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Abstract This paper deals with closed-form solutions for in-plane and out-of-plane free vibration of moder-
ately thick laminated transversely isotropic spherical shell panels on the basis of Sanders theory without any
usage of approximate methods. The governing equations of motion and the boundary conditions are derived
using Hamilton’s principle. The highly coupled governing equations are recast to some uncoupled equations
by introducing four potential functions. Also, some relations were presented for the unknowns of the original
set of equations in terms of the unknowns of the uncoupled equations. According to the proposed analytical
approach, both Navier and Lévy-type explicit solutions are developed for moderately thick laminated spherical
shell panels. The efficiency and high accuracy of the present approach are investigated by comparing some of
the present study with the available results in the literature and the results of 3D finite element method. The
effects of various shell parameters like shear modulus ratio of transversely isotropic materials and curvature
ratio on the natural frequencies are studied. Clearly, the proposed solutions can accurately predict the in-plane
and out-of-plane natural frequencies of moderately thick transversely isotropic spherical shell panels.

Keywords Exact closed-form solution · Laminated spherical shell panel · Sanders theory · Natural frequency

1 Introduction

Laminated shells are widely used for many purposes, especially in design of lightweight structures. This wide-
spread application is due to the superior properties of such structures like high stiffness/strength to weight
ratio and excellent thermal properties. The uses of laminated curved panel-type elements are common in many
activities of modern lightweight engineering structures. Aircraft and spacecraft structures consist of some
spherical and cylindrical shell panel elements. Due to the intensive use of laminated spherical shell panels in
lightweight structures, the study of the dynamic behavior of these components has received much attention.
Therefore, the free vibration analysis of the laminated spherical shell panels is of much importance.

Many theories were introduced by researchers for the analysis of laminated shells, which many of them
were developed for thin shells. Ambartsumyan [1,2] was the first investigator to present an appropriate theory
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for the analysis of laminated thin shells. Dong et al. [3] developed a theory for laminated thin shells that is an
extension of the proposed theory of Stavsky [4] for laminated thin shells. Widera and Chung [5] formulated a
theory for composite thin cylindrical shells. For a special case that the cylindrical shell is homogeneous and
isotropic, the theory reduces to Donnell’s shallow shell theory [6]. These theories are based on the Kirch-
hoff-Love kinematic assumptions [7] and neglect the effect of transverse shear deformation that results in the
underestimation of deflections and overestimation of the natural frequencies of the shell structures. The first-
order shear deformation theory (FSDT), also known as the Sanders shell theory [8], incorporates the effects
of transverse shear deformation and rotary inertia. Hence, this theory eliminates the deficiency of thin shell
theories and gives reliable prediction of the natural frequencies of shell structures and is suitable for analyzing
moderately thick shells, which the thickness-to-side ratio takes from 0.05 to 0.2.

There are some studies in the literature related to the free vibration analysis of laminated spherical shell
panels. Reddy [9] presented exact solutions for free vibration and buckling of simply supported laminated
spherical shell panels according to the FSDT. Later, Reddy and Liu [10] developed a higher order shear
deformation theory for laminated shells and obtained exact solutions for bending and free vibration of simply
supported spherical shell panels. Also, Chaudhuri and Kabir [11] presented an exact solution for free vibration
of simply supported laminated doubly curved panel using the four classical shallow shell theories. Singh [12]
investigated the free vibration of moderately thick and thick doubly curved open deep sandwich shells by the
use of Rayleigh-Ritz method. Liew et al. [13] presented the elasticity solutions for free vibration analysis of
spherical shell panels. They employed the p-Ritz method for the solution of the problem. Lee and Reddy [14]
presented an exact solution for vibration suppression in laminated composite shells with surface mounted
smart material layers based on the linear versions of the Donnell and Sanders shell theories and for simply
supported boundary conditions. The nonlinear dynamic response of doubly curved shallow shells resting on
Winkler–Pasternak elastic foundation was studied by Civalek [15] for step and sinusoidal loadings. He applied
the harmonic differential quadrature (HDQ) and finite differences (FD) methods to solve the governing equa-
tions. Later, Civalek [16] utilized the discrete singular convolution method (DSC) to study the free vibration
behavior of conical panels. He investigated the effects of boundary conditions, vertex, and subtended angle
on the natural frequencies of the shell panel. Hasheminejad and Maleki [17] presented an exact analysis for
interaction of a time-harmonic plane-progressive sound field with a laminated transversely isotropic hollow
sphere shell with interlaminar bonding imperfections. A nonlinear finite element model for geometrically large
amplitude free vibration analysis of laminated spherical shell panels was presented by Panda and Singh [18]
using the third-order shear deformation theory. Biglari and Jafari [19] studied the free vibrations of simply
supported doubly curved sandwich panels with flexible core based on the first-order shear deformation theory
and assumptions of linear distribution of transverse normal stress and uniform shear stresses over the thick-
ness of core. Panda and Singh [20,21] analyzed nonlinear free vibration behavior of thermally post-buckled
laminated composite spherical and doubly curved shell panels based on third-order shear deformation theory.
They used a direct iterative method in conjunction with nonlinear finite element approach to solve the system
of equations. The finite element model of vibrating laminated spherical shell panels with delamination around
a central cutout was developed by Lee and Chung [22] based on the third-order shear deformation theory.
Tornabene [23,24] applied the generalized differential quadrature (GDQ) method to study the free vibration of
laminated composite doubly curved shells and laminated spherical shell panels according to the FSDT. Ngu-
yen-Van et al. [25] presented buckling and free vibration analysis of moderately thick laminated composite
plate and shell panel structures of various shapes via a novel smoothed quadrilateral flat element.

Most of studies for laminated shell panels were performed by the use of numerical methods such as finite
element, differential quadrature, and Ritz methods, and the exact closed-form solutions were only presented for
fully simply supported laminated panels. According to the authors’ knowledge, no exact closed-form solution
exists for the free vibration of Lévy-type laminated spherical shell panels based on the FSDT. The objective
of the present study is to propose an exact closed-form solution for the free vibration of moderately thick
laminated spherical shell panels having arbitrary boundary conditions at two opposite edges. To this end, after
deriving the governing equations, a powerful decoupling method is applied by introducing four new functions.
Also, some relations are presented for the unknowns of the original set of equations in terms of the unknowns
of the uncoupled equations. The reformulated equations are exactly solved, and arbitrary boundary conditions
are satisfied at two opposite edges. The efficiency and high accuracy of the present approach are investigated
by comparing some of the present study with the available results in the literature and the results of 3D finite
element method. The effects of various shell parameters like shear modulus ratio of transversely isotropic
materials and curvature ratio on the natural frequencies are studied. The present closed-form solutions can
accurately predict natural frequencies of moderately thick transversely isotropic spherical shell panels.
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2 Governing equations of motion

An orthogonal curvilinear coordinate system (ξ1, ξ2, ξ3) is considered to represent the geometry and defor-
mation of the laminated spherical shell panel. The axes ξ1 and ξ2 are located in the mid-plane of the shell
panel. Consider a laminated spherical shell panel of length a, width b, uniform thickness h, and mean radius
R (Fig. 1). It is assumed that the shell panel has two opposite edges simply supported at the edges ξ1 = 0, a.
The other edges have arbitrary boundary conditions.

Based on the first-order shear deformation theory (FSDT), the displacement field is assumed to be

u1 (ξ1, ξ2, ξ3, t) = u (ξ1, ξ2, t)+ ξ3ψ1 (ξ1, ξ2, t)

u2 (ξ1, ξ2, ξ3, t) = v (ξ1, ξ2, t)+ ξ3ψ2 (ξ1, ξ2, t)

u3 (ξ1, ξ2, ξ3, t) = w (ξ1, ξ2, t) (1)

where u and v denote the in-plane displacements of the shell middle surface andw is the transverse deflection.
Also, ψ1 and ψ2 are rotation functions and variable t is the time. Under the assumption of small deformation,
the strain-displacement relations are given as

[
ε11 ε22 ε33 2ε12 2ε13 2ε23

]T =
[
χ0

11 χ
0
22 0 χ0

12 χ
0
13 χ

0
23

χ1
11 χ

1
22 0 χ1

12 0 0

]T {
1
ξ3

}
(2)

where

χ0
11 = ∂u

∂ξ1
+ w

R
, χ1

11 = ∂ψ1

∂ξ1

χ0
22 = ∂v

∂ξ2
+ w

R
, χ1

22 = ∂ψ2

∂ξ2

χ0
12 = ∂u

∂ξ2
+ ∂v

∂ξ1
, χ1

12 = ∂ψ1

∂ξ2
+ ∂ψ2

∂ξ1
(3)

χ0
13 = ψ1 + ∂w

∂ξ1
− u

R
, χ0

23 = ψ2 + ∂w

∂ξ2
− v

R

Fig. 1 Geometry and curvilinear coordinate system (ξ1, ξ2, ξ3) of a laminated spherical shell panel
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The stress–strain relations for each layer of the laminated transversely isotropic shell are expressed as

σ
(k)
11 = E (k)

1 − (
ν(k)

)2

(
ε11 + ν(k)ε22

)

σ
(k)
22 = E (k)

1 − (
ν(k)

)2

(
ν(k)ε11 + ε22

)

σ
(k)
12 = E (k)

1 + ν(k)
ε12 (4)

σ
(k)
13 = 2G(k)

3 ε13

σ
(k)
23 = 2G(k)

3 ε23

where E (k), ν(k) and G(k)
3 are modulus of elasticity, Poisson’s ratio and the transverse shear modulus of the

kth layer, respectively.
The equations of motion of the FSDT in terms of the stress resultants are obtained by using the extended

Hamilton’s principle as follows

∂N11

∂ξ1
+ ∂N12

∂ξ2
+ Q1

R
= I11ü + I22ψ̈1

∂N22

∂ξ2
+ ∂N12

∂ξ1
+ Q2

R
= I11v̈ + I22ψ̈2

∂M11

∂ξ1
+ ∂M12

∂ξ2
− Q1 = I22ü + I3ψ̈1 (5)

∂M22

∂ξ2
+ ∂M12

∂ξ1
− Q2 = I22v̈ + I3ψ̈2

∂Q1

∂ξ1
+ ∂Q2

∂ξ2
− N11 + N22

R
= I1ẅ

In Eq. (5), dot-overscript convention indicates the differentiation with respect to time and the stress resultants
and inertias are defined by

Qi = KS

h/2∫

−h/2

σi3dξ3

(
Ni j ,Mi j

) =
h/2∫

−h/2

σi j (1, ξ3) dξ3 (6)

Ii =
h/2∫

−h/2

ρξ i−1
3 dξ3

I11 = I1 + 2

R
I2, I22 = I2 + 1

R
I3

where KS is shear correction factor and is usually taken to be 5/6. Using the Hamilton’s principle, the boundary
conditions are obtained:

at ξ2 = const.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

either δu = 0 or N12 = 0
either δv = 0 or N22 = 0
either δψ1 = 0 or M12 = 0
either δψ2 = 0 or M22 = 0
either δw = 0 or Q2 = 0

(7)
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The inertias and stress resultants can be simplified for laminated shells as follows

I1 =
N∑

k=1

ρ(k)
(
ξ
(k+1)
3 − ξ

(k)
3

)
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(8)
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and

Q1 = KS
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k=1

G(k)
3

[(
ψ1 + ∂w
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R

)(
ξ
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3

)]

Q2 = KS
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ξ
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(k)
3

)]
(11)

It is supposed that the laminated shell panel is symmetric with respect to its middle surface. Thus, after
substituting Eqs. (8) through (11) into the equations of motion (5) and simplifying the results, the following
governing equations are obtained for free vibration analysis of laminated shell panels
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α1u,11 + α2u,22 + (
α1 − α2

)
v,12 + 1

R

[
2

(
α1 − α2

)
w,1 + KSα3

(
ψ1 + w,1 − 1

R
u

)]

= I11ü + I22ψ̈1 (12a)

α1v,22 + α2v,11 + (
α1 − α2

)
u,12 + 1

R

[
2

(
α1 − α2

)
w,2 + KSα3

(
ψ2 + w,2 − 1

R
v

)]

= I11v̈ + I22ψ̈2 (12b)

α4ψ1,11 + α5ψ1,22 + (
α4 − α5

)
ψ2,12 − KSα3

(
w,1 + ψ1 − 1

R
u

)
= I22ü + I3ψ̈1 (12c)

α4ψ2,22 + α5ψ2,11 + (
α4 − α5

)
ψ1,12 − KSα3

(
w,2 + ψ2 − 1

R
v

)
= I22v̈ + I3ψ̈2 (12d)

KSα3

[
∇2w + (

ψ1,1 + ψ2,2
) − 1

R

(
u,1 + v,2

)
]

− 2

R

(
α1 − α2

)
[
(
u,1 + v,2

) + 2

R
w

]
= I1ẅ (12e)

where ∇2 = ∂2/∂ξ2
1 + ∂2/∂ξ2

2 is the two-dimensional Laplacian operator. Also, the coefficients αi are given
in “Appendix 1”.

3 Reformulation of the governing equations

In order to solve the Eqs. (12) for the free vibration analysis of laminated shell panels, the unknown functions
of the displacement field are assumed to vary harmonically with respect to the time variable t as follows

u (ξ1, ξ2, t) = ũ (ξ1, ξ2) exp( jωt)

v (ξ1, ξ2, t) = ṽ (ξ1, ξ2) exp( jωt)

w (ξ1, ξ2, t) = w̃ (ξ1, ξ2) exp( jωt) (13)

ψ1 (ξ1, ξ2, t) = ψ̃1 (ξ1, ξ2) exp( jωt)

ψ2 (ξ1, ξ2, t) = ψ̃2 (ξ1, ξ2) exp( jωt), j = √−1

Substituting the above relations into Eqs. (12) yields the following equations

α1ũ,11 + α2ũ,22 + (
α1 − α2

)
ṽ,12 + 1

R

[
2

(
α1 − α2

)
w̃,1 + KSα3

(
ψ̃1 + w̃,1 − 1

R
ũ

)]

+ω2 I11ũ + ω2 I22ψ̃1 = 0 (14a)

α1ṽ,22 + α2ṽ,11 + (
α1 − α2

)
ũ,12 + 1

R

[
2

(
α1 − α2

)
w̃,2 + KSα3

(
ψ̃2 + w̃,2 − 1

R
ṽ

)]

+ω2 I11ṽ + ω2 I22ψ̃2 = 0 (14b)

α4ψ̃1,11 + α5ψ̃1,22 + (
α4 − α5

)
ψ̃2,12 − KSα3

(
w̃,1 + ψ̃1 − 1

R
ũ

)
+ ω2 I22ũ + ω2 I3ψ̃1 = 0 (14c)

α4ψ̃2,22 + α5ψ̃2,11 + (
α4 − α5

)
ψ̃1,12 − KSα3

(
w̃,2 + ψ̃2 − 1

R
ṽ

)
+ ω2 I22ṽ + ω2 I3ψ̃2 = 0 (14d)

KSα3

(
∇2w̃ +

(
ψ̃1,1 + ψ̃2,2

)
− 1

R

(
ũ,1 + ṽ,2

)) − 2

R

(
α1 − α2

) [(
ũ,1 + ṽ,2

) + 2

R
w̃

]
+ ω2 I1w̃ = 0

(14e)

The governing Eqs. (14) are five highly coupled partial differential equations. In order to present exact closed-
form solutions for such equations, it is reasonable to reformulate them to the uncoupled form. To this end, we
introduce four potential functions as
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η̃ = ũ,2 − ṽ,1

μ̃ = ũ,1 + ṽ,2

ϕ̃ = ψ̃1,2 − ψ̃2,1 (15)

λ̃ = ψ̃1,1 + ψ̃2,2

Using the potential functions (15), the governing Eqs. (14) can be rewritten in a simpler form as

l1ũ − l2ψ̃1 = α1μ̃,1 + α2η̃,2 + l3w̃,1 (16a)

l1ṽ − l2ψ̃2 = α1μ̃,2 − α2η̃,1 + l3w̃,2 (16b)

−l4ũ + l5ψ̃1 = α4λ̃,1 + α5ϕ̃,2 − KSα3w̃,1 (16c)

−l4ṽ + l5ψ̃2 = α4λ̃,2 − α5ϕ̃,1 − KSα3w̃,2 (16d)

λ̃ = −∇2w̃ + l6μ̃+ l7w̃ (16e)

where the coefficients li are defined in “Appendix 2”. Differentiating Eqs. (16a) and (16b) with respect to ξ2
and ξ1, respectively, and subtracting the results yields

α2∇2η̃ − l1η̃ + l2ϕ̃ = 0 (17)

Differentiating Eqs. (16c) and (16d) with respect to ξ2 and ξ1, respectively, and subtracting the results yields

α5∇2ϕ̃ − l5ϕ̃ + l4η̃ = 0 (18)

Also, differentiating Eqs. (16a) and (16b) with respect to ξ1 and ξ2, respectively, and adding the results yields
the following equation

α1∇2μ̃− l1μ̃+ l2λ̃+ l3∇2w̃ = 0 (19)

In a similar way, differentiating Eqs. (16c) and (16d) with respect to ξ1 and ξ2, respectively, and adding them
will result in

α4∇2λ̃− l5λ̃+ l4μ̃− KSα3∇2w̃ = 0 (20)

Eliminating η̃ from Eqs. (17) and (18) yields an uncoupled partial differential equation in terms of the potential
function ϕ̃ as

∇4ϕ̃ −�1∇2ϕ̃ +�2ϕ̃ = 0 (21)

where ∇4 = ∇2∇2 = (
∂2/∂ξ2

1 + ∂2/∂ξ2
2

) (
∂2/∂ξ2

1 + ∂2/∂ξ2
2

)
. Also, the coefficients�i are given in “Appen-

dix 3”. Now, by substituting λ̃ from Eq. (16e) into Eqs. (19) and (20), the following two equations in terms of
μ̃ and w̃ are obtained

α1∇2μ̃+
(

l2l6 − l1
)
μ̃+

(
l3 − l2

)
∇2w̃ + l2l7w̃ = 0 (22a)

α4l6∇2μ̃+
(

l4 − l5l6
)
μ̃− α4∇4w̃ +

(
l5 + α4l7 − KSα3

)
∇2w̃ − l5l7w̃ = 0 (22b)

Eliminating ∇2μ̃ from Eqs. (22a) and (22b) and simplifying the results will result in

μ̃ = l8∇4w̃ + l9∇2w̃ + l10w̃ (23)

Substituting Eq. (23) into either Eq. (22a) or (22b) yields an uncoupled partial differential equation in terms
of the transverse deflection w̃ as

∇6w̃ +�3∇4w̃ +�4∇2w̃ +�5w̃ = 0 (24)
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The two uncoupled equations (21) and (24) are exactly equal to the original governing Eqs. (14) and can be
solved instead of them. When the uncoupled equations (21) and (24) are used, it is necessary to express the
unknown functions of the displacement field (i.e., the functions ũ, ṽ, ψ̃1, and ψ̃2) in terms of w̃ and ϕ̃. To this
end, we substitute λ̃, η̃, and μ̃ from Eqs. (16e), (18), and (23) into (16a) through (16d) and obtain

l1ũ − l2ψ̃1 = α1l8∇4w̃,1 + α1l9∇2w̃,1 +
(
α1l10 + l3

)
w̃,1 − α2α5

l4
∇2ϕ̃,2 + α2l5

l4
ϕ̃,2 (25a)

l1ṽ − l2ψ̃2 = α1l8∇4w̃,2 + α1l9∇2w̃,2 +
(
α1l10 + l3

)
w̃,2 + α2α5

l4
∇2ϕ̃,1 − α2l5

l4
ϕ̃,1 (25b)

−l4ũ + l5ψ̃1 = α4l6l8∇4w̃,1 + α4

(
l6l9 − 1

)
∇2w̃,1 +

(
α4l6l10 + α4l7 − KSα3

)
w̃,1 + α5ϕ̃,2 (25c)

−l4ṽ + l5ψ̃2 = α4l6l8∇4w̃,2 + α4

(
l6l9 − 1

)
∇2w̃,2 +

(
α4l6l10 + α4l7 − KSα3

)
w̃,2 − α5ϕ̃,1 (25d)

By solving Eqs. (25a) and (25c) simultaneously, the functions ũ and ψ̃1 are obtained in terms of w̃ and ϕ̃ as
follows

ũ = �6∇4w̃,1 +�7∇2w̃,1 +�8w̃,1 −�9∇2ϕ̃,2 +�10ϕ̃,2 (26a)

ψ̃1 = �11∇4w̃,1 +�12∇2w̃,1 +�13w̃,1 −�14∇2ϕ̃,2 +�15ϕ̃,2 (26b)

Also, solving Eqs. (25b) and (25d) simultaneously will result in some relations for ṽ and ψ̃2 as

ṽ = �6∇4w̃,2 +�7∇2w̃,2 +�8w̃,2 +�9∇2ϕ̃,1 −�10ϕ̃,1 (27a)

ψ̃2 = �11∇4w̃,2 +�12∇2w̃,2 +�13w̃,2 +�14∇2ϕ̃,1 −�15ϕ̃,1 (27b)

Clearly by substituting Eqs. (26) and (27) into (9), (10), and (11), the stress resultants will be obtained explicitly
in terms of w̃ and ϕ̃.

This procedure is used for developing exact closed-form Navier and Lévy-type solutions for the free
vibration of laminated transversely isotropic spherical shell panels.

4 Solution of the reformulated equations

4.1 Navier-type solution

Herein, it is assumed that the laminated spherical shell panel is simply supported at all four edges. Thus, the
functions ϕ̃ and w̃ are assumed to be

ϕ̃ =
∞∑

m=1

∞∑

n=1

�mn cosαmξ1 cosβnξ2 (28a)

w̃ =
∞∑

m=1

∞∑

n=1

Wmn sin αmξ1 sin βnξ2 (28b)

where αm = mπ/a and βn = nπ/b. Clearly, Eqs. (28) satisfy the simply supported boundary conditions at
the edges ξ1 = 0, a and ξ2 = 0, b. Introducing Eq. (28a) into (21), an algebraic equation is obtained in terms
of the natural frequencies of the laminated shell panels

�1(ω)+ (
α2

m + β2
n

)−1
�2(ω)+ (

α2
m + β2

n

) = 0 (29)

The natural frequencies which are obtained from the above equation are related to the in-plane vibration modes.
Replacing the maximum transverse deflection function w̃ from Eq. (28b) into the uncoupled equation (24) will
result in the following algebraic equation for the out-of-plane natural frequencies of the laminated shell panel

�3(ω)− (
α2

m + β2
n

)−1
�4(ω)+ (

α2
m + β2

n

)−2
�5(ω)− (

α2
m + β2

n

) = 0 (30)

It is to be noted that by using Eqs. (29) and (30), the natural frequencies of simply supported laminated spherical
shell panel can be determined explicitly.
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4.2 Lévy-type solution

In this section, Lévy-type solution is developed for the laminated spherical shell panel. Therefore, two
opposite edges of the shell panel are assumed to be simply supported and the other sides have arbitrary
boundary conditions. The symbolism SCSF, for example, identifies a spherical shell panel with edges ξ1 = 0,
ξ2 = 0, ξ1 = a, ξ2 = b having simply supported, clamped, simply supported, and free boundary condition,
respectively. Due to this kind of boundary conditions, the functions ϕ̃ and w̃ are represented as follows

ϕ̃ =
∞∑

m=1

�m (ξ2) cosαmξ1 (31a)

w̃ =
∞∑

m=1

Wm (ξ2) sin αmξ1 (31b)

Clearly, Eqs. (31a) and (31b) satisfy the simply supported boundary conditions at the edges ξ1 = 0, a. Substi-
tuting Eqs. (31a) and (31b) into the uncoupled equations (21) and (24), respectively, two ordinary differential
equations are obtained

�(4)m (ξ2)−
(

2α2
m +�1

)
�′′

m (ξ2)+
(
α4

m + α2
m�1 +�2

)
�m (ξ2) = 0 (32a)

W (6)
m (ξ2)+ δ1W (4)

m (ξ2)+ δ2W ′′
m (ξ2)+ δ3Wm (ξ2) = 0 (32b)

where

δ1 = −
(

3α2
m −�3

)

δ2 = 3α4
m − 2α2

m�3 +�4

δ3 = −
(
α6

m − α4
m�3 + α2

m�4 −�5

)
(33)

The solution of Eq. (32a) can be presented as

�m (ξ2) = Cm1 cosh κ1ξ2 + Cm2 sinh κ1ξ2 + Cm3 cosh κ2ξ2 + Cm4 sinh κ2ξ2 (34)

where
{
κ1
κ2

}
= 1

2

√

4α2
m + 2�1 ± 2

√

�1
2 − 4�2 (35)

Also, it is easy to show that the solution of Eq. (32b) is written as follows

Wm (ξ2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Cm5 cosh κ3ξ2 + Cm6 sinh κ3ξ2 + Cm7 cosh κ4ξ2 + Cm8 sinh κ4ξ2
Cm9 cosh κ5ξ2 + Cm10 sinh κ5ξ2 κ2

3 > 0

+ Cm5 cos κ̃3ξ2 + Cm6 sin κ̃3ξ2 + Cm7 cosh κ4ξ2 + Cm8 sinh κ4ξ2
+ Cm9 cosh κ5ξ2 + Cm10 sinh κ5ξ2 κ2

3 < 0

(36)

where the coefficients κi (i = 3, 4, 5) are defined as

κ3 =
√√√
√√

2

3

√
δ2

1 − 3δ2 cos

⎛

⎝1

3
cos−1

⎛

⎝ 9δ1δ2 − 27δ3 − 2δ3
1

2
(
3δ2 − δ2

1

)√
δ2

1 − 3δ2

⎞

⎠

⎞

⎠ − 1

3
δ1

κ4 =
√√√
√√

2

3

√
δ2

1 − 3δ2 cos

⎛

⎝1

3
cos−1

⎛

⎝ 9δ1δ2 − 27δ3 − 2δ3
1

2
(
3ζ2 − ζ 2

1

)√
ζ 2

1 − 3ζ2

⎞

⎠ + 2π

3

⎞

⎠ − 1

3
δ1 (37)

κ5 =
√√
√√
√

2

3

√
δ2

1 − 3δ2 cos

⎛

⎝1

3
cos−1

⎛

⎝ 9δ1δ2 − 27δ3 − 2δ3
1

2
(
3δ2 − δ2

1

)√
δ2

1 − 3δ2

⎞

⎠ + 4π

3

⎞

⎠ − 1

3
δ1
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and

κ̃2
3 = −κ2

3 (38)

Introducing Eqs. (34) and (36) into (31a) and (31b), respectively, the explicit expressions are obtained for the
transverse deflection w̃ and potential function ϕ̃ in terms of ten constants Cm1through Cm10. In order to satisfy
the arbitrary boundary conditions at the edges ξ2 = 0, b, five boundary conditions should be chosen from
Eq. (7) for each edge. For example, we have:

Free Edge: N12 = N22 = M12 = M22 = Q2 = 0

Simply Supported Edge: u = N22 = ψ1 = M22 = w = 0 (39)

Clamped Edge: u = v = ψ1 = ψ2 = w = 0

Substituting the obtained displacement components and stress resultants into the appropriate boundary con-
ditions (39) for the edges ξ2 = 0, b leads to a set of algebraic equations for analyzing the free vibration of
moderately thick laminated spherical shell panel. This set consists of ten equations in terms of the constants
Cm1through Cm10. By setting the determinant of the coefficient matrix of equations equal to zero, the exact
characteristic equation is obtained. These equations give the natural frequencies related to both in-plane and
out-of-plane vibration modes.

5 Numerical results and discussion

A computer code has been developed according to the foregoing analytical approach to calculate the numer-
ical results for the free vibration of moderately thick laminated spherical shell panels. For generality of the
numerical results, the following non-dimensional parameters are defined

ω = ω
a2

hM

√
ρM

EM

h = h/a (40)

R = R/a

G = G/G3

where ω is the non-dimensional natural frequency, h is thickness-to-length ratio, R is curvature ratio, and G
is shear modulus ratio. Also, G and G3 are the in-plane and out-of-plane shear modulus of the transversely
isotropic materials, respectively. It is noticeable that the subscript M in Eq. (40) represents the middle layer of
the laminates. The results are provided for both single-layer and three-layer transversely isotropic shell panels.
The non-dimensional properties of the three-layer shell panel is assumed as

G(3)/G(1) = 1, G(2)/G(1) = 1/2

ρ(3)/ρ(1) = 1, ρ(2)/ρ(1) = 2/3

ν(1) = 0.35, ν(2) = 0.25, ν(3) = 0.35 (41)

G
(1) = 2, G

(2) = 1.25, G
(3) = 2

h
(1) = h

(2) = h
(3) = 1/15

Also, unless mentioned otherwise, the shear correction factor KS is taken to be 5/6. In order to investigate
the efficiency and accuracy of the present approach, some comparison studies have been provided with the
available results in the literature. Also, some comparisons have been made with the results of finite element
method using a software package with 3D solid elements. The comparison results have been presented for
different classical boundary conditions (i.e., simply supported, clamped, and free edges).

Table 1 shows the first eight out-of-plane natural frequencies of a homogeneous simply supported spherical
shell panel together with the corresponding results of the 3D elasticity [26], finite element FSDT [27], and finite
element HSDT [27]. The number of half-waves in the ξ1 and ξ2 direction are denoted by m and n, respectively.
The physical and geometric properties of the spherical shell panel are as: curved lengths a = b = 1.0118,
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Table 1 Comparison study of the natural frequencies of fully simply supported thin spherical shell panels (SSSS)

Method Mode (m,n)

(1,1) (2,1) (1,2) (2,2) (3,1) (1,3) (3,2) (2,3)
3D Elasticity [26] 0.52543 0.58420 0.58487 0.67676 0.75219 0.75220 0.87811 0.87804
FSDT [27] 0.50211 0.56247 0.56248 0.65706 0.73915 0.74035 0.86359 0.86360
| Error (%) | 4.44 3.72 3.83 2.91 1.73 1.58 1.65 1.65
HSDT [27] 0.50223 0.56276 0.56277 0.65788 0.73966 0.74081 0.86493 0.86494
| Error (%) | 4.42 3.67 3.78 2.79 1.67 1.51 1.50 1.49
Present 0.52830 0.58853 0.58853 0.68232 0.75818 0.75818 0.88507 0.88507
| Error (%) | 0.55 0.74 0.63 0.82 0.80 0.80 0.79 0.80

Table 2 Non-dimensional natural frequencies ω of moderately thick single-layer spherical shell panels (h = 0.1, R = 5,
a/b = 1)

B.Cs Method Mode sequences

1 2 3 4 5 6
SSSS Present 6.0768 13.880 13.880 19.483 19.483 21.189

FEM (3D) 6.0812 13.930 13.930 19.492 19.492 21.326
| Error (%) | 0.07 0.36 0.36 0.05 0.05 0.64

SCSC Present 8.3597 14.978 18.006 19.483 23.916 26.333
FEM (3D) 8.4119 15.068 18.186 19.494 24.158 26.519
| Error (%) | 0.62 0.60 0.99 0.06 1.00 0.70

SFSF Present 2.8727 4.6253 10.408 11.030 12.937 14.826
FEM (3D) 2.8854 4.6485 10.437 11.093 13.033 14.801
| Error (%) | 0.44 0.50 0.28 0.57 0.74 0.17

Table 3 Comparison study of the frequency parameters ωa2
√
ρh/D for laminated spherical shell panels

R B.Cs

SSSS SCSC SFSF
5 18.388 22.909 8.736
10 17.653 22.096 8.716
102 17.403 21.820 8.709
103 17.400 21.818 8.709
Exact FSDT [28] 17.400 21.818 8.709

thickness h = 0.0191, radius R = 1.91, modulus of elasticity E = 1, density ρ = 1, and Poisson’s ratio
ν = 0.3. The percentage error given in Table 1 has been calculated on the basis of the following equation

|Error (% )| =
∣∣∣
∣
(Exact Sanders) − (3D Elasticity)

(3D Elasticity)

∣∣∣
∣ × 100 (42)

The results of Table 1 reveal that excellent agreement exists between the results of the present exact solution
and those of other methods. It is evident from Table 1 that the results of present study are closer to the results
of 3D elasticity [26] than those of FSDT [27] and HSDT [27]. This closeness is apparent even for higher
vibration modes.

The first six non-dimensional natural frequencies ω of moderately thick single-layer spherical shell panels
are tabulated in Table 2, for various boundary conditions. The curvature and thickness-to-length ratios are
assumed to be R = 5 and h = 0.1, respectively. The bold-faced values indicate the natural frequencies of the
in-plane modes. In order to demonstrate the high accuracy of the obtained results, the spherical shell panels are
modeled using a FEM software package with 3D solid elements. It can be observed that the percentage errors
given in this table does not exceed 1% even for higher modes. The percentage errors related to the in-plane
vibration modes are less that 0.2%.

In Table 3, the non-dimensional natural frequencies ωa2(ρh/D)1/2 of three-layer transversely isotropic
spherical shell panels obtained by the present approach are compared with those of the exact FSDT of Nosier
and Reddy [28] for laminated plates. The comparison results are provided for various boundary conditions. It

should be pointed out that D is the flexural rigidity of laminates and is defined by α4 (see “Appendix 1”). The
assumed physical and geometric properties for the laminated spherical shell panel given in this comparison
are as follows
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Table 4 Non-dimensional natural frequencies ω of moderately thick laminated spherical shell panels (hTotal = 0.2, R =
10, a/b = 1)

B.Cs Method Mode sequences

1 2 3 4 5 6
SSSS FEM (3D) 17.714 32.305 32.321 35.851 35.853 45.727

Present 17.840 32.318 32.318 36.246 36.246 45.705
| Error (%) | 0.71 0.04 0.01 1.10 1.09 0.05

SCSC FEM (3D) 20.943 32.315 36.561 39.644 51.983 57.535
Present 21.164 32.318 37.118 39.438 51.736 57.306
| Error (%) | 1.05 0.01 1.52 0.52 0.48 0.39

SFSF FEM (3D) 9.3666 14.133 24.662 28.754 29.884 32.337
Present 9.4161 14.240 24.657 28.908 30.164 32.318
| Error (%) | 0.53 0.76 0.02 0.54 0.94 0.06

a = b = 20h(2)

h(1) = h(3) = 0.25, h(2) = 0.5

E (1) = E (3) = 20.83 × 106psi, E (1) = 19.20 × 106psi (43)

G(1)
3 = G(3)

3 = 3.71 × 106psi,G(2)
3 = 0.82 × 106psi

ρ(1) = ρ(2) = ρ(3) = ρ = Const.

Also, the shear correction factor is taken to be 2/3 (the value is chosen in order to be able to compare with the
results of Ref. [28]). It is expected that the laminated spherical shell panel is converted to a laminated plate
when the curvature ratio approaches infinity. It can be observed from Table 3 that the non-dimensional natural
frequencies of laminated spherical shell panel exactly converge to the results of Ref. [28] when the curvature
ratio of the shell panels approaches infinity. The results of this table confirm the high accuracy of the present
approach for laminated shell panels.

The first six non-dimensional natural frequencies ω of a moderately thick laminated spherical shell panel
(hTotal = 0.2) with the boundary conditions SSSS, SCSC, and SFSF are listed in Table 4. The non-dimen-
sional properties given in Eq. (41) are considered for the laminated shell panels. The bold-faced values also
indicate the natural frequencies of the in-plane vibration modes. In all cases, the three-dimensional FEM
results, obtained from a FEM software package, have been presented to demonstrate the high accuracy of the
foregoing closed-form solution for the laminated spherical shell panels. It is seen that the maximum value of
the percentage error is about 1.52% for the laminated shell panel with clamped edges. This may be due to the
fact that the FSDT cannot capture the boundary layer term for clamped edges. Since the thickness-to-length
ratio of the shell panels considered in this example is hTotal = 0.2, the percentage errors are expected to be
more than those for thinner ones. It is worth noting that the percentage error of laminated shell theories with
respect to the 3D analyses increases when the thickness of shell panels increases.

In order to investigate the effect of shear modulus ratio G on the non-dimensional natural frequencies
of the transversely isotropic shell panels, attention is focused on Figs. 2, 3, 4 which are depicted for SSSS,
SCSC, and SFSF shell panels, respectively. In these figures, the variations of non-dimensional fundamental
natural frequency are illustrated for three different values of thickness-to-length ratio (h = 0.01, 0.1, 0.2). The
curvature ratio is taken to be R = 10, and the aspect ratio is assumed as unity. It can be seen that the effect of
shear modulus ratio on the natural frequency of shell panel increases as the shell panel thickness increases. It
is evident that the shear modulus ratio has weak effect on the natural frequency when the shell panel is thin.
In order to evaluate the effect of shear modulus ratio for different boundary conditions, we consider the case
which the transversely isotropic shell panels are thick (i.e., h = 0.2). In this case, the non-dimensional natural
frequency decreases about 22, 14, and 8% for SCSC, SSSS, and SFSF shell panels, respectively, when the
shear modulus ratio increases from 1 to 3. Thus, it can be concluded that the effects of shear modulus ratio on
the natural frequencies of transversely isotropic shell panels become more significant with an increase in the
boundary constraints.

Figure 5 shows the variation of the non-dimensional fundamental natural frequency versus curvature ratio
R for laminated spherical shell panels with different boundary conditions. The non-dimensional properties
given in Eq. (41) are considered for the laminated shell panels. It can be observed that the fundamental nat-
ural frequency of SCSC and SSSS laminated shell panels decreases when the curvature ratio increases. This
manner reveals that for these boundary conditions, by increasing the curvature, the panel stiffness increases.
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Fig. 3 Variation of the fundamental natural frequency versus shear modulus ratio for SCSC spherical shell panels

This behavior is completely different for SFSF laminated panels. In this case, by increasing the curvature the
fundamental natural frequency decreases.

Figure 6 exhibits the influence of aspect ratio (b/a) on the non-dimensional fundamental natural frequency
of the laminated spherical shell panels for different boundary conditions. It can be inferred from Fig. 6 that
with the increase in the aspect ratio, the non-dimensional natural frequency of SSSS and SCSC laminated shell
panels decreases, while the inverse behavior is experienced for SFSF laminated shell panels. Also, it can be
observed that the aspect ratio exerts a greater influence on the natural frequencies of SSSS and SCSC laminated
shell panels in comparison with the SFSF ones. It is noticeable that a similar behavior has been previously
reported by Ref. [29] for thick rectangular plates.

The variations of non-dimensional fundamental natural frequency of the simply supported laminated spher-
ical shell panels versus the aspect ratio are illustrated in Fig. 7 for different values of curvature ratio. It is seen
that the effect of curvature ratio on the natural frequencies becomes more significant when the aspect ratio
increases.
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Fig. 4 Variation of the fundamental natural frequency versus shear modulus ratio for SFSF spherical shell panels
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Fig. 5 Variation of the fundamental natural frequency versus curvature ratio for laminated spherical shell panels (a/b = 1)

6 Conclusion

This paper dealt with exact closed-form solutions free vibration analysis of moderately thick laminated trans-
versely isotropic spherical shell panels on the basis of Sanders theory. The governing equations of motion and
the boundary conditions were derived. The highly coupled governing equations were recast to some uncoupled
equations by introducing four potential functions. Also, some relations were presented for the unknowns of the
original set of equations in terms of the unknowns of the uncoupled equations. According to the proposed ana-
lytical approach, both Navier and Lévy-type explicit solutions were developed for moderately thick laminated
spherical shell panels. The efficiency and high accuracy of the present approach were shown by providing
some comparison studies with the available results in the literature and the results of 3D finite element method.
It was shown that the effect of shear modulus ratio on the natural frequency of transversely isotropic shell
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Fig. 7 Variation of the fundamental natural frequency versus aspect ratio for SSSS laminated spherical shell panels

panels increases as the shell panel thickness increases. Also, it was shown that the effects of shear modulus
ratio on the natural frequencies of shell panels become more significant with an increase in the boundary
constraints. It was observed that the fundamental natural frequency of SCSC and SSSS laminated shell panels
decreases when the curvature ratio increases, whereas for the laminated panels with free boundary conditions,
the fundamental natural frequency increases when the curvature ratio increases.

Appendix 1

The coefficients αi are expressed as

α1 =
N∑

k=1

E (k)

1 − (
ν(k)

)2

(
ξ
(k+1)
3 − ξ

(k)
3

)
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α2 = 1

2

N∑

k=1

E (k)

1 + ν(k)

(
ξ
(k+1)
3 − ξ

(k)
3

)

α3 =
N∑

k=1

G(k)
3

(
ξ
(k+1)
3 − ξ

(k)
3

)

α4 = 1

3

N∑

k=1

E (k)

1 − (
ν(k)

)2

[(
ξ
(k+1)
3

)3 −
(
ξ
(k)
3

)3
]

α5 = 1

6

N∑

k=1

E (k)

1 + ν(k)

[(
ξ
(k+1)
3

)3 −
(
ξ
(k)
3

)3
]

Appendix 2

The coefficients l1 through l10 are defined as

l1 = 1

R2 KSα3 − ω2 I11

l2 = 1

R
KSα3 + ω2 I22

l3 = 1

R

[
2

(
α1 − α2

) + KSα3
]

l4 = 1

R
KSα3 + ω2 I22l5 =

(
KSα3 − ω2 I3

)

l6 = 1

RKSα3

[
KSα3 + 2

(
α1 − α2

)]

l7 = 1

KSα3

[
4

R2

(
α1 − α2

) − ω2 I1

]

l8 = α1α4

α1

(
l4 − l5l6

)
− α4l6

(
l2l6 − l1

)

l9 =
α4l6

(
l3 − l2

)
− α1

(
l5 + α4l7 − KSα3

)

α1

(
l4 − l5l6

)
− α4l6

(
l2l6 − l1

)

l10 =
l7

(
α4l6l2 + α1l5

)

α1

(
l4 − l5l6

)
− α4l6

(
l2l6 − l1

)

Appendix 3

The coefficients �1 through �15 are given by

�1 = l5
α5

+ l1
α2

�2 = l1l5 − l2l4
α2α5
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�3 = l9

l8
+ l2l6 − l1

α1

�4 = 1

l8

(

l10 + l2l6l9 − l1l9 + l3 − l2
α1

)

�5 = l2l6l10 − l1l10 + l2l7

l8α1

�6 =
l8

(
α1l5 + α4l2l6

)

l1l5 − l2l4

�7 =
α1l5l9 + α4l2

(
l6l9 − 1

)

l1l5 − l2l4

�8 =
l5

(
α1l10 + l3

)
+ l2

(
α4l6l10 + α4l7 − KSα3

)

l1l5 − l2l4

�9 = α2α5l5

l4
(

l1l5 − l2l4
)

�10 = α2l5
2 + α5l2l4

l4
(

l1l5 − l2l4
)

�11 =
l8

(
α1l4 + α4l1l6

)

l1l5 − l2l4

�12 =
α1l4l9 + α4l1

(
l6l9 − 1

)

l1l5 − l2l4

�13 =
l4

(
α1l10 + l3

)
+ l1

(
α4l6l10 + α4l7 − KSα3

)

l1l5 − l2l4

�14 = α2α5

l1l5 − l2l4

�15 = α2l5 + α5l1

l1l5 − l2l4
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