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Abstract The thermo-mechanical nonlinear dynamics of a buckled axially moving beam is numerically inves-
tigated, with special consideration to the case with a three-to-one internal resonance between the first two modes.
The equation of motion of the system traveling at a constant axial speed is obtained using Hamilton’s principle.
A closed form solution is developed for the post-buckling configuration for the system with an axial speed
beyond the first instability. The equation of motion over the buckled state is obtained for the forced system.
The equation is reduced into a set of nonlinear ordinary differential equations via the Galerkin method. This
set is solved using the pseudo-arclength continuation technique to examine the frequency response curves and
direct-time integration to construct bifurcation diagrams of Poincaré maps. The vibration characteristics of
the system at points of interest in the parameter space are presented in the form of time histories, phase-plane
portraits, and Poincaré sections.

Keywords Axially moving beams · Post-buckling analysis · Divergence · Nonlinear dynamics · Stability ·

1 Introduction

Axially moving systems [1–5] are common constituent elements in mechanical, civil, industrial, and aerospace
systems such as in paper sheet processes, textile fibers, band saw blades, conveyor belts, magnetic tapes, robot
arms, automobile and aerospace structures, aerial cable tramways, and fluid-conveying pipes.

Physically, as a conservative axially moving system reaches the so-called critical speed, one of the natural
frequencies of the system, usually the first one, vanishes and the system buckles. Here, it is assumed that
the beam reaches the critical axial speed and buckles, and then, the resonant response due to a distributed
transverse force about the buckled state as well as complex global dynamics is numerically examined.

Temperature fields develop thermal strains due to thermal expansion or contraction, affecting the dynam-
ical behavior of mechanical systems by producing thermal stresses [6–12]. Therefore, in this paper, thermal
loadings, due to a uniform temperature rise, on the beam are included in the model and thus in the equation of
motion.

The dynamics of axially moving (and accelerating) beams and strings has received considerable attention
in literature [13]. The early nonlinear models of the system started appearing by Mote [14], Thurman and Mote
[3], and Shih [4]. These early studies on the nonlinear dynamics of the system were pursued later, for example,
by Pakdemirli et al. [15–21], who examined the system dynamics via some analytical techniques such as the
method of multiple timescales and matched asymptotic expansion technique. Chen et al. [22–28] extended the
previous works by considering several beam models and employing different techniques such as the method of
multiple timescales, Galerkin’s method, and a finite difference scheme. Several energy dissipation mechanisms
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Fig. 1 Schematic representation of an axially moving beam subject to a uniform temperature rise

were introduced to the system model by Marynowski et al. [29–31]. Further investigations in this area were
conducted by Suweken et al. [32–34], Sze et al. [35] and Huang et al. [36], Stylianou and Tabarrok [37], Riedel
and Tan [38], and other authors [39–41]. Recently, in a series of paper by Ghayesh et al. [42–58], a systematic
research was conducted for linear, nonlinear, internally damped, parametrically excited, and Timoshenko and
laminated beam models.

In this paper, the equations for the longitudinal and transverse motions of an axially moving beam subject
to a thermal loading are developed via Hamilton’s principle. Neglecting the fast dynamics in the longitudi-
nal direction, these two partial differential equations are reduced into an integro-partial differential equation
governing the transverse motion of the beam. A closed- form solution for the buckled state and critical speed
of the beam is obtained, and the equation of motion over the buckled state is developed. It is assumed that a
distributed harmonic load is then applied on the buckled system. The equation is discretized via the Galerkin
method and solved using the pseudo-arclength continuation technique along with direct-time integration. The
resonant responses of the system including the case with an internal resonance as well as bifurcation diagrams
of the system are examined.

2 Model development and methods of solution

Figure 1 shows an axially moving beam of length L , with constant density ρ, axial stiffness EA, and flexural
rigidity EI traveling at a constant axial speed v. Furthermore, the beam is subjected to a pretension p, distrib-
uted transverse force F̂(x, t) = F̂(x) cos(ωt) per unit length along the entire span, and a uniform temperature
rise of ΔT .

The equations of motion are derived under the following assumptions: (i) only the planar displacements
are considered; (ii) the beam has a uniform cross-sectional area; (iii) rotary inertia and shear deformation are
neglected; (iv) the geometric nonlinearity due to the nonlinear relation between the strain and displacement
fields is considered; (v) the strains are small even though the displacements can be large (i.e. linear elasticity
is applied); (vi) the maximum order of magnitude considered is three; (vii) the external distributed force is
assumed to be applied in the transverse direction; (viii) the beam is simply supported; (ix) it is assumed that
the external excitation load is applied when the beam is traveling with an axial speed beyond the first critical
one; (x) the temperature rise is assumed to be uniform; (xi) it is assumed that the external force is applied after
the beam has lost stability in the first mode.

The variation of the potential energy of the beam, after satisfying the hinged-hinged boundary conditions,
can be expressed as follows:
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Fig. 2 The frequency response curve of the system with no internal resonances between the first two modes. a, b The maximum
and minimum of the first generalized coordinate, respectively; c, d the maximum of the second and third generalized coordinates,
respectively. Bold lines and dotted lines represent the stable and unstable solutions, respectively; c = 4.5, v1 = 60, v f = 0.8,
μ = 0.05, γT = 0.1, and f1 = 0.007
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where π represents the potential energy, γ = E α 
T , where α is the thermal expansion coefficient of the
beam, and u(x, t) and w(x, t) represent the longitudinal and transverse displacements of the mid-plane of the
beam.

The variation of the kinetic energy of the system, after satisfying the hinged-hinged boundary conditions,
is given by
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Fig. 3 The frequency response curve of the system with a three-to-one internal resonance between the first two modes. a, b The
maximum and minimum of the first generalized coordinate, respectively; c, d the maximum of the second and third generalized
coordinates, respectively. Bold lines and dotted lines represent the stable and unstable solutions, respectively; c = 3.06, v1 = 60,
v f = 0.6, μ = 0.04, γT = 0.1, and f1 = 0.007
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The variation of the work due to the external distributed force on the beam is given by

δWF =
L∫

0

F̂(x) cos(ωt)δwdx . (3)
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Fig. 4 Bifurcation diagrams of Poincaré points for increasing forcing amplitude on the system with γT = 0.5, c = 2.8, v1 = 80,
v f = 0.8, and μ = 0.05; a the first mode, and b the second mode

Inserting Eqs. (1–3) into Hamilton’s principle results in the following equations of motion in the longitudinal
and transverse directions:
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with the boundary conditions for a hinged-hinged beam as
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Fig. 5 Periodic oscillation for the system of Fig. 4 at f1 = 0.15; a, b time traces of the q1 and q2 motions, respectively; c, d
phase-plane diagrams of the q1 and q2 motions, respectively; e, f Poincaré sections of the q1 and q2 motions, respectively

u|x=0 = u|x=L = 0, (6)
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Fig. 6 Period-7 oscillation for the system of Fig. 4 at f1 = 0.284; a, b time traces of the q1 and q2 motions, respectively; c, d
phase-plane diagrams of the q1 and q2 motions, respectively; e, f Poincaré sections of the q1 and q2 motions, respectively

Neglecting the acceleration in the longitudinal direction in Eq. (4) (see [59]) gives an expression of the lon-
gitudinal displacement as a function of the transverse one. Substituting this into Eq. (5) gives the following
equation for the transverse motion of the beam:
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Fig. 7 Period-7 oscillation for the system of Fig. 4 at f1 = 0.310; a, b time traces of the q1 and q2 motions, respectively; c, d
phase-plane diagrams of the q1 and q2 motions, respectively; e, f Poincaré sections of the q1 and q2 motions, respectively
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Fig. 8 Period-5 oscillation for the system of Fig. 4 at f1 = 0.600; a, b time traces of the q1 and q2 motions, respectively; c, d
phase-plane diagrams of the q1 and q2 motions, respectively; e, f Poincaré sections of the q1 and q2 motions, respectively

Equation (8) can be rewritten as
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Fig. 9 Chaotic oscillation for the system of Fig. 4 at f1 = 0.700; a, b time traces of the q1 and q2 motions, respectively; c, d
phase-plane diagrams of the q1 and q2 motions, respectively; e, f Poincaré sections of the q1 and q2 motions, respectively
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with the following change of variables:
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Fig. 10 Bifurcation diagrams of Poincaré points for increasing forcing amplitude on the system with γT = 0.5, c = 3.5, v1 = 80,
v f = 0.8, and μ = 0.05; a the first mode, and b the second mode
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As is well known, the free system loses stability via divergence at a sufficiently large axial speed, known
as the critical speed. At this speed, the trivial equilibrium solution bifurcates into two nontrivial equilibrium
branches. Setting time derivative of the displacement field equal to zero and solving the resulting spatial-vari-
able-dependent ordinary differential equation results in the following critical speed and nontrivial equilibrium
branches in different modes:

c(k) =
√

1 + (kπv f )2 − γT , (11)

ψ(k)(ξ) = ± 2

kπv1

√
c2 − c2

(k) sin(kπξ), (12)
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Fig. 11 Quasiperiodic oscillation for the system of Fig. 10 at f1 = 0.43; a, b time traces of the q1 and q2 motions, respectively;
c, d phase-plane diagrams of the q1 and q2 motions, respectively; e, f Poincaré sections of the q1 and q2 motions, respectively

where k = 1, 2, 3, . . ., determines the number of the mode. Positive ψ(k)(ξ) along with the first-mode diver-
gence (i.e. k = 1) is considered in the analysis. From physical perspective, since higher order bifurcations
need more energy to be activated, the stability is assumed to be lost in the first mode and the system does
not reach the second critical speed. Substitution of the new equilibrium solution branches into Eq. (9) using
η(ξ, τ ) → ψ(k)(ξ) + η(ξ, τ ) gives the following equation governing the transverse displacement about the
buckled state:
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Fig. 12 Quasiperiodic oscillation for the system of Fig. 10 at f1 = 0.70; a, b time traces of the q1 and q2 motions, respectively;
c, d phase-plane diagrams of the q1 and q2 motions, respectively; e, f Poincaré sections of the q1 and q2 motions, respectively
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Fig. 13 Bifurcation diagrams of Poincaré points for increasing forcing amplitude on the system with γT = 1.0, c = 2.8, v1 = 80,
v f = 0.8, and μ = 0.05; a the first mode, and b the second mode
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Assuming F(ξ) = f1 φ1(ξ), and the displacement field in the form of the following series expansion:

η(ξ, τ ) =
N∑

r=1

φr (ξ)qr (τ ), (14)

where φr (x) denotes the r th hinged-hinged beam eigenfunction and qr (τ ) represents the r th generalized coor-
dinate, and applying the Galerkin method gives N second-order nonlinear ordinary differential equations with
coupled terms. These equations are transformed into 2N first-order nonlinear ordinary differential equations
via change of variables; N = 10 is chosen in this paper, i.e., 20 first-order nonlinear ordinary differential equa-
tions with coupled terms are considered. The pseudo-arclength continuation technique via AUTO code [60] is
used to obtain the frequency response curves about the buckled state. The bifurcation diagrams are obtained
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Fig. 14 Bifurcation diagrams of Poincaré points for increasing forcing amplitude on the system with γT = 1.0, c = 3.5, v1 = 80,
v f = 0.8, and μ = 0.05; a the first mode, and b the second mode

by directly integrating the discretized equations through use of a variable step-size Runge–Kutta method. It
should also be mentioned that the numerical simulations include dimensionless viscous damping μ.

3 Frequency response curves over the buckled state

The frequency response curves of the system are generated in this section using the pseudo-arclength contin-
uation technique for the cases where the system possesses a three-to-one internal resonance between the first
two modes and for the case where it is not.

The frequency response curves of the system without internal resonances between the first two modes are
shown in Fig. 2a–d. Sub-figure (a, b) shows the maximum and minimum of the first generalized coordinate,
respectively, and (c, d) shows the maximum of the oscillation in the second and third modes, respectively.
As seen in this figure, the system displays a softening behavior. There are two limit point bifurcations at
� = 0.9914ω1 and � = 0.9201ω1 and the solution branch between them is unstable. An interesting feature,
which is not observed in the frequency response curve of the same system in the subcritical regime, is that
the maximum and minimum of the first-mode amplitude are not equal; compare sub-figure (a) and (b)—the
inward displacement is larger than the outward one.
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Carefully selecting system parameters (see the caption of Fig. 3), a three-to-one internal resonance occurs
between the first two modes, i.e., the second linear natural frequency of the system is approximately equal to
three times the first one. Figure 3a–d shows the frequency response curves of this system. As seen in this figure,
again, the maximum and minimum of the first-mode amplitude are not equal. A portion of energy gained from
the external excitation by the first mode is transferred to other ones; the outward amplitude of the first mode
decreases near the tip of the curve and at the same time the amplitude of the second mode increases. There
are five bifurcations in this plot, i.e., four limit points at � = 0.9772ω1, � = 0.7113ω1, � = 0.7118ω1, and
� = 0.7107ω1, and a torus bifurcation at � = 0.8368ω1.

4 Bifurcation diagrams over the buckled state

The global nonlinear dynamics of the system is examined in this section as the forcing amplitude is varied as the
bifurcation parameter. This is accomplished using the variable step-size Runge–Kutta method. The computer
codes were run for a time interval of [0 2000] dimensionless seconds and the last 30 % of the time trace is taken,
which excludes the transient effects. The phase space is sectioned in every period of the external force, which
is set to the first linear natural frequency of the system for all cases studied in this section, and the Poincaré
maps are plotted versus the forcing amplitude. The step-size is selected 0.002 in the forcing amplitude, and the
final state at each step is taken as the initial condition for the next step. It is implied response and amplitude
are with respect to the q1 motion and the amplitude of the q1 motion where it is sectioned, respectively.

The bifurcation diagrams are plotted in Figs. 4 and 10 for c = 2.8 and 3.5, respectively, for the case with
the thermal factor of γT = 0.5. Increasing the thermal factor to 1.0, from 0.5 in Figs. 4, 10, 13 and 14 are
generated.

The bifurcation diagrams of the first two generalized coordinates for an axial speed of c = 2.8 are shown in
Fig. 4a, b, respectively. As seen in the sub-figure (a), as the forcing amplitude is increased, the system displays
initially a periodic oscillation, but soon becomes weakly chaotic in the vicinity of f1 = 0.024. The period is
regained at f1 = 0.03 and lasts until the next event. Typical periodic oscillation is illustrated for f1 = 0.15 in
Fig. 5 through (a, b) the time histories of the q1 and q2 motions, respectively, (c, d) the phase-plane portraits of
the q1 and q2 motions, respectively, and (e, f) the Poincaré maps of the q1 and q2 motions, respectively. In the
interval of [0.280 0.362], the motion displays several behavior including periodic, period −2, −3, −6, and −7
motions, and chaos. Typical characteristics of the period-7 oscillation for f1 = 0.284 and 0.310 are depicted in
Figs. 6 and 7, respectively. As the forcing amplitude is increased even further, different coexisting and strange
attractors appear. Two of these attractors at f1 = 0.6 and 0.7 are shown in Figs. 8 and 9, respectively, the first
one illustrating a period-5 oscillation and the second one a chaos.

The bifurcation diagram of the same system of Fig. 4, but with higher axial speed (i.e., c = 3.5), is shown
in Fig. 10. Typical characteristics for f1 = 0.430 and 0.70 are depicted in Figs. 11 and 12, respectively, illus-
trating two quasiperiodic attractors. Comparing Fig. 10 with 4 shows that it is difficult to draw any conclusion
regarding the effect of the axial speed on the bifurcation diagram of the system.

Figures 13 and 14 show the bifurcation diagrams of the same systems of Figs. 4 and 10, respectively, but
at a larger thermal factor, i.e., γT = 1.0. These figures reveal that, in general, due to increased thermal factor,
many co-existing attractors and higher order bifurcations diminish.

5 Conclusions

Thermo-mechanical nonlinear vibrations and stability of a buckled axially moving beam have been investigated
by means of the pseudo-arclength continuation technique which is appropriate for continuation and bifurca-
tion analysis of the system near resonance, as well as via direct-time integration suitable for constructing the
bifurcation diagrams. Dynamical characteristics of the system have been presented in the form of time traces,
phase-plane portraits, Poincaré sections, frequency response curves, and bifurcation diagrams. The near-reso-
nance response of the system is a softening-type with limit point and torus bifurcations. The results for the global
dynamics of the system over the buckled state showed that, depending on different system parameters, very
rich nonlinear dynamics involving periodic, quasiperiodic, period-n, and chaotic oscillations is displayed by
the system. This work can be extended considering both longitudinal and transverse displacements. Moreover,
the case of time-dependent axial speed can be of interest.
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