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Abstract The steady axisymmetric flow problem of a viscous fluid confined between two confocal spheroids
that are rotating about their axis of revolution with different angular velocities is considered. A linear slip, of
Basset type, boundary condition on both surfaces of the spheroidal particle and the container is used. Under
the Stokesian assumption, a general solution is constructed from the superposition of basic solutions in prolate
and oblate spheroidal coordinates. The boundary conditions on the particle’s surface and spheroidal container
are satisfied by a collocation technique. The torque exerted on the spheroidal particle by the fluid is evaluated
with good convergence for various values of the slip parameters, the relative angular velocity and aspect ratios
of the spheroids. The limiting case of no-slip is in good agreement with the available values in the literature.

Keywords Rotational motion · Stokes flow · Prolate spheroid · Oblate spheroid · Slip condition

1 Introduction

The properties of confined fluids in a continuous medium at low Reynolds number have continued to receive
much attention from researchers. In real situations of Stokes flow problems, particles or droplets are not iso-
lated, and the surrounding fluid is externally bounded by solid walls. Thus, it is important to determine whether
the presence of neighboring boundaries significantly affects the motion of a particle or droplet. The system
of a particle moving inside a cavity can be taken as an idealized model for the capture of particles in filters
composed of connecting pores of spherical or non-spherical shapes. The hydrodynamic interaction between
the particle and the cavity wall determines the deposition behavior of the particle toward the wall and thus
relates closely to the capture efficiency of the filter [1]. Problems of the hydrodynamic interactions between
two or more particles and between particles and boundaries have been treated extensively in the past [2,3].
Among various rotating fluid systems, the motion of a viscous fluid contained between two concentric rotating
spheres is of specific interest in both engineering design and geophysics because of its wide application in
different fields, for example, centrifuges, fluid gyroscopes [4], and colloidal science [2,5–9].

Landau and Lifshitz [10] discussed the slow motion of fluid contained in the space between two concentric
spheres. Munsun and Joseph [11] also investigated the problem of steady motion of a viscous fluid contained
between two concentric spheres which rotate about a common axis with different angular velocities and allow-
ing for the inertia term. For the rotating bodies, it is important to evaluate the couple experienced on bodies by
the fluid. The value of this couple is needed in designing and calibrating viscometers, and better predictions
of couple are essential in order to improve the accuracy of viscosity measurements [12].

One of the basic concepts of fluid mechanics is the no-slip boundary condition, i.e., assuming that the layer
of fluid next to a solid surface moves with the local velocity of the surface. This no-slip boundary condition has

H. H. Sherief · M. S. Faltas · E. A. Ashmawy (B)
Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
E-mail: emad_ashm@yahoo.com



938 H. H. Sherief et al.

been applied successfully to model many macroscopic experiments but has no microscopic justification. There
exist situations in which the no-slip boundary condition leads to singular or unrealistic behavior, e.g., [13–23].
In recent years, there has been an increased interest in determining the appropriate boundary conditions for the
flow of Newtonian fluids in confined geometries. In fact, nearly 200 years ago, Navier [24] proposed a general
boundary condition that permits the possibility of fluid slip at a solid boundary. This condition assumes that
the tangential velocity of the fluid relative to the solid at a point on its surface is proportional to the tangential
stress acting at that point. Fluid slip has been observed experimentally in micro- and nano-scale flow devices
by several investigators, e.g., [25–28]. Neto et al. [29] provided an excellent review of experimental studies
regarding the phenomenon of slip of Newtonian fluids at solid interface.

In recent years, there has been an increased interest in using the slip boundary condition to solve flow
problems in viscous, micropolar, and microstretch fluids, e.g., [30–36]. Loyalka and Griffin [37] have studied
numerically the rotation of non-spherical axisymmetric particles in the slip regime using the Green’s function
technique to determine the local stresses and torques on single particles. Previous work on the rotation of sin-
gle, spherical, and non-spherical particles has been reviewed by Williams and Loyalka [38]. Recently Chang
and Keh [39] investigated, using spheroidal coordinates, the problem of rotation of a slip spheroidal particle
about its axis of revolution. They evaluated the torque exerted on the spheroidal particle by the fluid for various
values of the slip parameter and aspect ratio of the particle. More recently, Ashmawy [40] studied the rotational
motion of an arbitrary axisymmetric slip particle in a viscous fluid using a combined analytical–numerical
technique. Numerical results are obtained for the special cases of prolate spheroid and Cassini oval particles.
It should be noted here that it is a matter of difficulty to obtain analytical solution for the problem of rotation
of non-spherical particle allowing the fluid to slip at the surface of the particle.

The boundary collocation technique has been used by many authors to solve flow problems in viscous
fluids. Gluckman et al. [41] developed truncated series boundary collocation method to study the unbounded
axisymmetric multispherical Stokes flow. The theoretically predicated drag results are in good agreement with
experimentally measured values. Later, Leichtberg et al. [42] extended the work of Gluckman et al. [41] to
bounded flows for coaxial chains of spheres in a tube. Ganatos et al. [43,44] modified the collocation series
solution techniques to investigate the Stokes flow of perpendicular and parallel motion of a sphere between
two parallel plane boundaries. The collocation method has been also used to treat the axisymmetric slip flow
problems, e.g., [45–47]. It is also used to solve micropolar fluid flow, e.g., [35,48].

This paper investigates Stokes flow of an incompressible viscous fluid between two confocal spheroids
which are rotating steadily about their axis of revolution with different angular velocities. The fluid is allowed
to slip frictionally at the surface of a prolate or oblate spheroidal particle and at the surface of its container.
A combined analytical-numerical method with the boundary collocation technique has been used to solve the
Stokes equations for the fluid flow field. The rotational torque coefficient is obtained with good convergence
for various parameters considered.

2 Mathematical formulation

We consider here the steady motion of an incompressible viscous fluid of viscosity μ that fills the gap between
two confocal spheroids which are rotating about their axis of revolution, as shown in Fig. 1. The angular
velocity of the spheroidal particle is ω1�ez whereas for the container is ω2�ez , where �ez is the unit vector in the
positive z-direction. The fluid is allowed to slip frictionally at particle and container surfaces.

It is convenient to use both the circular cylindrical coordinates (ρ, φ, z) and the bifocal coordinates (ξ, η, φ)
with the origin of coordinates located at the center of the container. Spheroidal particles can be either prolate
or oblate. Using a simple transformation, we can obtain the results for the oblate particles from those for the
prolate spheroidal particles. Therefore, we begin by investigating the case of prolate spheroidal particles only.
Let the surface of the spheroidal particle Sp is represented by ξ = ξ1 or by

z2

a2
1

+ ρ2

b2
1

= 1, (2.1)

and the surface of its confocal container Sc is represented by ξ = ξ2 or by

z2

a2
2

+ ρ2

b2
2

= 1, (2.2)
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Fig. 1 Geometrical sketch for rotating confocal spheroids

where a1, a2 are the half-lengths, along the axis of revolution, and b1, b2 are the equatorial radii of the particle

and container, respectively. It is appropriate to use the semi-focal length c =
√

a2
i − b2

i as a characteristic
length. The cylindrical coordinates are related to the prolate spheroidal ones through the equations

z = c cosh ξ cos η, ρ = c sinh ξ sin η, (2.3)

where 0 ≤ ξ < ∞, 0 ≤ η ≤ π .
Therefore

ai = c cosh ξi , bi = c sinh ξi , (i = 1, 2) (2.4)

It is convenient to introduce the following independent variables [2]:

τ = cosh ξ, ζ = cos η, |τ | > 1, −1 ≤ ζ ≤ 1. (2.5)

At this point, the surfaces of the spheroidal particle Sp and the container Sc are represented, respectively, by
τi = ai

c , (i = 1, 2).
Under the Stokesian approximation, the fluid flow is governed by the equations

∇ · �q = 0, (2.6)

∇ p − μ∇2 �q = 0, (2.7)

where �q is the velocity field and p is the dynamic pressure distribution. The flow is axially symmetric and all
physical quantities are independent of φ; therefore,

�q = qφ�eφ, (2.8)

where �eφ is a unit vector perpendicular to the meridian planes φ = constant. Under these circumstances,
Eq. (2.6) is satisfied automatically, the dynamic pressure keeps constant everywhere in the fluid region, and
the velocity component qφ satisfies the following equation:

E2(ρqφ) = 0, (2.9)

where the operator E2 is given by

E2 = 1

c(τ 2 − ζ 2)

[
(τ 2 − 1)

∂2

∂τ 2 + (1 − ζ 2)
∂2

∂ζ 2

]
. (2.10)
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To complete the formulation of the problem, the boundary condition has to be specified. At the surfaces of the
spheroidal particle and container, we shall assume linear slip boundary condition of Basset type [49] which
states that the relative tangential velocity of the fluid at the solid surface is proportional to the local shear rate.
Therefore,

qφ = ρω1 + 1

β1
tτφ on Sp : τ = τ1, (2.11)

qφ = ρω2 − 1

β2
tτφ on Sc : τ = τ2, (2.12)

where tτφ is the fluid shear stress, which can be expressed as

tτφ = μ
√

τ 2 − 1

c
√

τ 2 − ζ 2

[
∂qφ

∂τ
− τ

τ 2 − 1
qφ

]
, (2.13)

and the constant, βi , termed as the coefficient of sliding friction. This coefficient is a measure of the degree
of tangential slip existing between the fluid and solid at its surface. It is assumed to depend only on the nature
of the fluid and solid surface. In the limiting case of βi = 0, there is a perfect slip, while the standard no-slip
boundary condition for solids is obtained by letting βi → ∞.

3 Method of solution

Substituting (2.10) into Eq. (2.9), we get

(
τ 2 − 1

) ∂2qφ

∂τ 2 + 2τ
∂qφ

∂τ
− qφ

τ 2 − 1
+ (

1 − ζ 2) ∂2qφ

∂ζ 2 − 2ζ
∂qφ

∂ζ
− qφ

1 − ζ 2 = 0. (3.1)

Putting qφ = f (τ )g(ζ ), we obtain the following ordinary differential equations

(
1 − τ 2) f ′′ − 2τ f ′ +

[
n(n + 1) − 1

1 − τ 2

]
f = 0, (3.2)

(
1 − ζ 2) g′′ − 2ζg′ +

[
n(n + 1) − 1

1 − ζ 2

]
g = 0, (3.3)

where n(n + 1) is the separation constant. Therefore, after omitting the irregular terms, a general solution of
Eq. (3.1) in the fluid region τ1 < τ < τ2, 0 ≤ η ≤ π is given by [50]

qφ = ω1c
∞∑

k=1

[
A2k−1 Q1

2k−1(τ ) + B2k−1 P1
2k−1(τ )

]
P1

2k−1(ζ ), (3.4)

where P1
n and Q1

n are the associated Legendre polynomials of the first and second kinds, respectively, of order
n and degree 1, and An, Bn are unknown coefficients. Note that, since qφ is symmetric about the equatorial
plane z = 0, we keep only the odd terms in the series solution (3.4).
Substitute from (3.4) into (2.13) and using the identities

d

dτ
P1

n (τ ) = 1

τ 2 − 1

[
nτ P1

n (τ ) − (n + 1)P1
n−1(τ )

]

d

dτ
Q1

n(τ ) = 1

τ 2 − 1

[
nτ Q1

n(τ ) − (n + 1)Q1
n−1(τ )

]

the shear stress is given by

tτφ = μω1√
τ 2 − ζ 2

∞∑

k=1

[
A2k−1 F2k−1(τ ) + B2k−1G2k−1(τ )

]
P1

2k−1(ζ ), (3.5)
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where

Fn(τ ) = 1√
τ 2 − 1

(
(n − 1)τ Q1

n(τ ) − (n + 1)Q1
n−1(τ )

)
,

Gn(τ ) = 1√
τ 2 − 1

(
(n − 1)τ P1

n (τ ) − (n + 1)P1
n−1(τ )

)
.

From (2.3) and (2.5), we have

ρ = c
√

τ 2 − 1
√

1 − ζ 2. (3.6)

Substituting the relations (3.4), (3.5), and (3.6) into the boundary conditions (2.11) and (2.12), we get

∞∑
k=1

[
A2k−1

(
Q1

2k−1(τ1) − μ
cβ1

√
τ 2

1 −1√
τ 2

1 −ζ 2
F2k−1(τ1)

)

+ B2k−1

(
P1

2k−1(τ1) − μ
cβ1

√
τ 2

1 −1√
τ 2

1 −ζ 2
G2k−1(τ1)

)]
P1

2k−1(ζ ) =
√

τ 2
1 − 1

√
1 − ζ 2,

(3.7)

∞∑
k=1

[
A2k−1

(
Q1

2k−1(τ2) + μ
cβ2

√
τ 2

2 −1√
τ 2

2 −ζ 2
F2k−1(τ2)

)

+ B2k−1

(
P1

2k−1(τ2) + μ
cβ2

√
τ 2

2 −1√
τ 2

2 −ζ 2
G2k−1(τ2)

)]
P1

2k−1(ζ ) = ω

√
τ 2

2 − 1
√

1 − ζ 2,

(3.8)

where ω = ω2/ω1 is the relative angular velocity of the spheroidal container. To determine the fluid velocity,
the boundary conditions (3.7) and (3.8) should be satisfied exactly along the surface of spheroidal particle
and the container surface. This would result in an infinite linear system of algebraic equations for an infi-
nite number of unknown coefficients, which cannot be solved. This difficulty can be overcome by the use of
a multipole collocation technique [41–44]. It requires first that the infinite series be truncated after a certain
number of terms N (say) so that the number of the unknown coefficients becomes finite. Then, sufficient points
on each of the particle surface and container surface are selected as collocation points, where the boundary
conditions are enforced. Solving these equations (numerically) subsequently enables one to determine the flow
field. In general, more boundary collocation points are required to attain a given accuracy when the axis ratio
τ2/τ1 = a2/a1of container-to-particle is close to unity. As N tends to infinity, we get the exact solution.

3.1 The torque

The hydrodynamic torque (in the z−direction) exerted on the rotating spheroidal particle by the fluid, obtained
from the moment of the stress about the axis of rotation, is given by

T =
∫

Sp

�r ∧ (�n · t) · �kdS, (3.9)

where

�r = c√
τ 2

1 − ζ 2

[
τ

√
τ 2

1 − 1�eξ − ζ
√

ζ 2 − 1�eη

]
,

also, �n = �eξ and �k is the unit vector in the direction of the axis of rotation, t is the stress tensor, and the integral
is taken over the boundary of the particle’s surface; therefore,

T = 2πc3

1∫

−1

tτφ

(
τ 2

1 − 1
)√

ζ 2 − 1
√

τ 2
1 − ζ 2dζ, (3.10)
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Substitute for tτφ from (3.5) and using the orthogonality relation of P1
n (ζ ), we obtain

T = −16

3
πμc3ω1 A1. (3.11)

The above expression shows that only the lowest-order coefficient A1 contributes to the hydrodynamic torque
acting on the particle. This leading coefficient normally is the most accurate (fastest convergent) result obtain-
able from the boundary collocation technique [39].

For the classical case of no-slip, we take the limit as β1 → ∞ and β2 → ∞ in Eqs. (3.7) and (3.8) to get

∞∑

k=1

[
A2k−1

(
Q1

2k−1(τ1)
) + B2k−1

(
P1

2k−1(τ1)
)]

P1
2k−1(ζ ) =

√
τ 2

1 − 1
√

1 − ζ 2, (3.12)

∞∑

k=1

[
A2k−1

(
Q1

2k−1(τ2)
) + B2k−1

(
P1

2k−1(τ2)
)]

P1
2k−1(ζ ) = ω

√
τ 2

2 − 1
√

1 − ζ 2, (3.13)

Since P1
1 (ζ ) = √

1 − ζ 2, equating the coefficients of P1
1 (ζ ) in both sides of Eqs. (3.12), (3.13), we obtain

A1 Q1
1(τ1) + B1 P1

1 (τ1) =
√

τ 2
1 − 1, (3.14)

A1 Q1
1(τ2) + B1 P1

1 (τ2) = ω2

ω1

√
τ 2

2 − 1. (3.15)

Solving the above linear system and substituting into Eq. (3.11), we get after some straight forward simplifi-
cations an exact formula for the hydrodynamic torque acting on the surface of the spheroid in the form

T = 16

3
πμc3 (ω1 − ω2)(τ

2
1 − 1)(τ 2

2 − 1)

(τ 2
1 − 1)(τ 2

2 − 1)(coth−1 τ2 − coth−1 τ1) + (τ2 − τ1)(τ2τ1 + 1)
. (3.16)

For spheroidal particle rotating with angular velocity ω1 in a stationary container, the expression (3.16)
reduces to

T = 16

3
πμω1c3 (τ 2

1 − 1)(τ 2
2 − 1)

(τ 2
1 − 1)(τ 2

2 − 1)(coth−1 τ2 − coth−1 τ1) + (τ2 − τ1)(τ2τ1 + 1)
. (3.17)

The torque experienced by the fluid on a spheroidal particle rotating, with an angular velocity ω1 about its axis
of revolution, in an unbounded fluid for the case of no-slip can be obtained from (3.17) by letting τ2 → ∞.
So we get

T = 8

3
πμω1b3

1

[√
τ 2

1 − 1
(
τ1 −(

τ 2
1 − 1

)
coth−1 τ1

)]−1

, (3.18)

where b1 = c
√

τ 2
1 − 1.

This latter relation is in agreement with that of Jeffery [50].

4 Numerical results

The system of linear algebraic equations to be solved for the coefficients An, Bn using the boundary colloca-
tion technique is constructed from Eqs. (3.7) to (3.8). When specifying the Npoints along the quarter-elliptic
generating arc of the spheroidal particle and its container where the boundary condition (3.7) and (3.8) are
to be exactly satisfied, the first point that should be taken is η = π/2(ζ = 0), since this point defines the
projected area of the particle normal to its axis of revolution. This point together with the point η = 0(ζ = 1)
are singular points for the collocation method, so they need special considerations. A numerical examination
of the system of linear algebraic equations in the truncated form shows that the coefficient matrix becomes
singular if these points are used. To overcome this difficulty, these points are replaced by closely adjacent
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points η = ε and η = π/2 − ε. Additional points along the boundary are selected to divide the quarter-elliptic
arc of the spheroid into segments into equal angles.

We present here, the collocation solutions of the normalized torque, T1/8πμc3ω1 experienced by the fluid
on the slip spheroidal particle. Calculations are made for equal slip parameters on both of the spheroidal particle
and the container and for various values of the following parameters:

(a) The axis ratio,
(b) The slip coefficient,
(c) The relative angular velocity.

The results are shown in Tables 1, 2 and in Figs. 2, 3 for prolate particle and in Tables 3, 4 and Figs. 4, 5 for
oblate particle. It is observed that, in general, the magnitude of the normalized torque increases with the increase

Table 1 Normalized torque acting on the prolate spheroid ξ = ξ1 with τ2/τ1 = 2

ω2/ω1 N T1/8πμc3ω1

cβ/μ = 0.01 cβ/μ = 0.1 cβ/μ = 1.0 cβ/μ = 10.0 cβ/μ = ∞
−1.5 8 0.000794 0.007820 0.067713 0.290027 0.458716

9 0.000794 0.007820 0.067713 0.290026 0.458716
0.0 8 0.000318 0.003128 0.027085 0.116011 0.183486

9 0.000318 0.003128 0.027085 0.116011 0.183486
1.5 8 −0.000159 −0.001564 −0.013543 −0.058005 −0.091743

9 −0.000159 −0.001564 −0.013543 −0.058005 −0.091743
2.0 8 −0.000318 −0.003128 −0.027085 −0.116011 −0.183486

9 −0.000318 −0.003128 −0.027085 −0.116011 −0.183486
5.0 8 −0.001271 −0.012512 −0.108341 −0.464043 −0.733945

9 −0.001271 −0.012512 −0.108341 −0.464042 −0.733945

Table 2 Normalized torque acting on the prolate spheroid ξ = ξ1 with ω2/ω1 = 2

τ2/τ1 N T1/8πμc3ω1

cβ/μ = 0.01 cβ/μ = 0.1 cβ/μ = 1.0 cβ/μ = 10.0 cβ/μ = ∞
1.1 7 −0.000252 −0.002497 −0.023161 −0.134686 −0.291700

8 −0.000252 −0.002497 −0.023161 −0.134688 −0.291700
1.2 7 −0.000285 −0.002820 −0.025342 −0.126233 −0.227662

8 −0.000285 −0.002820 −0.025342 −0.126234 −0.227662
1.5 7 −0.000311 −0.003068 −0.026801 −0.118681 −0.192645

8 −0.000311 −0.003068 −0.026801 −0.118683 −0.192645
2.0 7 −0.000318 −0.003128 −0.027085 −0.116010 −0.183486

8 −0.000318 −0.003128 −0.027085 −0.116011 −0.183486
10.0 7 −0.000320 −0.003145 −0.027130 −0.114720 −0.179437

8 −0.000320 −0.003145 −0.027131 −0.114722 −0.179437
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Fig. 2 Normalized torque acting on the prolate spheroid ξ = ξ1 with τ2/τ1 = 2
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Fig. 3 Normalized torque acting on the prolate spheroid ξ = ξ1 with ω2/ω1 = 2

Table 3 Normalized torque acting on the oblate spheroid ξ = ξ1 with λ2/λ1 = 2

ω2/ω1 N T1/8πμc̃3ω1

c̃β/μ = 0.01 c̃β/μ = 0.1 c̃β/μ = 1.0 c̃β/μ = 10.0 c̃β/μ = ∞
-1.5 10 0.007836 0.077084 0.662009 2.768835 4.314823

11 0.007836 0.077084 0.662009 2.768835 4.314823
0.0 10 0.003134 0.030834 0.264804 1.107534 1.725929

11 0.003134 0.030834 0.264804 1.107534 1.725929
1.5 10 −0.001567 −0.015417 −0.132402 −0.553767 −0.862965

11 −0.001567 −0.015417 −0.132402 −0.553767 −0.862965
2.0 10 −0.003134 −0.030834 −0.264804 −1.107534 −1.725929

11 −0.003134 −0.030834 −0.264804 −1.107534 −1.725929
5.0 10 −0.012538 −0.123334 −1.059215 −4.430137 −6.903717

11 −0.012538 −0.123334 −1.059215 −4.430136 −6.903717

Table 4 Normalized couple acting on the oblate spheroid ξ = ξ1 with ω2/ω1 = 2

λ2/λ1 N T1/8πμc̃3ω1

c̃β/μ = 0.01 c̃β/μ = 0.1 c̃β/μ = 1.0 c̃β/μ = 10.0 c̃β/μ = ∞
1.1 10 −0.002090 −0.020863 −0.202765 −1.726929 −10.837443

11 −0.002090 −0.020863 −0.202765 −1.726928 −10.837443
1.2 10 −0.002232 −0.022237 −0.213392 −1.587271 −5.717041

11 −0.002232 −0.022237 −0.213392 −1.587271 −5.717041
1.5 10 −0.002628 −0.026049 −0.238716 −1.318416 −2.683231

11 −0.002628 −0.026049 −0.238716 −1.318415 −2.683231
2.0 10 −0.003134 −0.030834 −0.264804 −1.107534 −1.725929

11 −0.003134 −0.030834 −0.264804 −1.107534 −1.725929
10.0 8 −0.003876 −0.037593 −0.288831 −0.876188 −1.137241

9 −0.003876 −0.037592 −0.288830 −0.876186 −1.137241

in the slip parameter with fixed values of the relative angular velocity and axis ratio for both prolate and oblate
spheroidal particles. There is a significant increase in normalized torque for values of the slip parameter less
than 10 and tends to a finite value for the classical no-slip case. As expected, the normalized torque becomes
zero for perfect slip. It is also observed that when the particle and envelope rotate in opposite directions (i.e.,
ω2/ω1 < 0), the magnitude of the normalized torque is much greater than that of the corresponding case when
the particle and envelope rotate in the same direction)ω2/ω1 > 0) for the different values of axis ratio and
slip parameter. Figures 6, and 7 represent the fluid velocity profiles for prolate spheroids versus τ/τ1 and ζ ,
respectively, when cβ/μ = 1 and ω2/ω1 = 2. It can be observed from these two figures that the values of
velocity increase monotonically with the increase in the axis ratio and decrease with increase in ζ . For oblate
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spheroids, the velocity profiles are represented by Figs. 8, and 9 versus λ/λ1and ζ , respectively. A similar
observation to that of Figs. 6, and 7 applies to Figs. 8, and 9.

The solution for oblate spheroids can be obtained by making the following transformations [2]

τk → iλk and c → −i c̃ = −i
√

b2
k − a2

k , bk > ak(k = 1, 2), i = √−1

where

λ = sinh ξ, ζ = cos η, 0 ≤ λ < ∞, −1 ≤ ζ ≤ 1.

5 Conclusion

In this work, the boundary collocation numerical solution for the hydrodynamic torque acting on a slip sphe-
roidal particle in a container is obtained. The solid particle and the spheroidal container rotate with different
angular velocities, in the same or opposite directions, about their axis of revolution. The results for the normal-
ized torque acting on the particle indicate that the solution procedure converges rapidly, and accurate solutions
can be obtained for various cases of the particles relative angular velocity, axis ratio, and slip parameter. It has
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been found that, for the no-slip of a prolate spheroidal particle in an unbounded fluid (τ2 → ∞), our results
of the hydrodynamic torque given by (3.18) are in good agreement with those of Jeffery [50].

The normalized torque increases monotonically with the increase in the axis ratio for a fixed relative angular
velocity and slip parameter. It also vanishes for perfect slip.
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