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Abstract An elliptical front crack has been found to be more accurate and realistic for modeling the transverse
surface crack in rotating machinery compared with the widely used straight front crack. When the shaft rotates,
the elliptical crack opens and closes alternatively, due to gravity, and thus, a “breathing effect” occurs. This var-
iance in shaft stiffness is time-periodic, and hence, a parametrically excited system is expected. Therefore, the
dynamic instability and steady-state response of a rotating shaft containing an elliptical front crack are studied
in the paper. The local flexibility due to the crack is derived, and the governing equations of the crack shaft
system are established using the assumed modes method. Utilizing the Bolotin’s method and harmonic balance
method, the boundaries of two typical instability regions and maximum response amplitude of the cracked
shaft could be computed numerically. The elliptical crack parameters (depth, shape factor and position) and
damping are, respectively, considered and discussed for their effects on the dynamic behavior of the elliptical
cracked shaft. Some research results might be helpful for the crack detection in rotating machinery.

Keywords Rotating shaft · Elliptical surface crack · Breathing effect · Dynamic instability ·
Steady-state forced response

1 Introduction

Shafts are among components subjected to, perhaps, the most arduous working conditions in high-performance
rotating equipment used in process and utility plants. Due to manufacturing flaws or cyclic loading, cracks
frequently appear in rotating machinery. The growth of cracks in the rotating components can cause severe
accidents if undetected. It is well known that a surface crack introduces local flexibilities and then alters the
vibrational behavior of the shaft. Thus, the dynamic behavior of a rotating shaft containing a transverse surface
crack, which is useful for the crack detection in rotating machinery, has been investigated since the 1970s.
Early research progress could be found in [1–3]. Recently, more detailed reviews of the crack modeling and
diagnosis were given by Papadopoulos [4] and Bachschmid [5], respectively.

In many of those works, a straight edge is usually considered to idealize the surface crack front [6–8].
However, it is shown from the experimental observations [9,10] that the actual surface crack front in shaft
under cyclical bending or axial load tends to be a curve rather than a straight line. The problem is largely
solved using an elliptical arc to model the surface crack front [11,12]. As the literature shows, extensive efforts

Q. Han (B) · F. Chu
Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
E-mail: hanqinkai@hotmail.com
Tel.: +861062788308
Fax: +861062788308

F. Chu
E-mail: chufl@mail.tsinghua.edu.cn



710 Q. Han, F. Chu

have been devoted to calculating the stress intensity factors (SIF) and then analyzing the fatigue growth of an
elliptical surface crack in a shaft or round bar [13–17], while the dynamic behavior of an elliptical cracked
shaft has not gained sufficient attentions. In the pioneering work by Rubio [18,19], flexibility expressions for
cracked shafts having elliptical front cracks under bending or axial tension load were obtained, based on the
strain energy release rate (SERR) approach and the polynomial fitting of SIF, taking into account the size and
shape of the elliptical cracks. When the shaft rotates, the elliptical crack opens and closes alternatively, due
to gravity, and thus, a “breathing effect” occurs. This variance in shaft stiffness is time-periodic, and hence,
a parametrically excited system is expected. The parametric excitation from the time-varying shaft stiffness
causes instability and severe vibration under certain operating conditions.

Therefore, the dynamic instability and steady-state response of an elliptical cracked shaft under both para-
metric and self-weight excitations are studied in the paper. First, local flexibility coefficients in two transverse
directions by Rubio [18] are adopted, and the time-periodic local compliance due to shaft rotating is fitted
through a similar approach in Ref. [6]. Then, the governing equations of a rotating elliptical cracked shaft
are obtained in virtue of the assumed modes method. The Bolotin’s method and harmonic balance method
are, respectively, introduced for determining the unstable boundaries and steady-state forced responses. Based
upon these, a practical used heavy rotating shaft is taken as a numerical example. Boundaries of two typical
instability regions and variations of maximum vibrational amplitude with shaft rotating speed are solved. The
effects of crack parameters (crack depth, shape factor and position) and damping on the dynamic behavior of
cracked rotating shaft are discussed, respectively. Finally, some useful conclusions are given.

2 Elliptical crack modeling

Rubio [18,19] employed the SIF solutions for the elliptical front crack and formulated flexible coeffi-
cients of an elliptical cracked shaft submitted to bending moments M and axial loads T using the SERR
approach. In the derivation, the axial flexibility was coupled with that of the bending. It was shown, how-
ever, that if the bending moment dominated in the shaft, the coupling terms might be neglected. In current
research, the bending moment M is of the most significance, and hence, the corresponding flexibility is only
considered.

The cross-section of a circular shaft with an elliptical transverse crack is shown in Fig. 1. The radius of
the circular cross-section, major and minor axes of the crack ellipse are, respectively, denoted as R, b and a.
The points A and B are the intersection points between the crack ellipse and circular. Point C is an arbitrary
point on the elliptical arc s. The projection lengths of points A and C upon the axis Oξ are expressed as h
and ξ1. The characteristic parameters of an elliptical crack are as follows: crack depth α = a/R, shape factor
β = a/b and relative position in the front of the crack γ = ξ1/h.

Fig. 1 Cross-section of a circular shaft with an elliptical transverse crack
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According to the Castigliano theorem, the local flexibility of the crack due to bending moment in the Oξ
direction is obtained as

cξ = ∂2

∂M2

(∫
Ac

�dAc

)
(1)

where � is the energy release rate due to the crack growth (or called strain energy density function), and Ac
is the crack surface area. For the surface crack under bending moment, the SIF with mode I, K I , is the only
non-zero one. Considering the formulation of linear fracture mechanics, the relationship between the � and
K I in plane strain conditions is

� = 1 − ν2

E
K 2

I (2)

in which E is the Young’s modulus and ν is Poisson’s ratio. With the geometrical dimensions defined in Fig. 1,
the K I of the elliptical surface crack for the M in the Oξ direction can be expressed in the following form

K I = FI,1(α, β, γ )σM
√
πa (3)

where σM is the maximum bending stress in the circular cross-section (σM = 4M/(πR3)), and FI,1(α, β, γ )
is the geometry correction factor. Experimental backtracking technique and finite element analysis have been
employed by Shin [17] to evaluate the stress intensities along the front of an elliptical surface crack. A closed-
form expression of FI,1(α, β, γ ) using a multi-parameter fitting technique could be found in [17]. Substituting
Eq. (3) into (2), and then into Eq. (1), one can have

cξ = 1 − ν2

E

32

πR6

(∫
Ac

F2
I,1(α, β, γ )adAc

)
(4)

in which dAc = dsda. The elliptical arc differential ds takes the form

ds = a

√
1

β2 sin2 φ + cos2 φdφ (5)

Substituting Eq. (5) into (4) and considering the symmetrical distribution of K I about the Oη axis (φ = π/2),
one can obtain

cξ = 1 − ν2

E

64

πR3

α f∫
0

π/2∫
φ1

F2
I,1(α, β, γ )α

2

√
1

β2 sin2 φ + cos2 φdφdα (6)

where α f is the nominal crack depth, φ1 is the lower limit and cosφ1 = h̄. According to the geometry
dimensions in Fig. 1, one can have

h̄ = h/b = β

√
2
√
β4 + (1 − β2)α2 − (1 − β2)α2 − 2β2

(1 − β2)2α2 (β �= 1) (7)

h̄ = h/b =
√

1 − α2/4 (β = 1) (8)

In computation, the relative position γ should be substituted by 1
h̄

cosφ. When the bending moment M is in
the Oη direction, the SIF along the crack front could be expressed similarly as

K I = FI,2(α, β, γ )σM
√
πa (9)

For the elliptical cracked shaft under bending moment in the Oη direction, all the numerical results about
the FI,2(α, β, γ ) deduced through finite element analysis were displayed in Ref. [13], where α ranges from
0.2 to 1.2, and β varies from 0 to 1.2. Here, a closed-form expression of FI,2(α, β, γ ) is obtained using a
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Fig. 2 Variations of c
′
ξ with α f in the range of 0–1 for various β

multi-parameter fitting technique. Similar to the computation of cξ , the flexibility coefficient cη in the Oη
direction is written as

cη = 1 − ν2

E

32

πR3

α f∫
0

π/2∫
φ1

F2
I,2(α, β, γ )α

2

√
1

β2 sin2 φ + cos2 φdφdα (10)

Something should be mentioned is that only half of the crack surface is in tension stress condition for the
bending moment in the Oη direction. Thus, Ac/2 is adopted in analysis. In order to facilitate the following
analysis, dimensionless forms of flexibility coefficients are defined

c
′
ξ = ER3

1 − ν2 cξ , c
′
η = ER3

1 − ν2 cη (11)

Utilizing the double numerical integration technique, the flexibility coefficients c
′
ξ , c

′
η are solved with given

crack depth α f and shape factor β. Figure 2 gives the variations of c
′
ξ with α f in the range of 0 to 1 for

various shape factors (β = 0, 0.5, 1.0). Obviously, β = 0 corresponds to a straight crack front. The results
of the straight crack front obtained by numerically solving Dimarogonas’ formula [20] are also presented in
the figure for comparison with the current results. From Fig. 2, one can see that for β = 0 (straight front
crack), the results of this paper agree well with that of Dimarogonas. As it was expected, and according to the
literature results [18], the flexibility increases non-linearly with the crack depth. After considering the elliptical
crack front, the flexibility is reduced. Especially for the circular front crack (β = 1), the reduction is the most
obvious. This is explained as: With certain crack depth, the surface area of the curved front crack is smaller
than that of the straight front crack. In addition, the SIFs along the curved crack front also change accordingly.

For the shaft rotating with a constant speed Ω , the elliptical surface crack is opened at its lower position
and closed at its upper one due to gravity. Thus, the extra compliance would depend on its orientation with
respect to direction of the gravitational force. The amount goes from zero (0 ≤ Ωt < θA, where θA represents
� AO1 D in Fig. 1) as the crack is closed to c

′
η when it is half-opened, then to its maximum value c

′
ξ when

the crack is fully opened. This variance is periodic, and hence, a periodic time-varying system is expected.
When the crack depth α f = 0.5, Fig. 3 shows the time-varying local flexibility c

′
(t) in one full revolution

with various crack shape factors (β = 0, 0.4, 0.8, 1.0). Obviously, increasing the shape factor would cause
the amplitude of time-varying extra compliance reduce. Since only the values in ξ −η directions are available,
the curves in between are fitted by spline functions.
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Fig. 3 The variation of crack flexibility with the shaft orientation for various β

3 Model of a rotating heavy shaft with elliptical front crack

A simply supported heavy shaft with an elliptical surface crack, as shown in Fig. 4, is modeled as an Euler–
Bernoulli beam with constant angular rotating velocityΩ . The rotor span is l, and an elliptical crack locates at
x∗ on the shaft. The distributed load p(x, t) equals to ρg A (ρ and A are the material density and cross-section
area of the shaft) as the self-weight of the heavy shaft is the dominate external load. This is reasonable in
most turbine rotors. Since the energy method is to be adopted for the equations of motion, the kinetic energy
T , potential energy Vs of the shaft without crack and the work W done by the external load are expressed as
follows

T = 1

2

l∫
0

ρA

[
∂y(x, t)

∂t

]2

dx, Vs = 1

2

l∫
0

E I

[
∂2 y(x, t)

∂x2

]2

dx, W =
l∫

0

ρg Ay(x, t)dx (12)

where y(x, t) denotes the displacement function of the shaft in the vertical plane, and E I represents shaft
bending rigidity. The released potential energy due to the elliptical surface crack could be obtained as

Vc = 1

2
c(t)

[
E I
∂2 y(x∗, t)

∂x2

]2

(13)

Thus, the total potential energy of the system is V = Vs − Vc.
The assumed modes method is now chosen for the equations of motion. Since the crack is theoretically of

zero thickness, it is realized that the crack imposes significant effects on the local zone: e.g., stress intensity.
As to the global behavior, it is believed that the natural modes of a cracked shaft are merely slightly perturbed
from those of an uncracked shaft. It is hence reasonable to chose the natural modes of simply supported beam

Fig. 4 A simply supported heavy rotating circular shaft with an elliptical surface crack
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as a basis upon which to expand the displacement response of the cracked shaft. Then, both the kinetic and
potential energies could be discretized with respect to the generalized coordinate. By employing Lagrange’s
equation, the discrete governing equations of motion in matrix form are obtained as

Mq̈(t)+ Cq̇(t)+ [
K0 − Kcc′(t)

]
q(t) = fg (14)

where q is the vibration displacement vector, and the upper dot denotes differentiation with respect to time.
The mass matrix of the shaft system is denoted by M = diag[mi ]. The K0 = diag[ki ] and Kc = [kc

i j ] are the
constant and time-variable parts of the stiffness matrix for the system. If the proportional viscous damping is
considered, then the damping matrix could be gained as C = ς1M + ς2K0, in which ς1 and ς2 are the mass
and stiffness damping coefficients, respectively. fg = [ fi ] is the generalized force vector. The elements of the
mass matrix, stiffness matrix and force vector could be, respectively, expressed as

mi =
l∫

0

ρAψi (x)ψi (x)dx (15)

ki =
l∫

0

E Iψ
′′
i (x)ψ

′′
i (x)dx (16)

kc
i j = (1 − ν2)EIR

4
ψ

′′
i (x

∗)ψ ′′
j (x

∗) (17)

fi = ρg A

l∫
0

ψi (x)dx (18)

in which ψi and ψ j are the i th and j th natural mode shape functions for the simply supported beam. The
upper primes in ψ

′′
i are differentiations with respect to x . Due to the existence of time-varying stiffness, the

elliptical cracked rotating shaft is a typical parametrically excited system, as shown in Eq. (14). The parametric
frequency and amplitude are related to the rotating angular speed and crack depth. Usually, the working speed
of rotating machinery is lower than the third order of critical speed. Thus, the first three natural modes of the
system are chosen in the following analysis, and the discrete system has three degrees of freedom.

4 Parametric instability and steady-state response analysis

4.1 Numerical determination of unstable boundaries

Determination of unstable boundaries is of the most interest in parametric instability analysis. Here, the Bo-
lotin’s method [21] is adopted to compute the boundaries of simple instability regions Ui

n . The starting points
of Ui

n at the parametric frequency axis could be written as [22]

Ui
n ∼ 2

n
ωi

′ (n = 1, 2, 3, . . .) (19)

in which ωi
′ denotes the i th natural frequency of equivalent time-invariant system (the average equivalent

frequency). For the boundaries of Ui
n (n = 1, 3, 5, . . .), the solution of actual parametric system should be

expressed by 2T periodic solutions as

q(t) =
∞∑

k=1,3,5,...

[
ak sin

(
kΩt

2

)
+ bk cos

(
kΩt

2

)]
(20)

The time-periodic local flexibility c′(t) is written in Fourier series form

c′(t) = c0 +
∞∑
j=1

[
c j cos( jΩt)+ d j sin( jΩt)

]
(21)
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Substituting Eqs. (20) and (21) into the homogenous form of Eq. (14) (fg = 0), one can obtain a series of
equations with different orders of sin( kΩt

2 ) and cos( kΩt
2 ). Setting the coefficients of the equations with the

same order to be zero, the homogenous equations satisfied by the ak and bk are obtained. The expressions,
describing the parametric boundaries with unstable parameters, are gained by making the dominant equal to
zero. If the Ui

1 is concerned, the k in Eq. (20) is taken as 1 and the dominant for determining the unstable
boundaries is computed as

det

([− 1
4Ω

2M + K0 − c0Kc + 1
2 c1Kc − 1

2ΩC − 1
2 d1Kc

1
2ΩC − 1

2 d1Kc − 1
4Ω

2M + K0 − c0Kc − 1
2 c1Kc

])
= 0 (22)

If more instability regions (Ui
3, Ui

5 and so on) are taken into account, the number of values for the k in Eq. (20)
should be increased correspondingly.

For the boundaries of Ui
n (n = 2, 4, 6, . . .), the solution of actual parametric system should be expressed

by T periodic solutions as

q(t) = b0 +
∞∑

k=2,4,6,...

[
ak sin

(
kΩt

2

)
+ bk cos

(
kΩt

2

)]
(23)

Substituting Eq. (23) into (14), the boundaries of the other half of simple instability regions, such as the Ui
2, Ui

4
and Ui

6, are obtained through a similar solution process with that of the 2T periodic solution. If only the Ui
2 is

interest, the gained dominant is expressed as

det

⎛
⎝

⎡
⎣K0 − c0Kc − 1

2 d1Kc − 1
2 c1Kc

−d1Kc −Ω2M + K0 − c0Kc + 1
2 c2Kc −ΩC − 1

2 d2Kc

−c1Kc ΩC − 1
2 d2Kc −Ω2M + K0 − c0Kc − 1

2 c2Kc

⎤
⎦

⎞
⎠ = 0 (24)

More simple instability boundaries could be gained by adding the number of values of the parameter k in
Eq. (23).

4.2 Steady-state forced response analysis

The steady-state forced response of the cracked shaft under self-weight excitation is mainly considered in the
paper. The harmonic balance method is utilized to compute the amplitude values of forced response spectra.
By taking y(t) = [q̇(t) q(t)]T , Eq. (14) could be rewritten in state space form as

ẏ(t) = A(t)y(t)+ fs (25)

in which the time-periodic coefficient matrix A(t) and force vector fs are expressed as

A(t) = −
[

0 M
M C

]−1 [−M 0
0 K0 − Kcc′(t)

]
(26)

fs =
[

0 M
M C

]−1 [
0
fg

]
(27)

The steady-state forced response of the elliptical cracked shaft could be represented as

y(t) =
∞∑

s=−∞
yseisΩt (28)

where i = √−1. The periodic coefficient matrix A(t) could also be rewritten by Fourier series

A(t) =
∞∑

k=−∞
AkeikΩt (29)
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Substituting Eqs. (28) and (29) into (25) and simplifying by setting the same harmonic coefficients zero, then
one can obtain the following infinite-dimensional linear algebraic equations about the steady-state response
spectral amplitudes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
...

...
...

...
...

...
· · · ���4 A−1 A−2 A−3 A−4 A−5 A−6 A−7 A−8 · · ·
· · · A1 ���3 A−1 A−2 A−3 A−4 A−5 A−6 A−7 · · ·
· · · A2 A1 ���2 A−1 A−2 A−3 A−4 A−5 A−6 · · ·
· · · A3 A2 A1 ���1 A−1 A−2 A−3 A−4 A−5 · · ·
· · · A4 A3 A2 A1 ���0 A−1 A−2 A−3 A−4 · · ·
· · · A5 A4 A3 A2 A1 ���−1 A−1 A−2 A−3 · · ·
· · · A6 A5 A4 A3 A2 A1 ���−2 A−1 A−2 · · ·
· · · A7 A6 A5 A4 A3 A2 A1 ���−3 A−1 · · ·
· · · A8 A7 A6 A5 A4 A3 A2 A1 ���−4 · · ·
...

...
...

...
...

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
y−4
y−3
y−2
y−1
y0
y1
y2
y3
y4
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
0
0
0
0
fs
0
0
0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

where���s = A0 + isΩI (s = · · · ,−2,−1, 0, 1, 2, . . .), and I is the unit matrix. As indicated in the literature,
such equations can be truncated to a finite-dimensional ones in order to obtain an approximate numerical
solution for the steady-state response spectral amplitudes. The first four response spectra will be taken into
account to meet the accuracy requirements.

5 Computation and discussions

A practical used heavy shaft [6] is taken as a numerical example for computation and discussions. The shaft
parameters are as follows: l = 10 m, R = 0.5 m, ρ = 7, 850 kg/m3, E = 2.1 × 1011 Pa, ν = 0.3. A
dimensionless parameter χ∗ = x∗/ l is defined to describe the relative position of the elliptical crack on the
shaft.

5.1 Parametric instability regions

Without the elliptical crack, the first three natural frequencies of the shaft are as follows: ω1
′ = 127.6 rad/s,

ω2
′ = 510.5 rad/s and ω3

′ = 1, 148.6 rad/s. From Eq. (19), the starting points of simple instability regions
are as follows: U 1

1 ≈ 255.2 rad/s, U 2
1 ≈ 1, 021 rad/s and so on. In actual, due to damping, the high orders of

instability regions (usually n > 2 in Eq. (19)) would be greatly weakened. The above two instability regions
are mainly considered in the following analysis.

The boundaries of U 1
1 and U 2

1 in the parameter’s plane (rotating speed Ω versus crack depth α f ) are
solved using Eq. (22). The discrete state transition matrix (DSTM) method is another classical method for the
parametric stability analysis. Utilizing the DSTM method, the instable regions are also determined in order to
verify the results gained in this paper. Here, a numerical methodology presented by Friedmann [23] is utilized
to estimate the DSTM. The comparisons of U 1

1 and U 2
1 for β = 0.0 and χ∗ = 0.3 are given in Fig. 5. Obvi-

ously, the two aspects of results agree well with each other, indicating that the parametric instability analysis
is reasonable and believable.

The effects of shape factor β, crack position χ∗ and damping (ς1 = 1.0 and ς2 = 2.3e − 7) upon the
instability regions are investigated and shown in Figs. 6, 7 and 8, respectively. It is shown from the figures
that the starting points of U 1

1 and U 2
1 on the rotating speed axis are just about 255.2 and 1,021 rad/s. With the

increasing in α f , the two instability regions become wide and shift toward the lower rotating speed ranges.
This is because the parametric excitation due to crack is enhanced as the crack grows. Moreover, the average
natural frequency of the cracked shaft is also reduced, and thus, the instability regions would appear in lower
rotating speed ranges.

From Fig. 6, one can see that the instability regions become smaller and shift to the right with the increasing
in β. For given crack depth, according to the discussions in Sect. 2, the local flexible coefficients are reduced if
the β is increased. Thus, the parametric excitation amplitude is depressed, and the instability regions become
small.
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Fig. 5 Comparisons of unstable boundaries obtained by the Bolotin’s method and the DSTM method for β = 0.0 and χ∗ = 0.3:
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Fig. 6 The effect of β upon the two instability regions for χ∗ = 0.3: a U 1
1 ; b U 2

1

When the crack position is approaching the midpoint of the shaft (χ∗ = 0.45), the U 1
1 has greater ranges

compared with the cases of χ∗ = 0.25 and χ∗ = 0.35, as shown in Fig. 7a. However, one can find from Fig. 7b
that the range of U 2

1 with χ∗ = 0.25 is wider than that of χ∗ = 0.35 and χ∗ = 0.45. This could be explained
in the context of nodal location. The U 1

1 is related to the first natural mode of the simply supported shaft. When
χ∗ = 0.45, the elliptical crack position is just the position having greater modal deformation. In this case,
the crack would have the bigger influence on the U 1

1 . With the crack location moving toward the supported
points (χ∗ =0.35 or χ∗ = 0.25), the crack influence is depressed. In case of U 2

1 , the modal deformation of
χ∗ = 0.25 at the second mode shape of the simply supported shaft is larger than that of χ∗ = 0.35 or 0.45.
Thus, the U 2

1 with χ∗ = 0.25 has wider range than the other cases. From Fig. 8, one can find that the U 1
1 and
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1

U 2
1 are attenuated by the damping, especially for the shallow surface cracks. It is indicated that the parametric

instability induced by small surface crack is not obvious in actual practice.

5.2 Steady-state response of cracked shaft under both parametric and self-weight excitations

For small surface cracks, the damped shaft system remains stable in most rotating speed ranges. In this case, the
steady-state response of the system subjected to parametric and self-weight excitations would be of most inter-
est. The first four response spectral amplitudes are solved utilizing the harmonic balance method in Sect. 4.2.
Then, the periodically forced response vector y(t) is approximately obtained through Eq. (28). Here, the results
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Fig. 10 Variations of the maximum vibration amplitude with rotating speedΩ in [200,600] forχ∗ = 0.5: a α f = 0.1; b α f = 0.5.
Solid lines β = 0.0; dashed lines β = 0.5

for the maximum displacement response amplitude of the first degree of freedom of the discrete shaft system
are given in Figs. 9, 10, 11, 12, with various elliptical crack parameters (crack depth, shaft factor and crack
position). The damping coefficients are set to be ς1 = 1.0 and ς2 = 2.3e − 7. In order to show the response
amplitude curves clearly, two rotating speed ranges around the two uncracked shaft natural frequencies (Ω in
[30,200] and [200,600]) are, respectively, plotted in the figures.
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Fig. 12 Variations of the maximum vibration amplitude with rotating speed Ω in [200,600] for χ∗ = 0.35: a α f = 0.1; b
α f = 0.5. Solid lines β = 0.0; dashed lines β = 0.5

It is shown from Figs. 9, 10, 11, 12 that there are many peaks in the two rotating speed ranges. This phenom-
enon is referred to as the subharmonic resonance and occurs when the rotational speed is an integer fraction
of the system frequency, i.e., Ω = ωi

′/n (n = 1, 2, 3, . . .). These resonances are identified and marked in
the figures. Similar phenomena have been observed in many investigations [6,24,25]. Moreover, the vibration
amplitude in the non-resonant range is 7.66 × 10−4m, which approximately equals to the static deformation
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of the shaft under self-gravity. Thus, one can see that the steady-state response analysis is reasonable and
believable.

Every resonant peaks of deeper cracks are all higher than those of lower cracks, indicating that the res-
onances become more and more severe as the crack grows. For certain crack depth, increasing the shape
factor would reduce the resonant amplitudes. This is because the parametric excitation induced by curved
surface crack has lower amplitude, and thus, the subharmonic resonances become weakened. Compared with
Figs. 9, 10, and 11, 12, one can see that the crack position also has impact on the subharmonic resonances.
For χ∗ = 0.5, the crack is just at the nodal line of the second modal shape of the simply supported shaft.
Thus, the resonances related to the second natural mode do not appear. Instead, the resonances related to the
third natural mode, such as ω3

′/2 and ω3
′/3, are found in Fig. 10. When χ∗ = 0.35, as shown in Fig. 12,

the second subharmonic resonances (ω2
′/2 and ω2

′/3) appear as the crack is away from the nodal line of the
modal shape. In this case, the crack position is near the nodal line of third mode shape. Thus, the third-order
resonant peaks are not obvious due to the attenuation effect of damping. When the crack is approaching the
shaft support point, the resonances related to the first natural mode (ω1

′, ω1
′/2 and ω1

′/3) are reducing, which
could be found by comparing the peak amplitudes in Figs. 9 and 11.

6 Conclusions

The dynamic instability and steady-state response of a rotating heavy shaft containing an elliptical surface
crack are studied using the Bolotin’s method and harmonic balance method. The effects of crack parameters
and damping are considered and discussed in the dynamic analysis. Some conclusions are summarized as fol-
lows: Both the ranges of instability regions and steady-state response amplitudes all become smaller and lower
with the increasing in crack shape factor. For deeper surface crack, the instability regions are wider and tend
to appear in lower rotating speed range. In this case, the subharmonic resonances seem to be more intensive
and severe. The influence of crack position on the dynamic behavior of crack shaft should be discussed in the
context of nodal location. If the crack locates at certain position with greater modal deformation (such as the
midpoint for the first natural mode), then it would have more significant impact on the instability regions and
dynamic responses, which are related to this order of natural mode. However, its impact would reduce and
even disappear as it approaches the nodal line of the mode shape. The instability regions would be attenuated
as long as the damping is taken into account, especially for the shallow surface cracks.
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