of spherical and conical stamps into piezoelectric
half-space. Contact problems of inhomogeneous piezoelectric materials were also concerned. For example,
Ke et al. [13] considered the frictional contact of the inhomogeneous piezoelectric layered half-plane.

All the contact problems mentioned above were about transversely isotropic piezoelectric materials. How-
ever, piezoelectric materials are naturally anisotropic. Therefore, the anisotropy of piezoelectric materials
should be considered. Relatively few discussions have been devoted to contact problems of anisotropic pie-
zoelectric materials. Employing Stroh’s formalism, Chung and Ting [2] studied the problems of an angularly
inhomogeneous anisotropic piezoelectric materials subjected to a line force, line charge, and line dislocation at
the center of the material. Fan et al. [7] used a Stroh formalism approach to solve the two-dimensional contact
problem of a piezoelectric half-plane and obtained solutions with loads acting on the boundary of an aniso-
tropic piezoelectric half-plane. To the authors’ knowledge, the exact solution of the frictional contact problem
of anisotropic piezoelectric materials subjected to a rigid stamp has not been reported due to its complexity.

In the present paper, an exact analysis of frictional contact of anisotropic piezoelectric materials under a
rigid stamp, which possesses a flat or semi-parabolic profile, is conducted. For the commercially available
anisotropic piezoelectric materials, there are three cases of eigenvalue distribution. For each case, fundamental
solutions that can lead to real values of physical quantities are derived. The titled problem is reduced into a
second kind singular integral equation, which can be solved exactly by using excellent properties of Jacobi
Polynomials. Explicit expressions of various surface stresses and electric displacement are given in elemen-
tary functions for either a flat stamp or a semi-parabolic stamp. Relationships between the applied mechanical
loading and the contact area are presented, and stress intensity factors at stamp edges are defined. Figures
are plotted to show the influences of the friction coefficient on various surface stresses and electric displace-
ment. The present results could provide a theoretical basis for contact behaviors of anisotropic piezoelectric
materials.

2 Basic equations

To illustrate the problem considered in this study, Fig. 1 shows the indentation problem of a semi-finite
anisotropic piezoelectric material under a rigid stamp, which possesses a flat or semi-parabolic profile. The
anisotropic piezoelectric materials, placed in rectangular coordinates, are poled along the positive z axis. It is
modeled that the stamp and anisotropic piezoelectric materials are in relative motion, that is,

Q = μ f · P

where μ f is the coefficient of friction, which is a constant inside the contact area; P and Q are the resultant
normal and tangential forces, respectively.

For anisotropic piezoelectric materials, the coupled constitutive equations are given as

σi j = Ci jklεkl + ei jkφ,k (1)

Di = eiklεkl− ∈ik φ,k (2)

where σi j is stress component, Di is electric displacement component, φ represents the electric potential,
and Ci jkl , eikl , and ∈ik stand for the elastic coefficients, piezoelectric coefficients, and dielectric coefficients,
respectively. The subscript after a comma represents partial differentiation. The strain εkl is given by

εkl = 1

2

(
uk,l + ul,k

)
(3)

where ui is displacement components.
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Fig. 1 Geometry of the frictional contact problem of anisotropic piezoelectric materials indented by: a a flat stamp, b a semi-
parabolic stamp

The equations of equilibrium and Maxwell’s equation without generalized body force are given as follows:

σi j, j = 0 (4)

Di,i = 0 (5)

In the present study, since sliding contact model is assumed, Eq. (5) is of static state and relative velocity does
not appear.

For a two-dimensional y-independent problem, a generalized deformation field is expressed as

u = u1(x, z), v = u2(x, z), w = u3(x, z), φ = φ(x, z)

Inserting constitution Eqs. (1) and (2) into Eqs.(4) and (5) leads to the following governing equations for
the anisotropic piezoelectric materials in terms of elastic displacements and electric potential (Tiersten [20],
Ramirez and Heylinger [18], Ramirez [17]):

c11
∂2u

∂x2 + c55
∂2u

∂z2 + c16
∂2v

∂x2 + c45
∂2v

∂z2 + (c13 + c55)
∂2w

∂x∂z
+ (e31 + e15)

∂2φ

∂x∂z
= 0 (6)

c16
∂2u

∂x2 + c45
∂2u

∂z2 + c66
∂2v

∂x2 + c44
∂2v

∂z2 + (c36 + c45)
∂2w

∂x∂z
+ (e36 + e14)

∂2φ

∂x∂z
= 0 (7)

(c13 + c55)
∂2u

∂x∂z
+ (c36 + c45)

∂2v

∂x∂z
+ c55

∂2w

∂x2 + c33
∂2w

∂z2 + e15
∂2φ

∂x2 + e33
∂2φ

∂z2 = 0 (8)

(e15 + e31)
∂2u

∂x∂z
+ (e14 + e36)

∂2v

∂x∂z
+ e15

∂2w

∂x2 + e33
∂2w

∂z2 − ∈11
∂2φ

∂x2 − ∈33
∂2φ

∂z2 = 0 (9)

Note for convenience, Ci jkl and eikl in Eqs. (1) and (2) are replaced by cmn and emn in Eqs. (6–9) and thereafter,
respectively.
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3 Fundamental solutions

3.1 Eigenvalue analysis

The solutions of Eqs. (7–9) may be written in the following forms:

u (x, z) =
∞∫

−∞
Ucω (ω, z) e−iωx dω, v (x, z) =

∞∫

−∞
Vcω (ω, z) e−iωx dω

w (x, z) =
∞∫

−∞
Wcω (ω, z) e−iωx dω (10)

φ (x, z) =
∞∫

−∞
�cω (ω, z) e−iωx dω (11)

where i2 = −1.
Substituting Eqs. (10) and (11) into the piezoelectric governing equations (6–9) yields the following equa-

tions:

−ω2c11Ucω + c55
∂2Ucω

∂z2 − ω2c16Vcω + c45
∂2Vcω

∂z2 − iω(c13 + c55)
∂Wcω

∂z

−iω(e31 + e15)
∂�cω

∂z
= 0 (12)

−ω2c16Ucω + c45
∂2Ucω

∂z2 − ω2c66Vcω + c44
∂2Vcω

∂z2 − iω(c36 + c45)
∂Wcω

∂z

−iω(e36 + e14)
∂�cω

∂z
= 0 (13)

−iω(c13 + c55)
∂Ucω

∂z
− iω(c36 + c45)

∂Vcω

∂z
− ω2c55Wcω + c33

∂2Wcω

∂z2

−ω2e15�cω + e33
∂2�cω

∂z2 = 0 (14)

−iω(e15 + e31)
∂Ucω

∂z
− iω(e14 + e36)

∂Vcω

∂z
− ω2e15Wcω + e33

∂2Wcω

∂z2 + ω2 ∈11 �cω

− ∈33
∂2�cω

∂z2 = 0 (15)

The solutions of Eqs. (12–15) in the transformed domain are sought in the forms of

[
Ucω (ω, z) Vcω (ω, z) Wcω (ω, z) �cω (ω, z)

]T = [
U 0

cω V 0
cω W 0

cω �0
cω

]T
e|ω|ηz

where the superscript “T ” stands for the transposition of a vector, and unknown Fourier coefficients
U 0

cω, V 0
cω, W 0

cω, and �0
cω are related to the following equation:

G × [
U 0

cω V 0
cω W 0

cω �0
cω

]T = 0 (16)

with the matrix G = (gmn) (m, n = 1, 2, 3, 4) given in Appendix, and the eigenvalue η is the root of the
following characteristic equation:

det [G] = 0 (17)

For a semi-infinite piezoelectric material, the following conditions at infinity should be fulfilled:

u(x, z), v(x, z), w(x, z), φ(x, z) → 0,
√

x2 + z2 → ∞
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It deserves emphasizing that the solution is three-dimensional in the sense that the displacement component
v(x, z) along y axis is nonzero because of the anisotropy of the material. Thus, the characteristic equation Eq.
(17) is of eight-degree, and there are three cases of eigenvalue distribution available for semi-infinite anisotropic
piezoelectric materials. While for isotropic piezoelectric materials, the corresponding characteristic equation
is of six-degree and there are only two cases (Zhou and Lee [24]) of eigenvalue distribution available.

For the commercially available piezoelectric materials, the eigenvalues, which are usually distinctive, are
of the following forms:

– Case A: four pairs of opposite real roots

η1 = −η5 = o1, η2 = −η6 = o2, η3 = −η7 = o3, η4 = −η8 = o4 (18)

– Case B: two pairs of opposite real roots and two pairs of complex conjugate roots (no purely imaginary
roots)

η1 = −η5 = o1, η2 = −η6 = o2, η3 = −η7 = o3 + iσ3, η4 = −η8 = o3 − iσ3 (19)

– Case C: four pairs of complex conjugate roots (no purely imaginary roots)

η1 = −η5 = o1 + iσ1, η2 = −η6 = o1 − iσ1, η3 = −η7 = o3 + iσ3 η4 = −η8 = o3 − iσ3

(20)

In Eqs. (18–20) on > 0 and σn > 0(n = 1, 2, 3, 4) are real numbers.

3.2 Fundamental solutions

For each case of the eigenvalue distribution, the fundamental solutions [Ucω(ω, z)Vcω(ω, z)Wcω(ω, z)�cω
(ω, z)]T can be given.

– Case A: four pairs of opposite real roots

Ucω (ω, z) =
4∑

j=1

M j e
|ω|o j z, Vcω (ω, z) =

4∑

j=1

f (o j )M j e
|ω|o j z

Wcω (ω, z) =
4∑

j=1

−isgn(ω)g(o j )M j e
|ω|o j z (21)

�cω (ω, z) =
4∑

j=1

−isgn(ω)h(o j )M j e
|ω|o j z (22)

where known functions f (η), g(η) and h(η) are given as

f (η) = f0(η)/ fD(η), g(η) = g0(η)/ fD(η), h(η) = h0(η)/ fD(η) (23)

Here f0(η), fD(η), g0(η) and h0(η) are given in Appendix.
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– Case B: two pairs of opposite real roots and two pairs of complex conjugate roots (no purely imaginary
roots)

Ucω (ω, z) =
2∑

j=1

M j e
|ω|o j z + [cos(|ω| σ3z)M3 + sin(|ω| σ3z)M4] e|ω|o3z

Vcω (ω, z) =
2∑

j=1

f (o j )M j e
|ω|o j z + {[	V cos(|ω| σ3z) − 
V sin(|ω| σ3z)]

M3 + [
V cos(|ω| σ3z) + 	V sin(|ω| σ3z)] M4} e|ω|o3z (24)

Wcω (ω, z) =
2∑

j=1

[
−i · sgn(ω)g(o j )M j e

|ω|o j z
]

− i · sgn(ω)

{[	W cos(|ω| σ3z) − 
W sin(|ω| σ3z)] M3 + [
W cos(|ω| σ3z)

+ 	W sin(|ω| σ3z)] M4} e|ω|o3z

�cω (ω, z) =
2∑

j=1

[
−i · sgn(ω)h(o j )M j e

|ω|o j z
]

− i · sgn(ω) {[	� cos(|ω| σ3z) − 
� sin(|ω| σ3z)] M3

+ [
� cos(|ω| σ3z) + 	� sin(|ω| σ3z)] M4} e|ω|o3z (25)

where

	V = Re [ f (η3)] ,
V = Im [ f (η3)] , 	W = Re [g (η3)] ,
W = Im [g (η3)]

	� = Re [h (η3)] , 
� = Im [h (η3)] , η3 = o3 + iσ3

Here, Re[] and Im[] stand for real part and imaginary part, respectively.
– Case C: four pairs of complex conjugate roots (no purely imaginary roots)

Ucω (ω, z) =
2∑

j=1

[
cos(|ω| σ2 j−1z)M2 j−1 + sin(|ω| σ2 j−1z)M2 j

]
e|ω|o2 j−1z

Vcω (ω, z) =
2∑

j=1

{[
	

( j)
V cos(|ω| σ2 j−1z) − 


( j)
V sin(|ω| σ2 j−1z)

]
M2 j−1

+
[



( j)
V cos(|ω| σ2 j−1z) + 	

( j)
V sin(|ω| σ2 j−1z)

]
M2 j

}
e|ω|o2 j−1z (26)

Wcω (ω, z) =
2∑

j=1

−i · sgn(ω)
{[

	
( j)
W cos(|ω| σ2 j−1z) − 


( j)
W sin(|ω| σ2 j−1z)

]
M2 j−1

+
[



( j)
W cos(|ω| σ2 j−1z) + 	

( j)
W sin(|ω| σ2 j−1z)

]
M2 j

}
e|ω|o2 j−1z

�cω (ω, z) =
2∑

j=1

−i · sgn(ω)
{[

	
( j)
� cos(|ω| σ2 j−1z) − 


( j)
� sin(|ω| σ2 j−1z)

]
M2 j−1

+
[



( j)
� cos(|ω| σ2 j−1z) + 	

( j)
� sin(|ω| σ2 j−1z)

]
M2 j

}
e|ω|o2 j−1z (27)

where

	
( j)
V = Re

[
f
(
η2 j−1

)]
, 


( j)
V = Im

[
f
(
η2 j−1

)]
, 	

( j)
W = Re

[
g
(
η2 j−1

)]



( j)
W = Im

[
g
(
η2 j−1

)]
, 	

( j)
� = Re

[
h
(
η2 j−1

)]
, 


( j)
� = Im

[
h
(
η2 j−1

)]
, j = 1, 2
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In Eqs. (21), (22) and (24–27), M j ( j = 1, 2, 3, 4) are unknown functions to be determined from
boundary conditions.

3.3 Expressions of physical quantities

Considering Eqs. (21), (22), (24–27), and substituting Eqs. (10) and (11) into Eqs. (1) and (2) yield the following
expressions of stresses and electric displacement:

σxx =
∞∫

−∞

4∑

j=1

|ω| �(s)
0 j (ω, z)M j (ω)e−iωx dω

σzz =
∞∫

−∞

4∑

j=1

|ω| �(s)
1 j (ω, z)M j (ω)e−iωx dω

σxz =
∞∫

−∞

4∑

j=1

|ω| �(s)
2 j (ω, z)M j (ω)e−iωx dω

σyz =
∞∫

−∞

4∑

j=1

|ω| �(s)
3 j (ω, z)M j (ω)e−iωx dω (28)

Dx =
∞∫

−∞

4∑

j=1

|ω| �(e)
0 j (ω, z)M j (ω)e−iωx dω

Dz =
∞∫

−∞

4∑

j=1

|ω| �(e)
1 j (ω, z)M j (ω)e−iωx dω (29)

where known functions �
(s)
mj (ω, z)(m = 0, 1, 2, 3, j = 1, 2, 3, 4) and �

(e)
nj (ω, z)(n = 0, 1, j = 1, 2, 3, 4) are

given in Appendix.

3.4 Boundary conditions

The vertical displacement inside the contact area is denoted as w0(x), which is known a priori. The surface
contact stress p(x) and surface shear stress q(x) are unknown inside the contact area. Outside the contact area,
the stress is free. The total force along the z axis in the contact area is equal to the indentation force P .

w(x, 0) = w0(x), −a < x < b (30)
σzz(x, 0) = −p(x), −a < x < b (31)
σzz(x, 0) = 0, x < −a or x > b (32)
σxz(x, 0) = −q(x), −a < x < b (33)
σxz(x, 0) = 0, x < −a or x > b (34)
σyz(x, 0) = 0, |x | < +∞ (35)

b∫

−a

p(x)dx = P (36)

Coulomb friction condition is modeled inside the contact area, and then the following condition should be
satisfied

σxz(x, 0) = μ f σzz(x, 0), −a < x < b (37)
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For a perfectly insulating stamp, the electric boundary condition is given as follows:

Dz(x, 0) = 0, |x | < ∞ (38)

Considering the boundary conditions (31–35), (37), and (38) yields the following expressions for unknown
functions M j ( j = 1, 2, 3, 4):

M j = (−1) j

|ω|H
[
F f (ω) H1 j − G f (ω) H2 j

]
, j = 1, 2, 3, 4 (39)

where H is the determinant and Hi j (i, j = 1, 2, 3, 4) are the cofactors of the following matrix:

MH =

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎣

�
(s)
11 (ω, 0) �

(s)
12 (ω, 0) �

(s)
13 (ω, 0) �

(s)
14 (ω, 0)

�
(s)
21 (ω, 0) �

(s)
22 (ω, 0) �

(s)
23 (ω, 0) �

(s)
24 (ω, 0)

�
(s)
31 (ω, 0) �

(s)
32 (ω, 0) �

(s)
33 (ω, 0) �

(s)
34 (ω, 0)

�
(e)
11 (ω, 0) �

(e)
12 (ω, 0) �

(e)
13 (ω, 0) �

(e)
14 (ω, 0)

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎦

and functions F f and G f are given as follows:

F f (ω) = 1

2π

b∫

−a

p(ξ)eiωξ dξ, G f (ω) = 1

2π

b∫

−a

q(ξ)eiωξ dξ

4 Integral equations

Inspecting the third equation of Eqs. (21), (24), (26), and (39), and differentiating the third equation of Eq.
(10) lead to the following equation:

∂w (x, 0)

∂x
= 1

π

b∫

−a

∞∫

0

{L11 sin [ω (ξ − x)] p(ξ) + L12 cos [ω (ξ − x)] q(ξ)} dωdξ |x | < ∞

Due to their physical interest, the in-plane stress on the surface and in-plane electric displacement can also
be obtained as

σxx (x, 0) = 1

π

b∫

−a

∞∫

0

{L21 cos [ω (ξ − x)] p(ξ) + L22 sin [ω (ξ − x)] q(ξ)} dωdξ |x | < ∞

Dx (x, 0) = 1

π

b∫

−a

∞∫

0

{L31 sin [ω (ξ − x)] p(ξ) + L32 cos [ω (ξ − x)] q(ξ)} dωdξ |x | < ∞

where

L11 =
4∑

j=1

(−1) j� j (ω, 0)
H1 j

H
, L12 = i

4∑

j=1

(−1) j� j (ω, 0)
H2 j

H

L21 =
4∑

j=1

(−1) j�
(s)
0 j (ω, 0)

H1 j

H
, L22 = i

4∑

j=1

(−1) j+1�
(s)
0 j (ω, 0)

H2 j

H

L31 = i
4∑

j=1

(−1) j�
(e)
0 j (ω, 0)

H1 j

H
, L32 =

4∑

j=1

(−1) j+1�
(e)
0 j (ω, 0)

H2 j

H
(40)
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where � j (ω, 0)( j = 1, 2, 3, 4) are the values of � j (ω, z) ( j = 1, 2, 3, 4) at z = 0 and � j (ω, z)( j =
1, 2, 3, 4) are given in Appendix.

Considering the following relations:

∞∫

0

sin [ω (ξ − x)] dω = 1

ξ − x
,

∞∫

0

cos [ω (ξ − x)] dω = πδ(ξ − x)

where δ(·) is the Dirac delta function, and taking into account Eq. (37) produce the following second type
singular integral equation:

∂w (x, 0)

∂x
= L12μ f p(x) + 1

π

b∫

−a

L11

ξ − x
p(ξ)dξ, |x | < ∞ (41)

To complete the stated problem, the equilibrium condition (36) should be fulfilled. Based on the solution of
Eqs. (41) and (36), the in-plane stress and in-plane electric displacement on the surface can be determined as

σxx (x, 0) = L21 p(x) + 1

π

b∫

−a

L22

ξ − x
μ f p(ξ)dξ, |x | < ∞ (42)

Dx (x, 0) = L32μ f p(x) + 1

π

b∫

−a

L31

ξ − x
p(ξ)dξ, |x | < ∞ (43)

Note that in Eqs. (41–43) p(x) = q(x) = 0 for x /∈ [−a, b] , and they are the extensions of Galin’s equations
[11] for classical elasticity to piezoelectric media.

5 Exact solutions for a frictional flat stamp

The indentation depth appearing in Eq. (30) is of a constant value inside the contact region for a flat stamp,
then

w0 (x) = constant,
∂w0 (x)

∂x
= 0

Noting b = a and introducing the following normalized quantities:

x = as, ξ = aζ, −a < (x, ξ) < a, −1 < (s, ζ ) < 1 p(x) = ϕ(s) (44)

then Eqs. (41) and (36) can be written as

L12 · μ f · ϕ(s) + 1

π

1∫

−1

L11

ζ − s
ϕ(ζ )dζ = 0, |s| < 1 (45)

1∫

−1

ϕ(ζ )dζ = P

a
(46)

The solution to Eqs. (45) and (46) may be expressed as the following form in terms of Jacobi Polynomials
(Erdogan [6]):

ϕ(ζ ) = �(ζ)

∞∑

j=0

c j P(τ,ϑ)
j (ζ ), |ζ | < 1 (47)
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where c j ( j ≥ 0) is unknown coefficient to be determined, and �(ζ) is the weight function and is given as

�(ζ) = (1 − ζ )τ (1 + ζ )ϑ , |ζ | < 1 (48)

where P(τ,ϑ)
j (·) are Jacobi Polynomials related to the weight function �(·).

The index of the integral equation is defined by

κ0 = −(τ + ϑ) = 1

Due to the physics of the problem for the flat stamp, τ and ϑ are given as

ς > 0 : τ = − ε
π
, ϑ = ε

π
− 1

ς = 0 : τ = − 1
2 , ϑ = − 1

2

ς < 0 : τ = ε
π

− 1, ϑ = − ε
π

where

ς = μ f L12
L11

, tan ε =
∣∣∣ 1
ς

∣∣∣ (49)

Considering the following property of Jacobi Polynomials:

μ f L12�(s)P(τ,ϑ)
j (s) + L11

π

1∫

−1

�(ζ)P(τ,ϑ)
j (ζ )

ζ − s
ϕ(ζ )dζ = − L11

2κ0 sin(πτ)
P(−τ,−ϑ)

j−1 (s), |s| < 1 (50)

and inserting Eq. (47) into Eq. (45) lead to the following expression:

∞∑
j=1

−L11
2 sin(πτ)

P(−τ,−ϑ)
j−1 (s)c j = 0, |s| < 1

From the linear independence of the Jacobi Polynomials P(τ,ϑ)
j (·), one may see Eq. (47) has only one

nonzero coefficient c0. Then, Eq. (47) becomes

ϕ(ζ ) = c0(1 − ζ )τ (1 + ζ )ϑ , |ζ | < 1 (51)

Substituting Eq. (51) into Eq. (46) and using the relation (here τ + ϑ = −1)

1∫

−1

�(ζ)dζ = 2τ+ϑ+1	(τ + 1)	(ϑ + 1)

	(τ + ϑ + 2)
(52)

one can determine the coefficient c0 as follows:

c0 = −2σ0 sin(πτ)

π
(53)

where

σ0 = P

2a

Considering Eqs. (31), (44), (51), and (53), one can obtain the contact stress distribution

σzz(x, 0) = 2σ0 sin(πτ)
π

(1 − x
a )τ (1 + x

a )ϑ , |x | < a (54)
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With the consideration of Eq. (32), Eqs. (54) and (55) can be rewritten as

σxx (x, 0) =

⎧
⎪⎪⎨

⎪⎪⎩

L21 p(x) + μ f
π

a∫

0

L22
ξ−x p(ξ)dξ, |x | > a

μ f
π

a∫

0

L22
ξ−x p(ξ)dξ, |x | < a

(55)

Dx (x, 0) =

⎧
⎪⎪⎨

⎪⎪⎩

L32μ f p(x) + 1
π

a∫

0

L31
ξ−x p(ξ)dξ, |x | > a

1
π

a∫

0

L31
ξ−x p(ξ)dξ, |x | < a

(56)

Considering Eqs. (32), (42), and (43), one can rewrite Eqs. (55) and (56) in the following closed-form
(Guler and Erdogan [9]):

σxx (x, 0) = −2σ0 sin(πτ)

π

{
L21(1 − x

a )τ (1 + x
a )ϑ + L22·μ f

π
HL(x), |x | < a

L22·μ f
π

HL(x), |x | > a
(57)

Dx (x, 0) = −2σ0 sin(πτ)

π

{
L32μ f (1 − x

a )τ (1 + x
a )ϑ + L31

π
HL(x), |x | < a

L31
π

HL(x), |x | > a
(58)

In Eqs. (57) and (58), HL(x) is given as

HL (x) = π

sin(πτ)

⎧
⎨

⎩

−(1 − x
a )τ (− x

a − 1)ϑ , x < −a
(1 − x

a )τ (1 + x
a )ϑ cos(πτ), −a < x < a

( x
a − 1)τ (1 + x

a )ϑ , x > a

The mode I stress intensity factor at the edges of the flat stamp can be defined as

FI (a) = lim
x→a

p(x)

2ϑ
(a − x)−τ = c0

aτ
(59)

FI (−a) = lim
x→−a

p(x)

2τ
(a + x)−ϑ = c0

aϑ
(60)

The friction coefficient μ f = 0 leads to τ = ϑ = −1/2, then Eqs. (59) and (60) become

FI (a) = FI (−a) = c0
√

a = P

π
√

a
(61)

Especially, when friction coefficient μ f = 0,, the surface contact stress (54) becomes

σzz(x, 0) = − P
π

√
a2 − x2, |x | < a

This formula, dependent on applied load P , is just the same as the result for isotropic piezoelectric materials
given by Wang et al. [23] (note in [23] P0 = P/2), which justifies our derivation.

6 Exact solutions for a frictional semi-parabolic stamp

The profile for a semi-parabolic stamp is given by

w0(x) = −C0 + x2

2R
,
∂w0(x)

∂x
= x

R
, 0 < x < b

Noting a = 0 and defining

x = b

2
(s + 1) , ξ = b

2
(ζ + 1) , p(x) = ϕ(s) (62)
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then Eqs. (41) and (36) can be written as

L12 · μ f · ϕ(s) + 1

π

1∫

−1

L11

ζ − s
ϕ(ζ )dζ = b

2R
g(s), |s| < 1 (63)

1∫

−1

ϕ(ζ )dζ = 2P

b
(64)

where

g(s) = s + 1

The solution of Eqs. (63) and (64) may be assumed as the same form given in Eq. (47) with eight function
�(·) given in Eq. (48).

The index of the semi-parabolic stamp is defined as

κ0 = −(τ + ϑ) = 0

where τ and ϑ are given as follows:

ς > 0 : τ = 1 − ε
π
, ϑ = −1 + ε

π
,

ς = 0 : τ = 1
2 , ϑ = − 1

2

ς < 0 : τ = ε
π
, ϑ = − ε

π

where ε is the same as that given in Eq. (49).
Inserting Eq. (47) into Eq. (63) and taking account into relation Eq. (52) produce the following expression:

∞∑
j=1

−L11
sin(πτ)

P(−τ,−ϑ)
j−1 (s)c j = b

2R g(s), |s| < 1 (65)

The function g(s) can be expanded into a series of Jacobi Polynomials P(−τ,−ϑ)
j (·)

g(s) = s + 1 = P(−τ,−ϑ)
1 (s) + (1 + τ)P(−τ,−ϑ)

0 (s) (66)

Comparing the right-hand side of Eq. (65) and the left-hand side of Eq. (66), one can obtain nonzero
coefficients as follows:

c0 = b(1+τ)
2R sin(πτ), c1 = b

2R sin(πτ)

Thus, the solution of the stated problem can be obtained as

ϕ(ζ ) = �(ζ)

1∑

j=0

P(τ,ϑ)
j (ζ ) = b(1 + 2τ + ζ )

2R
sin(πτ)(1 − ζ )τ (1 + ζ )ϑ , |ζ | < 1 (67)

One edge of the present semi-parabolic stamp is unknown a priori, which can be determined by consid-
ering the equilibrium equation. Employing the orthogonality of the Jacobi Polynomials and relation (52) and
substituting Eq. (67) into Eq. (64) yield

P = π · τ · (1 + τ)

2R
b2 (68)

Eq. (68) reveals the relationship between the applied load and contact area.
The contact stress distribution in physical coordinates can be obtained by using Eqs. (31), (62), and (67)

σzz(x) = −b sin (πτ)

R

(
b − x

x

)τ (
τ + x

b

)
, 0 < x < b (69)
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In this case, the in-plane stress on the surface and in-plane electric displacement can be rewritten as

σxx (x, 0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L21 p(x) + μ f
π

b∫

0

L22
ξ−x p(ξ)dξ, 0 < x < b

μ f
π

b∫

0

L22
ξ−x p(ξ)dξ, x < 0, x > b

(70)

Dx (x, 0) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L32μ f p(x) + 1
π

b∫

0

L31
ξ−x p(ξ)dξ, 0 < x < b

1
π

b∫

0

L31
ξ−x p(ξ)dξ, x < 0, x > b

(71)

Considering Eqs. (62) and (67), one can rewrite Eqs. (70) and (71) in the following closed-form (Guler
and Erdogan [10]) based on Eq. (69):

σxx (x, 0) = b

R

⎧
⎪⎪⎨

⎪⎪⎩

L21 sin(πτ)( b−x
x )τ (τ + x

b ) + b
R

L22·μ f
π

1∑

n=0
Hn(x), 0 < x < b

b
R

L22·μ f
π

1∑

n=0
Hn(x), x < 0, x > b

(72)

Dx (x, 0) = b

R

⎧
⎪⎪⎨

⎪⎪⎩

L32 · μ f sin(πτ)( b−x
x )τ (τ + x

b ) + b
R

L31
π

1∑

n=0
Hn(x), 0 < x < b

b
R

L31
π

1∑

n=0
Hn(x), x < 0, x > b

(73)

In Eqs. (72) and (73), Hn(x)(n = 1, 2) are

H0 (x) = π

sin(πτ)

⎧
⎨

⎩

− ( x−b
x

)τ − 1, x < 0( b−x
x

)τ
cos(πτ) − 1, 0 < x < b( x−b

x

)τ − 1, x > b

H1(x) = P(τ,ϑ)
1

(
2x

b
− 1

)
H0(x) + 2πτ

sin(πτ)

The mode I stress intensity factor at the edge (x = 0) of the semi-parabolic stamp can be defined as

FI (0) = lim
x→0

xτ p(x) = bτ+1 · τ · sin(πτ)

R
(74)

The friction coefficient μ f = 0 leads to τ = −ϑ = 1/2, then Eq. (74) becomes

FI (0) = b
3
2

2R

7 Numerical results and discussions

For the foregoing analysis, the piezoelectric ceramic P Z T −5A (Vel and Batra [21]) is considered. The elastic
constants are c11 = 99.201×109 N/m2, c13 = 50.778×109 N/m2, c16 = 99.201×109 N/m2, c33 = 86.856×
109 N/m2, c36 = 50.778 × 109 N/m2, c44 = 21.100 × 109 N/m2, c45 = 54.016 × 109 N/m2, c55 = 21.100 ×
109 N/m2, and c66 = 22.593 × 109 N/m2. The nonzero piezoelectric constants are e31 = −7.209 C/m2, e33 =
15.118 C/m2, e36 = −7.029 C/m2, e14 = 12.322 C/m2 and e15 = 12.322 C/m2. The dielectric constants are
∈11= 15.3 × 10−9 F/m, and ∈33= 15 × 10−9 F/m. Here, since the coefficients c16, c36, c45, e14, and e36 could
not be found in the open literature, the values are assumed.
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Fig. 2 The influence of the friction coefficient μ f on the powers of stress singularity under a flat stamp
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Fig. 3 The influence of the friction coefficient μ f on the normalized stress intensity factor under a flat stamp

7.1 Contact behaviors under the frictional flat stamp

Figure 2 shows the variation of powers of stress singularity at the leading (x = −a) and the trailing (x = a)
edges of the flat stamp with the friction coefficient μ f changing. It can be seen |τ | > |ϑ | , which illustrates
the singularity at the trailing edge of the flat stamp is stronger than that at the trailing edge. Therefore, greater
stress concentration exists around the trailing edge. As μ f → 0, ϑ → − 1

2 , and τ → − 1
2 giving the traditional

singularity at the flat stamp edges. The magnitude of τ increases and τ → −1 when μ f becomes greater,
while that of ϑ decreases and ϑ → 0.

Figure 3 shows the effects of the friction coefficient μ f on the normalized stress intensity factors FI (1)/F01

and FI (−1)/F02, where F01 = Paϑ and F02 = Paτ . It can be seen that after the normalization, the normal-
ized stress intensity factors are the same at the trailing edge and the leading edge. Figure 3 also demonstrates
that the normalized stress intensity factors increase when the sliding contact interface between the stamp and
piezoelectric materials becomes less frictional.

Figures 4, 5, and 6 show that the near-edge response that the severe stress concentrations exist around
edges of the flat stamp. The magnitudes of all the surface stresses, that is, σzz(x, 0)/σ0, σxz(x, 0)/σ0, and
σxx (x, 0)/σ0 (σ0 = P/2a) at the trailing edge are greater than those at the leading edge.

In addition, Fig. 4 depicts that the surface contact stress σzz(x, 0)/σ0 is compressive beneath the stamp.
The curve when the friction coefficient μ f = 0 denoting frictionless contact is symmetric, which shows the
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Fig. 4 The influence of the friction coefficient μ f on the surface contact stress distribution σzz(x, 0)/σ0 under a flat stamp
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Fig. 5 The influence of the friction coefficient μ f on the surface shear stress distribution σxz(x, 0)/σ0 under a flat stamp
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Fig. 7 The influence of the friction coefficient μ f on the surface electric displacement distribution Dx (x, 0)/D0 under a flat
stamp

validity of the present program. With the sliding contact interface between the stamp and piezoelectric materi-
als becoming more frictional, the surface contact stress intensifies at the trailing edge of the flat stamp, while
becomes weaker at the leading edge of the flat stamp.

Figure 5 also illustrates the surface shear stress σxz(x, 0)/σ0 is compressive when μ f > 0. The magnitude
of σxz(x, 0)/σ0 enhances with the increasing of friction coefficient.

Figure 6 also depicts the in-plane surface stress σxx (x, 0)/σ0 is unbounded and discontinuous at both the
trailing edge and the leading edge of the flat stamp. The in-plane surface stress intensifies at the trailing edge
of the flat stamp, while becomes weaker at the leading edge of the flat stamp with the increasing of friction
coefficient. The in-plane surface stress becomes more compressive behind the leading edge (x < −a) , while
tends to more tensile before the trailing edge (x > a) with the contact becoming more frictional.

Figure 7 shows the distribution of the surface electric displacement Dx (x, 0)/D0 under a flat stamp, where
the magnitude of D0 is P/2a. It can be seen that the surface electric displacement is unbounded and discon-
tinuous at both edges of the flat stamp. The surface electric displacement is positive when x < −a, while
becomes negative when either |x | < a or x > a. As the contact becomes more frictional, the magnitude of the
surface electric displacement decreases when x < −a, while increases when either |x | < a or x > a.

7.2 Contact behaviors under the frictional semi-parabolic stamp

Figure 8 shows the variation of powers of stress singularity at the edges of the semi-parabolic stamp with
the friction coefficient μ f changing. It can be seen that τ is positive and ϑ is negative due to the physics of
the problem. As μ f → 0, the singularities τ → 1

2 and ϑ → − 1
2 . With the friction coefficient μ f becoming

greater, the singularities τ → 0 and ϑ → 0.
Figures 9, 10, 11, and 12 show the influences of the friction coefficient μ f on various distributions of

surface stresses σzz(x, 0)/σ0, σxz(x, 0)/σ0, and σxx (x, 0)/σ0 (σ0 = P/R), and the distribution of the surface
electric displacement Dx (x, 0)/D0 (the magnitude of D0 is P/R) under a semi-parabolic stamp. It can be seen
that the contact region becomes wider with the sliding contact interface between the stamp and piezoelectric
materials becoming more frictional.

In addition, Figures 9 and 10 demonstrate that the surface contact stress σzz(x, 0)/σ0 and surface shear
stress σxz(x, 0)/σ0 are unbounded at the leading edge (x = 0) and are equal to zero at another edge (x = b).
With the friction coefficient μ f becoming greater, the surface contact stress σzz(x, 0)/σ0 at the leading edge
weakens, while surface shear stress σxz(x, 0)/σ0 intensifies.

Figure 11 shows the surface in-plane stress σxx (x, 0)/σ0 is unbounded and discontinuous at the leading
edge (x = 0). There is a tensile spike at another edge (x = b) for the surface in-plane stress σxx (x, 0)/σ0. As
the friction coefficient μ f increases, the surface in-plane stress σxx (x, 0)/σ0 at the leading edge weakens.



Frictional contact of anisotropic piezoelectric materials 89

0 2 4 6 8 10
-0.50

-0.25

0.00

0.25

0.50

τ
ϑ

P
ow

er
s 

of
 s

tr
es

s 
si

ng
ul

ar
it

y

μ
f

Fig. 8 The influence of the friction coefficient μ f on the powers of stress singularity under a semi-parabolic stamp

-15

-10

-5

0

μ
f
=0

μ
f
=0.3

μ
f
=0.6

μ
f
=0.9

σ zz
 (

x,
0)

/σ
0

x/R
0.00 0.03 0.06 0.09 0.12 0.15

Fig. 9 The influence of the friction coefficient μ f on the surface contact stress distribution σzz(x, 0)/σ0 under a semi-parabolic
stamp

-12

-9

-6

-3

0

μ
f
=0

μ
f
=0.3

μ
f
=0.6

μ
f
=0.9

σ xz
 (

x,
0)

/σ
0

x/R
0.00 0.03 0.06 0.09 0.12 0.15

Fig. 10 The influence of the friction coefficient μ f on the surface shear stress distribution σxz(x, 0)/σ0 under a semi-parabolic
stamp



90 Y.-T. Zhou, K. Y. Lee

-20

-15

-10

-5

0

5

10

μ
f
=0

μ
f
=0.3

μ
f
=0.6

μ
f
=0.9

σ xx
 (

x,
0)

/σ
0

x/R

-0.2 -0.1 0.0 0.1 0.2 0.3

Fig. 11 The influence of the friction coefficient μ f on the surface in-plane distribution σxx (x, 0)/σ0 under a semi-parabolic
stamp

-25

-20

-15

-10

-5

0

5

10

15

μ
f
=0

μ
f
=0.3

μ
f
=0.6

μ
f
=0.9

D
x (

x,
0)

/D
0

x/R
-0.2 -0.1 0.0 0.1 0.2 0.3

Fig. 12 The influence of the friction coefficient μ f on the surface electric displacement distribution Dx (x, 0)/D0 under a
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Figure 12 depicts the surface electric displacement Dx (x, 0)/D0 is unbounded and discontinuous at the
leading edge (x = 0). The surface electric displacement Dx (x, 0)/D0 at the leading edge intensifies with
enhancing the friction coefficient μ f .

8 Conclusions

The present paper conducts an exact analysis of frictional contact of anisotropic piezoelectric materials under a
rigid stamp, which possesses a flat or semi-parabolic foundation. There are three cases of eigenvalue distribu-
tion for the commercially available anisotropic piezoelectric materials. For each case, fundamental solutions
that can lead to real values of physical quantities are given. The stated problems can be reduced into a singular
integral equation of the second kind, which can be solved exactly. For either a flat stamp or a semi-parabolic
stamp, explicit expressions of various surface stresses and electric displacement are derived. Moreover, rela-
tionships between the applied load and contact area are obtained and stress intensity factors at stamp edges are
given. Finally, figures are plotted to clearly illustrate the effects of the friction coefficient on various surface
stresses and electric displacement.
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The present study could provide a scientific basis for the theoretical and experimental test of contact
behaviors of anisotropic piezoelectric materials.
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Appendix

1. The matrix G = (gmn) (m, n = 1, 2, 3, 4) appearing in Eq. (16)

gmn = gnm, m, n = 1, 2, 3, 4

g11 = c55η
2 − c11, g12 = c45η

2 − c16, g13 = −i · sgn(ω) · g0
13, g14 = −i · sgn(ω) · g0

14

g22 = c44η
2 − c66, g23 = −i · sgn(ω) · g0

23, g24 = −i · sgn(ω) · g0
24

g33 = c33η
2 − c55, g34 = e33η

2 − e15, g44 =∈33 η2− ∈11

where sgn(·) denotes the sign function, and g0
13, g0

14, g0
23 and g0

24 are given as

g0
13 = (c13 + c55) η, g0

14 = (e31 + e15) η, g0
23 = (c36 + c45) η, g0

24 = (e36 + e14) η

Here

gmn = gnm, g0
mn = g0

nm

2. Expressions of f0(η), fD(η), g0(η) and h0(η) appearing in Eq. (23)

f0(η) = g11g0
23g34 − g11g0

24g33 − g21g0
13g34 + g21g0

14g33 − g0
31g0

13g0
24 + g0

31g0
14g0

23

fD(η) = −g12g0
23g34 + g12g0

24g33 + g22g0
13g34 − g22g0

14g33 + g0
32g0

13g0
24 − g0

32g0
14g0

23

g0(η) = −g12g21g34 − g12g0
24g0

31 + g22g11g34 + g22g0
14g0

31 + g0
32g11g0

24 − g0
32g0

14g21

h0(η) = g12g21g0
31 + g12g21g33 − g22g0

13g0
31 − g22g11g33 + g0

32g0
13g21 − g0

32g11g0
23

3. Expressions of �
(s)
mj (ω, z) (m = 0, 1, 2, 3, j = 1, 2, 3, 4) and �

(e)
nj (ω, z) (n = 0, 1, j = 1, 2, 3, 4)

appearing in Eqs. (28) and (29)
For Case A

�
(s)
0 j (ω, z) = −i · sgn(ω)

[
c11 + c16 f (o j ) + c13o j g(o j ) + e31o j h(o j )

]
e|ω|o j z, j = 1, 2, 3, 4

�
(s)
1 j (ω, z) = −i · sgn(ω)

[
c13 + c36 f (o j ) + c33o j g(o j ) + e33o j h(o j )

]
e|ω|o j z, j = 1, 2, 3, 4

�
(s)
2 j (ω, z) = {

c55
[
o j − g(o j )

] + c45o j f (o j ) − e15h(o j )
}

e|ω|o j z, j = 1, 2, 3, 4

�
(s)
3 j (ω, z) = {

c45
[
o j − g(o j )

] + c44o j f (o j ) − e14h(o j )
}

e|ω|o j z, j = 1, 2, 3, 4

�
(e)
0 j (ω, z) = {

e15
[
o j − g(o j )

] + e14o j f (o j )+ ∈11 h(o j )
}

e|ω|o j z, j = 1, 2, 3, 4

�
(e)
1 j (ω, z) = −i · sgn(ω)

[
e31 + e36 f (o j ) + e33o j g(o j )− ∈33 o j h(o j )

]
e|ω|o j z, j = 1, 2, 3, 4

For Case B

�
(s)
0 j (ω, z) = −i · sgn(ω)

[
c11 + c16 f (o j ) + c13o j g(o j ) + e31o j h(o j )

]
e|ω|o j z, j = 1, 2

�
(s)
03 (ω, z) = −i · sgn(ω) {[c11 + c16	V + c13 (o3	W − σ3
W )

+ e31 (o3	� − σ3
�)] cos(|ω| σ3z) − [c16
V + c13 (o3
W + σ3	W )

+ e31 (o3
� + σ3	�)] sin(|ω| σ3z)} e|ω|o3z

�
(s)
04 (ω, z) = −i · sgn(ω) {[c16
V + c13 (o3
W + σ3	W )
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+ e31 (o3
� + σ3	�)] cos(|ω| σ3z) + [c11 + c16	V + c13 (o3	W − σ3
W )

+ e31 (o3	� − σ3
�)] sin(|ω| σ3z)} e|ω|o3z

�
(s)
1 j (ω, z) = −i · sgn(ω)

[
c13 + c36 f (o j ) + c33o j g(o j ) + e33o j h(o j )

]
e|ω|o j z, j = 1, 2

�
(s)
13 (ω, z) = −i · sgn(ω) {[c13 + c36	V + c33 (o3	W − σ3
W )

+ e33 (o3	� − σ3
�)] cos(|ω| σ3z) − [c36
V + c33 (o3
W + σ3	W )

+ e33 (o3
� + σ3	�)] sin(|ω| σ3z)} e|ω|o3z

�
(s)
14 (ω, z) = −i · sgn(ω) {[c36
V + c33 (o3
W + σ3	W )

+ e33 (o3
� + σ3	�)] cos(|ω| σ3z) + [c13 + c36	V + c33 (o3	W − σ3
W )

+ e33 (o3	� − σ3
�)] sin(|ω| σ3z)} e|ω|o3z

�
(s)
2 j (ω, z) = {

c55
[
o j − g(o j )

] + c45o j f (o j ) − e15h(o j )
}

e|ω|o j z, j = 1, 2

�
(s)
23 (ω, z) = {[c55 (o3 − 	W ) + c45 (o3	V − σ3
V ) − e15	�] cos(|ω| σ3z)

+ [c55 (−σ3 + 
W ) − c45 (σ3	V + o3
V ) + e15
�] sin(|ω| σ3z)} e|ω|o3z

�
(s)
24 (ω, z) = {[c55 (σ3 − 
W ) + c45 (σ3	V + o3
V ) − e15
�] cos(|ω| σ3z)

+ [c55 (o3 − 	W ) + c45 (o3	V − σ3
V ) − e15	�] sin(|ω| σ3z)} e|ω|o3z

�
(s)
3 j (ω, z) = {

c45
[
o j − g(o j )

] + c44o j f (o j ) − e14h(o j )
}

e|ω|o j z, j = 1, 2

�
(s)
33 (ω, z) = {[c45 (o3 − 	W ) + c44 (o3	V − σ3
V ) − e14	�] cos(|ω| σ3z)

+ [c45 (−σ3 + 
W ) − c44 (σ3	V + o3
V ) + e14
�] sin(|ω| σ3z)} e|ω|o3z

�
(s)
34 (ω, z) = {[c45 (σ3 − 
W ) + c44 (σ3	V + o3
V ) − e14
�] cos(|ω| σ3z)

+ [c45 (o3 − 	W ) + c44 (o3	V − σ3
V ) − e14	�] sin(|ω| σ3z)} e|ω|o3z

�
(e)
0 j (ω, z) = {

e15
[
o j − g(o j )

] + e14o j f (o j )+ ∈11 h(o j )
}

e|ω|o j z, j = 1, 2

�
(e)
03 (ω, z) = {[e15 (o3 − 	W ) + e14 (o3	V − σ3
V )+ ∈11 	�] cos(|ω| σ3z)

+ [e15 (−σ3 + 
W ) − e14 (σ3	V + o3
V )− ∈11 
�] sin(|ω| σ3z)} e|ω|o3z

�
(e)
04 (ω, z) = {[e15 (σ3 − 
W ) + e14 (σ3	V + o3
V )+ ∈11 
�] cos(|ω| σ3z)

+ [e15 (o3 − 	W ) + e14 (o3	V − σ3
V )+ ∈11 	�] sin(|ω| σ3z)} e|ω|o3z

�
(e)
1 j (ω, z) = −i · sgn(ω)

[
e31 + e36 f (o j ) + e33o j g(o j )− ∈33 o j h(o j )

]
e|ω|o j z, j = 1, 2

�
(e)
13 (ω, z) = −i · sgn(ω) {[e31 + e36	V + e33 (o3	W − σ3
W )

−∈33 (o3	� − σ3
�)] cos(|ω| σ3z) − [e36
V + e33 (o3
W + σ3	W )

− ∈33 (o3
� + σ3	�)] sin(|ω| σ3z)} e|ω|o3z

�
(e)
14 (ω, z) = −i · sgn(ω) {[[e36
V + e33 (o3
W + σ3	W )

−∈33 (o3
� + σ3	�)] cos(|ω| σ3z) + [e31 + e36	V + e33 (o3	W − σ3
W )

− ∈33 (o3	� − σ3
�)] sin(|ω| σ3z)} e|ω|o3z

For Case C

�
(s)
01 (ω, z) = −i · sgn(ω)

{[
c11 + c16	

(1)
V + c13

(
o1	

(1)
W − σ1


(1)
W

)

+ e31

(
o1	

(1)
� − σ1


(1)
�

)]
cos(|ω| σ1z) −

[
c16


(1)
V + c13

(
o1


(1)
W + σ1	

(1)
W

)

+ e31

(
o1


(1)
� + σ1	

(1)
�

)]
sin(|ω| σ1z)

}
e|ω|o1z

�
(s)
02 (ω, z) = −i · sgn(ω)

{[
c16


(1)
V + c13

(
o1


(1)
W + σ1	

(1)
W

)

+ e31

(
o1


(1)
� + σ1	

(1)
�

)]
cos(|ω| σ1z) +

[
c11 + c16	

(1)
V + c13

(
o1	

(1)
W − σ1


(1)
W

)
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+ e31

(
o1	

(1)
� − σ1


(1)
�

)]
sin(|ω| σ1z)

}
e|ω|o1z

�
(s)
03 (ω, z) = −i · sgn(ω)

{[
c11 + c16	

(2)
V + c13

(
o3	

(2)
W − σ3


(2)
W

)

+ e31

(
o3	

(2)
� − σ3


(2)
�

)]
cos(|ω| σ3z) −

[
c16


(2)
V + c13

(
o3


(2)
W + σ3	

(2)
W

)

+ e31

(
o3


(2)
� + σ3	

(2)
�

)]
sin(|ω| σ3z)

}
e|ω|o3z

�
(s)
04 (ω, z) = −i · sgn(ω)

{[
c16


(2)
V + c13

(
o3


(2)
W + σ3	

(2)
W

)

+ e31

(
o3


(2)
� + σ3	

(2)
�

)]
cos(|ω| σ3z) +

[
c11 + c16	

(2)
V + c13

(
o3	

(2)
W − σ3


(2)
W

)

+ e31

(
o3	

(2)
� − σ3


(2)
�

)]
sin(|ω| σ3z)

}
e|ω|o3z

�
(s)
11 (ω, z) = −i · sgn(ω)

{[
c13 + c36	

(1)
V + c33

(
o1	

(1)
W − σ1


(1)
W

)

+ e33

(
o1	

(1)
� − σ1


(1)
�

)]
cos(|ω| σ1z) −

[
c36


(1)
V + c33

(
o1


(1)
W + σ1	

(1)
W

)

+ e33

(
o1


(1)
� + σ1	

(1)
�

)]
sin(|ω| σ1z)

}
e|ω|o1z

�
(s)
12 (ω, z) = −i · sgn(ω)

{[
c36


(1)
V + c33

(
o1


(1)
W + σ1	

(1)
W

)

+ e33

(
o1


(1)
� + σ1	

(1)
�

)]
cos(|ω| σ1z) +

[
c13 + c36	

(1)
V + c33

(
o1	

(1)
W − σ1


(1)
W

)

+ e33

(
o1	

(1)
� − σ1


(1)
�

)]
sin(|ω| σ1z)

}
e|ω|o1z

�
(s)
13 (ω, z) = −i · sgn(ω)

{[
c13 + c36	

(2)
V + c33

(
o3	

(2)
W − σ3


(2)
W

)

+ e33

(
o3	

(2)
� − σ3


(2)
�

)]
cos(|ω| σ3z) −

[
c36


(2)
V + c33

(
o3


(2)
W + σ3	

(2)
W

)

+ e33

(
o3


(2)
� + σ3	

(2)
�

)]
sin(|ω| σ3z)

}
e|ω|o3z

�
(s)
14 (ω, z) = −i · sgn(ω)

{[
c36


(2)
V + c33

(
o3


(2)
W + σ3	

(2)
W

)

+ e33

(
o3


(2)
� + σ3	

(2)
�

)]
cos(|ω| σ3z) +

[
c13 + c36	

(2)
V + c33

(
o3	

(2)
W − σ3


(2)
W

)

+ e33

(
o3	

(2)
� − σ3


(2)
�

)]
sin(|ω| σ3z)

}
e|ω|o3z

�
(s)
21 (ω, z) =

{[
c55

(
o1 − 	

(1)
W

)
+ c45

(
o1	

(1)
V − σ1


(1)
V

)
− e15	

(1)
�

]
cos(|ω| σ1z)

+
[
c55

(
−σ1 + 


(1)
W

)
− c45

(
σ1	

(1)
V + o1


(1)
V

)
+ e15


(1)
�

]
sin(|ω| σ1z)

}
e|ω|o1z

�
(s)
22 (ω, z) =

{[
c55

(
σ1 − 


(1)
W

)
+ c45

(
σ1	

(1)
V + o1


(1)
V

)
− e15


(1)
�

]
cos(|ω| σ1z)

+
[
c55

(
o1 − 	

(1)
W

)
+ c45

(
o1	

(1)
V − σ1


(1)
V

)
− e15	

(1)
�

]
sin(|ω| σ1z)

}
e|ω|o1z

�
(s)
23 (ω, z) =

{[
c55

(
o3 − 	

(2)
W

)
+ c45

(
o3	

(2)
V − σ3


(2)
V

)
− e15	

(2)
�

]
cos(|ω| σ3z)

+
[
c55

(
−σ3 + 


(2)
W

)
− c45

(
σ3	

(2)
V + o3


(2)
V

)
+ e15


(2)
�

]
sin(|ω| σ3z)

}
e|ω|o3z

�
(s)
24 (ω, z) =

{[
c55

(
σ3 − 


(2)
W

)
+ c45

(
σ3	

(2)
V + o3


(2)
V

)
− e15


(2)
�

]
cos(|ω| σ3z)

+
[
c55

(
o3 − 	

(2)
W

)
+ c45

(
o3	

(2)
V − σ3


(2)
V

)
− e15	

(2)
�

]
sin(|ω| σ3z)

}
e|ω|o3z

�
(s)
31 (ω, z) =

{[
c45

(
o1 − 	

(1)
W

)
+ c44

(
o1	

(1)
V − σ1


(1)
V

)
− e14	

(1)
�

]
cos(|ω| σ1z)

+
[
c45

(
−σ1 + 


(1)
W

)
− c44

(
σ1	

(1)
V + o1


(1)
V

)
+ e14


(1)
�

]
sin(|ω| σ1z)

}
e|ω|o1z
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�
(s)
32 (ω, z) =

{[
c45

(
σ1 − 


(1)
W

)
+ c44

(
σ1	

(1)
V + o1


(1)
V

)
− e14


(1)
�

]
cos(|ω| σ1z)

+
[
c45

(
o1 − 	

(1)
W

)
+ c44

(
o1	

(1)
V − σ1


(1)
V

)
− e14	

(1)
�

]
sin(|ω| σ1z)

}
e|ω|o1z

�
(s)
33 (ω, z) =

{[
c45

(
o3 − 	

(2)
W

)
+ c44

(
o3	

(2)
V − σ3


(2)
V

)
− e14	

(2)
�

]
cos(|ω| σ3z)

+
[
c45

(
−σ3 + 


(2)
W

)
− c44

(
σ3	

(2)
V + o3


(2)
V

)
+ e14


(2)
�

]
sin(|ω| σ3z)

}
e|ω|o3z

�
(s)
34 (ω, z) =

{[
c45

(
σ3 − 


(2)
W

)
+ c44

(
σ3	

(2)
V + o3


(2)
V

)
− e14


(2)
�

]
cos(|ω| σ3z)

+
[
c45

(
o3 − 	

(2)
W

)
+ c44

(
o3	

(2)
V − σ3


(2)
V

)
− e14	

(2)
�

]
sin(|ω| σ3z)

}
e|ω|o3z

�
(e)
01 (ω, z) =

{[
e15

(
o1 − 	

(1)
W

)
+ e14

(
o1	

(1)
V − σ1


(1)
V

)
+ ∈11 	

(1)
�

]
cos(|ω| σ1z)

+
[
e15

(
−σ1 + 


(1)
W

)
− e14

(
σ1	

(1)
V + o1


(1)
V

)
− ∈11 


(1)
�

]
sin(|ω| σ1z)

}
e|ω|o1z

�
(e)
02 (ω, z) =

{[
e15

(
σ1 − 


(1)
W

)
+ e14

(
σ1	

(1)
V + o1


(1)
V

)
+ ∈11 


(1)
�

]
cos(|ω| σ1z)

+
[
e15

(
o1 − 	

(1)
W

)
+ e14

(
o1	

(1)
V − σ1


(1)
V

)
+ ∈11 	

(1)
�

]
sin(|ω| σ1z)

}
e|ω|o1z

�
(e)
03 (ω, z) =

{[
e15

(
o3 − 	

(2)
W

)
+ e14

(
o3	

(2)
V − σ3


(2)
V

)
+ ∈11 	

(2)
�

]
cos(|ω| σ3z)

+
[
e15

(
−σ3 + 


(2)
W

)
− e14

(
σ3	

(2)
V + o3


(2)
V

)
− ∈11 


(2)
�

]
sin(|ω| σ3z)

}
e|ω|o3z

�
(e)
04 (ω, z) =

{[
e15

(
σ3 − 


(2)
W

)
+ e14

(
σ3	

(2)
V + o3


(2)
V

)
+ ∈11 


(2)
�

]
cos(|ω| σ3z)

+
[
e15

(
o3 − 	

(2)
W

)
+ e14

(
o3	

(2)
V − σ3


(2)
V

)
+ ∈11 	

(2)
�

]
sin(|ω| σ3z)

}
e|ω|o3z

�
(e)
11 (ω, z) = −i · sgn(ω)

{[
e31 + e36	

(1)
V + e33

(
o1	

(1)
W − σ1


(1)
W

)

− ∈33

(
o1	

(1)
� − σ1


(1)
�

)]
cos(|ω| σ1z) −

[
e36


(1)
V + e33

(
o1


(1)
W + σ1	

(1)
W

)

− ∈33

(
o1


(1)
� + σ1	

(1)
�

)]
sin(|ω| σ1z)

}
e|ω|o1z

�
(e)
12 (ω, z) = −i · sgn(ω)

{[[
e36


(1)
V + e33

(
o1


(1)
W + σ1	

(1)
W

)

− ∈33

(
o1


(1)
� + σ1	

(1)
�

)]
cos(|ω| σ1z) +

[
e31 + e36	

(1)
V + e33

(
o1	

(1)
W − σ1


(1)
W

)

− ∈33

(
o1	

(1)
� − σ1


(1)
�

)]
sin(|ω| σ1z)

}
e|ω|o1z

�
(e)
13 (ω, z) = −i · sgn(ω)

{[
e31 + e36	

(2)
V + e33

(
o3	

(2)
W − σ3


(2)
W

)

− ∈33

(
o3	

(2)
� − σ3


(2)
�

)]
cos(|ω| σ3z) −

[
e36


(2)
V + e33

(
o3


(2)
W + σ3	

(2)
W

)

− ∈33

(
o3


(2)
� + σ3	

(2)
�

)]
sin(|ω| σ3z)

}
e|ω|o3z

�
(e)
14 (ω, z) = −i · sgn(ω)

{[[
e36


(2)
V + e33

(
o3


(2)
W + σ3	

(2)
W

)

− ∈33

(
o3


(2)
� + σ3	

(2)
�

)]
cos(|ω| σ3z) +

[
e31 + e36	

(2)
V + e33

(
o3	

(2)
W − σ3


(2)
W

)

− ∈33

(
o3	

(2)
� − σ3


(2)
�

)]
sin(|ω| σ3z)

}
e|ω|o3z

4. Expressions of � j (ω, z)( j = 1, 2, 3, 4) appearing in Eq. (40)
For Case A

� j (ω, z) = −i · sgn(ω)g(o j )e|ω|o j z, j = 1, 2, 3, 4
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For Case B

� j (ω, z) = −i · sgn(ω)g(o j )e
|ω|o j z, j = 1, 2

�3(ω, z) = −i · sgn(ω) [	W cos(|ω| σ3z) − 
W sin(|ω| σ3z)] e|ω|o3z

�4(ω, z) = −i · sgn(ω) [
W cos(|ω| σ3z) + 	W sin(|ω| σ3z)] e|ω|o3z

For Case C

�1(ω, z) = −i · sgn(ω)
[
	

(1)
W cos(|ω| σ1z) − 


(1)
W sin(|ω| σ1z)

]
e|ω|o1z

�2(ω, z) = −i · sgn(ω)
[



(1)
W cos(|ω| σ1z) + 	

(1)
W sin(|ω| σ1z)

]
e|ω|o1z

�3(ω, z) = −i · sgn(ω)
[
	

(2)
W cos(|ω| σ3z) − 


(2)
W sin(|ω| σ3z)

]
e|ω|o3z

�4(ω, z) = −i · sgn(ω)
[



(2)
W cos(|ω| σ3z) + 	

(2)
W sin(|ω| σ3z)

]
e|ω|o3z
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