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Abstract The simulation of human gait is a complex dynamical problem that requires accounting for energy
consumption as well as dealing with a redundantly actuated multibody system. If muscle forces and generalized
coordinates are parameterized, optimization techniques allow the simulation of the muscle forces and of the
walking motion. An optimization framework is presented for non-symmetrical gait cycles found in the pres-
ence of one-sided gait disorders. The motion of each leg is independently parameterized for a whole walking
cycle. The non-linear constraints used to fulfill the equations of motion and the kinematical constraints of the
different walking phases are implemented in an efficient way. Fifth-order splines are used for the parameteriza-
tion to reduce the oscillatory behavior coming from non-periodicity conditions. To achieve the computational
performance required for three-dimensional simulations, the spline interpolation problem has been split in two
parts, one is performed in a preprocessing stage and the other during the optimization. Numerical differentia-
tion via finite differences is avoided by implementing analytical derivatives of the splines functions and of the
contractile element force law. The results show good numerical performance, and the computational efficiency
for 3D-simulations with one-sided gait disorders is highlighted.

Keywords Parameter optimization · Human walking · Muscle forces · Metabolical energy expenditure

1 Introduction

The simulation of human walking by computer techniques is a major area of research interest for many years.
Multibody system dynamics (MSD) techniques are potentially very powerful in this field, and there are many
contributions from the MSD community to this challenging problem [3,4,18,20]. The human body can be
assumed to be a multibody system actuated by muscles. Even if some researchers have started to study the
influence of the deformation of the bones, e.g., Al Nazar et al. [4], it is sufficient to consider that the bones
behave as rigid bodies during smooth activities like walking in normal conditions. The human body actuators,
the muscles, have their own dynamics that is formulated similar to proportional-integral force actuators. In
addition, the alternating contact conditions of the foot on the ground result in a rigid multibody system with a
different number of degrees of freedom at each one of the phases of motion. It is expected that the application
of the MSD techniques to the problem of human walking will help to understand better how muscles are
recruited by the central nervous system (CNS) to move the body in an energy efficient way. This information
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is important for the design of rehabilitation therapies or surgical interventions and the development of more
efficient assistive devices for amputees.

The methods most frequently used to simulate the human walking motion together with the muscle forces
responsible for such a motion can be classified into three groups: the so-called dynamic optimization approach,
the optimal control approach, and the parameter optimization approach. The dynamic optimization consists
of an optimization where the equations of motion of the human body model are integrated forward in time after
each iteration of the optimization algorithm for a given set of muscle force histories. The muscle force histories
can be expressed in terms of parameters that can be used as design variables of the optimization algorithm. In
this kind of methods, the cost function to be optimized is usually a measure of the energy expenditure. One
of the most significant contributions to human walking simulation using dynamic optimization is the work
of Anderson and Pandy [7]. The main drawback of the dynamic optimization is the high computational cost
required due to the many forward integrations of the equations of motion of the human body model. In fact,
Anderson and Pandy [7] reported more than 10,000 h of calculation in a computer with 32 processors to achieve
a solution for their three-dimensional model. This procedure has also been used to simulate other activities
like jumping or pedaling, see Pandy [17].

Transforming the problem into an optimal control problem has provided an efficient method for dynamic
simulation of walking. Controllers have been used mainly to preserve the stability of the walker model in
forward dynamics simulations. In this regard, Wojtyra [28] used a simple closed-loop control algorithm to
stabilize a walking motion by following a measured gait pattern. Peasgood et al. [18] developed a multibody
model with a balance controller to dynamically maintain the stability of the model. Then, estimating the
metabolical energy cost, an optimization algorithm could be used to find the optimal walking motion of the
model.

Parameter optimization techniques have been frequently used for motion synthesis of biped robots [8].
These techniques have been proven to be powerful in two-dimensional human walking simulation as shown
by Ackermann [1]. The basics of this approach are the parameterization of the muscle forces and generalized
coordinates and the search for their optimal values by minimizing a cost function that includes an energy
expenditure estimation and a measure of deviation from normal walking patterns. The method is very much
based on the inverse dynamics since at each iteration of the optimization algorithm an inverse dynamic problem
is solved by using the motion reconstructed from the optimization parameters. The main advantage of this
approach is the complete elimination of the forward integrations of the equations of motion, what signifi-
cantly reduces the computational cost of simulation. So far, three-dimensional neuromusculoskeletal models
of human walking have not been developed in the context of parameter optimization approaches. Recently,
Kim et al. [12] used a dynamic motion planning method in which the unknowns are the joint motion time
histories of 3D human model. They calculated joint motion histories by minimizing the deviation of the trunk
from upright posture as an objective function. However, neural excitations, muscles contraction and activation
dynamics, and metabolical expenditure were not considered.

Most of the models of human walking are composed of 7 (2 feet, 2 shanks, 2 thighs, and a pelvis-trunk
body) or 8 bodies (2 feet, 2 shanks, 2 thighs, pelvis, and trunk) in which the arms and head are lumped into
the trunk by adding its mechanical properties to the trunk body and ignoring their own dynamics. Umberger
[24] has studied recently the influence of the arms swing motion on the kinematics, kinetics, and energetics
of human walking reporting an influence less than 10%. The high interest in human walking has favored the
appearance of specific software for model development. It is worth of mention the work of Delp and Loan
[11] who developed a graphic-based software system for developing and analyzing models of musculoskeletal
structures.

Planar models have the advantage of being reduced but they can only be used to analyze symmetrical
walking motion which makes their applicability very limited. Ackermann [1] used a planar model to analyze
the walking motion of humans with bilateral disorders that are in fact much less common than unilateral
disorders. When a unilateral disorder is present in the model, the motion is not well represented in the sagittal
plane anymore. Therefore, the three-dimensional dynamics is fundamental to properly address the problem
of prosthesis design and to understand the influence of disorders in the walking of humans. A very detailed
model with 10 bodies and 54 muscles was developed by Anderson and Pandy [7].

This research is devoted to the extension of the parameter optimization approach used by Ackermann [1] to
three-dimensional models. This allows one to analyze the sensitivity of the model to the presence of unilateral
disorders and to study the human adaptation to this situation. The necessary speed up of the optimization
requires the development of advanced methods like the parameterization of the muscle forces and the motion
and the muscle contraction and activation dynamics.
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This paper is structured as follows. The second chapter presents the multibody model of the human body to
be analyzed, including muscle selection issues and details of the contraction and activation dynamics. Section 3
is devoted to the parameter optimization framework used to simulate the three-dimensional motion and muscle
forces of the human body model. Finally, some numerical results for one-sided gait disorders are included in
Sect. 4.

2 Model description

The human body model used is a three-dimensional rigid multibody system actuated by muscles. The equations
of motion of the system are obtained by using the multibody software Neweul-M2 [13], which generates the
equations of motion in symbolic form for efficiently analyzing, simulating and optimizing multibody systems.
The skeleton is first considered as an open kinematic chain built from rigid bodies that are connected by
holonomic joints and described by a set of nc generalized coordinates. Thus, starting from the Newton–Euler
equations of the rigid bodies in the kinematic chain, the equations of motion are written in terms of the
generalized coordinates by virtue of the d’Alembert’s principle [21] as

M (q) q̈ + k
(
q, q̇

) = qr

(
q, q̇

) + BAf m (1)

where M (q) is the (nc × nc)-mass matrix of the system, q, q̇ and q̈ are the (nc × 1)-position, velocity and
acceleration vectors, respectively. k is a (nc × 1)-vector describing the generalized Coriolis forces, qr is a
(nc × 1)-vector including generalized gravitational forces, passive generalized moments at the joints due to
tissues interacting with the joints according to the model of Riener and Edrich [19] and generalized viscous
damping torques at the knees and hips according to the model of Stein et al. [22], and BAf m is a (nc × 1)-
vector that includes the generalized forces exerted by the muscles actuating the model. The (Nm × 1)-vector
f m summarizes the forces generated by a reduced set of Nm muscles included in the model as described in
Appendix A. Matrix A is the constant (nb × Nm)-matrix of moment arms and is used to calculate the torques
generated by all muscles at the actuated joints, where nb is the number of actuated joints, and matrix B is a
(nc × nb)-distribution matrix used to obtain the generalized torques due to the torques at the actuated joints.

The three-dimensional model of the human body used in this research is composed of 7 rigid bodies, two
thighs, two shanks, two feet, and a body called HAT representing the pelvis, trunk, arms, and head, which are
connected by holonomic joints, see Fig. 1. The thighs are connected at the hips to the HAT by spherical joints,

Fig. 1 Model of the human body
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Fig. 2 Sketch of the contact conditions

the shanks and thighs are connected by revolute joints representing the knees, and the foot and shanks are
connected by revolute joints representing the ankles. This is a simplification of other three-dimensional models
that can be found in Anderson and Pandy [6]. However, this simplification allows the derivation by software
Neweul-M2 of the equations of motion of the tree composed by the mentioned 7 bodies without any constraint.
This simple model is used to study the proposed optimization framework in a three-dimensional simulation.
More realistic results could be obtained by using a more general representation of the joints, specially of the
ankle joints. For a more detailed description of the knee and ankle joints see Zatsiorsky [29].

The kinematic chain in Fig. 1 is described by the following vector of 16 generalized coordinates

q = [
xI 1 yI 1 zI 1 αI 1 βI 1 γI 1 α13 β13 γ13 β34 β45 α16 β16 γ16 β67 β78

]T (2)

where the subscript I refers to the inertial frame, subscript 1 refers to body HAT, which is in composed of
the pelvis and the trunk, subscripts 3 and 6 refer to right and left thighs, respectively, subscripts 4 and 7 refer
to right and left shanks, respectively, and subscripts 5 and 8 refer to right and left feet, respectively. When a
subscript is written as i j , it means a relative motion of body j with respect to body i . It shall be noted here
that Neweul-M2 is programmed based on the most common sequence of rotation 123, while in Biomechanics
the sequence 213 is usually considered anatomically meaningful, Zatsiorsky [29] and Allard, Cappozzo et al.
[5]. However, while the spatial rotations of the members are the same using the different rotation sequences,
for comparison with other authors’ results, the 213 sequence has been used.

Once the kinematic chain representing the skeleton is described, the contact of this chain with the ground
is added. The contact conditions in the different walking phases are represented by unilateral constraints.
However, due to the use of an optimization framework in which it is possible to constrain the normal contact
forces to be only positive, the contact with the ground is modeled using simple bilateral constraints associated
with the joints attached to the feet. Therefore, the contact forces can be easily added to the model by using a
vector of Lagrange multipliers as

M (q) q̈ + k
(
q, q̇

) = qr

(
q, q̇

) + BAf m + CT
phλph (ph = 1, 2, . . . , 8) (3)

where λph is the vector of Lagrange multipliers at phase ph of the motion. Note that the previous equation
is used together with constraints equations forcing the normal contact forces to be always positive. Moreover,
hard impacts will be avoided.

The contact conditions of different phases of the walking cycle are summarized in Fig. 2 in agreement with
the model of the foot adopted. Note that Ar and Br are used to refer to the right heel and right toe, respectively,
while Al and Bl are used to refer to the left heel and left toe, respectively.

In the formulation of contact, it is assumed that there is no sliding of the feet during the whole cycle of
walking. The contact conditions at the different phases are modeled as follows:.

• Phase 1: the left toe contact is modeled by constraining the three displacements of point Bl and the rotation
of the foot around an axis perpendicular to the flat surface of the ground (pivoting). On another hand, the
right heel contact is modeled by constraining the three displacements of point Ar and the rotation of the
foot around an axis perpendicular to the flat surface of the ground.
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• Phase 2: due to the contact of the right toe, a constraint to the vertical displacement of point Br is added
to the constraint set of phase 1.

• Phase 3: the contact at the left toe is removed.
• Phase 4: the contact at the right heel is also removed. The right toe contact is modeled by constraining the

three displacements of point Br and the pivoting rotation of the foot around an axis perpendicular to the
ground.

• Phase 5: the left heel gets in contact with the ground and this contact is modeled by constraining the three
displacements of point Al and the pivoting rotation of the foot around an axis perpendicular to the ground.

• Phase 6: due to the contact of the left toe, a constraint to the vertical displacement of point Bl is added to
the constraint set of phase 5.

• Phase 7: the contact at the right toe is removed.
• Phase 8: the contact at the left heel is also removed. The left toe contact is modeled by constraining the

three displacements of point Bl and the pivoting rotation of the foot around an axis perpendicular to the
ground.

2.1 Muscles actuating the multibody model

The muscle groups selected for this research are based on the work of Anderson and Pandy [6]. These authors
developed a three-dimensional model for vertical jumping which can also be used for walking analysis since
walking is a less demanding activity. It is also expected that the set of muscles used by these authors could be
reduced, since some of them may show a low enough activation during walking. Such a low activation would
result in a small muscle torque at the joints the muscle spans.

There is a need for selecting a criterion that allows one to combine muscles in groups. The first idea to
keep in mind is that the muscles to be included in the same group must have the same main function. Then,
averaged values of the moment arms will be obtained. This has been done previously by other authors, for
instance, Menegaldo et al. [14] suggested to obtain averaged values of certain muscle properties by using as
weights the products of the maximum force by the moment arm about each joint of the different muscles that
are to be combined. This criterion gives more importance to the muscles in the group that may produce a larger
joint moment during walking. Then, it is required to have the values of the forces exerted by each muscle
during a cycle of walking. To that end, the results obtained by Brand et al. [9] are used. In Ref. [9], the authors
obtained the peak force of each one of the musculotendon actuators during a walking cycle of normal gait.
With the peak forces, peak joint moments can be obtained and used as a measure of the contribution of each
muscle to the motion. This criterion is used in this investigation to average the moment arms for each muscle
group from the moment arms calculated by Menegaldo [15].

The previous idea can also be used to neglect certain muscles from the ones used by Anderson and Pandy
[6] so that the muscle set can be further reduced for the sake of simplicity. In order to check the contribution to
gait of each one of the muscle groups, the product of the averaged moment arm by the maximum force of the
muscle obtained by Brand et al. [9] can be used. These products are the maximum values of the moment com-
ponents corresponding to each muscle group during a walking cycle. Then, comparing the resultant moments
one to each other, it is concluded which are the muscles or muscle groups that can be neglected. Table 1
contains the values of the muscle torques contributed by each muscle or muscle group. The names in bold are
the muscles or muscle groups that are neglected due to their small contribution to walking.

2.2 Inversion of activation and contraction dynamics

An important part of the optimization process used to simulate a walking cycle is the inversion of the con-
traction and activation dynamics, see Ackermann [1]. The inversion of the contraction dynamics is needed
to obtain the values of the muscle activation, a, since they are required to evaluate the energy expenditure
according to the procedure proposed by Umberger et al. [25]. Once the activations are obtained, using their
time derivative, ȧ, it is possible to invert also the activation dynamics so that the neural excitations, u, are
also obtained, see Appendix C. The neural excitations are required for two reasons: one is that they are also
involved in the calculation of the muscle energy expenditure and the other is that they are involved in some of
the non-linear constraints of the optimization procedure since their values must lay in the interval [0, 1].

In the work of Ackermann [1], the muscle forces are parameterized by using cubic splines, which have
C2 continuity. The values of the muscle forces at certain time nodes are included in the set of optimization
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Table 1 Analysis of the different muscle group contributions to motion

Muscle Mpeak
h (Nm)

Mpeak
h

Mmax
h

(%) Mpeak
k (Nm)

Mpeak
k

Mmax
k

(%) Mpeak
a (Nm) Mpeak

a
Mmax

a
(%)

SOL 0 0 0 0 159.85 100
TA 0 0 0 0 37.11 23.22
GAS 0 0 33.02 11.19 87.5 54.74
BFSH 0 0 26 8.81 0 0
VAS 0 0 295.2 100 0 0
RF 60.19 42.15 50.46 17.09 0 0
HAMS 142.8 100 117.23 39.71 0 0
GRA 14.67 10.28 5.18 1.76 0 0
TFL 18.16 12.72 0 0 0 0
SAR 13.98 9.79 2.47 0.84 0 0
GMAXL 81.64 57.17 0 0 0 0
GMAXM 39.55 27.69 0 0 0 0
GMEDA 61.8 43.28 0 0 0 0
GMEDP 50.43 35.31 0 0 0 0
ADM 86.19 60.35 0 0 0 0
ADLB 69.97 49 0 0 0 0
ILPSO 55.65 38.97 0 0 0 0
PECT 13.94 9.76 0 0 0 0
PIRI 15.32 10.73 0 0 0 0
Bolded names correspond to muscles contributing with less than a 10% of the maximal contribution. The moment components
Mh, Mk , and Ma are related to hip, knee, and ankle, respectively

Fig. 3 Flow diagram of the inversion of the activation and contraction dynamics

variables. Then using numerical differentiation, the time derivative of the muscle force at another set of points,
the so-called control points, is computed by centered finite divided differences and other numerical formulae
obtained from truncated Taylor series. Since the control points are not uniformly distributed along the gait cycle,
the use of the previously mentioned numerical differentiation formulae leads to a non-uniform distribution of
the accuracy of the time derivative along the gait cycle.

The calculation of the time derivative of the muscle force is carried out by implementing the analytical
derivative of an higher order spline polynomial in the interpolation subroutine. Furthermore, the time derivative
of the activation, what is required when inverting the activation dynamics, can also be obtained after some
calculations due to the implementation of the first and second derivatives of the spline polynomials. Figure 3
shows a flow diagram summarizing the inversion process of the contraction and activation dynamics.
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3 Parameter optimization

The simulation of human walking motion is now treated as a huge parameter optimization problem. The opti-
mization parameters, also called design variables, are used to reconstruct the muscle force histories and the
generalized coordinate histories of a walking cycle as well. Such a set of parameters is found by minimizing
a cost function which is evaluated based on the energetic and esthetic reasons. Finally, the motion and muscle
forces time histories reconstructed from the optimization parameters are asked to fulfill many constraints. The
constraints of the constrained optimization problem ensure the fulfillment of the equations of motion of the
multibody system, the kinematic constraints as well as other physical and physiological relations.

The complete set of design variables is summarized in vector χ . This vector is itself built from four different
vectors as follows:

1. A vector q i , i = 1, 2, . . . , nc, containing all nodal values of the different generalized coordinates.
2. A vector f m

j , j = 1, 2, . . . , Nm , containing all nodal values of the different muscle forces. Since each
muscle force is parameterized as the generalized coordinates are, a similar number of design variables can
arise from muscle forces.

3. A vector with eight components representing the durations of the eight phases of a walking cycle t ph .
4. A vector with geometrical parameters describing the kinematic constraints of the feet on the ground pg .

According to the previous explanation, the vector of design variables can be written as:

χ =
[
qT

1 , . . . , qT
nc

, . . . , f m
1

T
, . . . , f m

Nm

T
, . . . , tT

ph, pT
g

]T
(4)

with

t ph = [t1, t2, . . . , t8]T

pg = [L R, L L , αR, αL , LW ]T
(5)

where L R and L L are the right and left step lengths, αR and αL are the right and left orientation angles of the
feet, and LW is the lateral distance between both ankles.

3.1 Optimization framework

Minimizing energy expenditure during walking is a reasonable criterion that the central nervous system uses
when dealing with muscles recruitment, specially when walking long distances. For this reason, it makes
sense to obtain muscle forces and generalized coordinates by minimizing the metabolical cost of walking.
In this investigation, the energy expenditure model due to Umberger et al. [25] is used as measure of the
metabolical cost. This energy measure was also used by Ackermann [1] while other authors have used dif-
ferent cost functions as for example a measure of the muscle fatigue, see Brand et al. [9] and Peasgood
et al. [18].

Umberger et al. [25] provided a measure of the metabolical expenditure including thermal and mechanical
energy liberation rates during simulated muscle contractions of mammalians at normal body temperature.
According to their model, the total energy rate of a single muscle is written as follows:

Ė = Ė
(
lce, vce, f ce, a, u, p

)
(6)

where lce is the contractile element length, vce is the contractile element velocity, f ce is the contractile element
force, a is the muscle activation, u is the neural excitation, and p is a vector summarizing all muscle constant
parameters required to evaluate the energy rate, see Umberger et al. [25]. The previous expression of the energy
rate can be integrated in time in order to obtain the amount of energy spent during walking as

E =
t f∫

t0

Ė
(
lce, vce, f ce, a, u, p

)
dt (7)

A more meaningful measure of energy consumption when considering walking long distances in normal
conditions is the energy expended per unit of length what can be obtained by dividing the total energy of one
cycle by the distance walked. This is called the total energy of transportation and reads as
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Et = E

L R + L L
(8)

where L R and L L are the right and the left steps walked in the simulated cycle.
Since the time histories of the muscle forces and of the generalized coordinates are obtained by optimiza-

tion techniques trying to minimize the energy consumption, there is a need to follow a certain motion pattern.
Otherwise, in an attempt to reduce the energy expenditure, a non-logical solution could be found. For example,
standing in equilibrium in vertical position without muscle contraction seems to be a low energy configuration.
Therefore, a measured walking motion is used to force the model to follow a certain motion. This fact has some
other advantages in the case of designing prosthesis. One of these advantages is that the simulated motion of
an individual wearing a prosthesis will be close to normal walking patterns which is desirable for esthetical
reasons. Another advantage is related with the contact forces at the feet. The simulated contact forces will be
close to those of a normal walking cycle what would result in no significant modification of the contact forces
at the non-damaged foot. This is reasonable in case of non-severe damages since other aspects like pain may
be more important than enforcing a symmetric walking motion.

The deviation with respect to normal walking patterns is evaluated as follows:

Jdev =
t f∫

t0

nx∑

i=1

(
xi (t) − xm

i (t)
)2

σ 2
i

dt (9)

where xi is a time-dependent variable of the model and xm
i refers to the experimentally measured value of

the same variable. These variables, xi with i = 1, 2, . . . , nx , include the generalized coordinates and ground
reaction forces. In (9), σi is a characteristic measure of the time variability of xi . Dividing by σi the differences
between measured and simulated values of all xi are scaled. In the work of Ackermann [1], the standard
deviation obtained by measuring the walking motion of many subjects and provided by Winters [27] was used
as σi . Since in this investigation, not a mean walking motion but the walking motion of one particular subject
is used, a measure related to the motion used is preferred. Therefore, the mean square deviation with respect
to the averaged mean is used as a measure of the time variability as

σi = 1

T

√√√
√√

t f∫

t0

(xi (t) − Xi )
2dt with Xi = 1

T

t f∫

t0

xi (t)dt. (10)

where Xi is the average of xi (t) in the measured walking cycle. The measured motion used in this research
was obtained by Ackermann and Gros [2] by measuring the walking motion of a subject wearing sport shoes
and walking at his preferred velocity.

Due to skin artifacts, some errors in the measured motion occur. Such errors are probably of different
significance for each generalized coordinate but it seems to be logical that errors due to skin artifacts are
relatively more significant for those generalized coordinates that experience a smaller time variation. For
instance, the generalized coordinate describing the flexion-extension of a leg may vary with σ = 0.35, while
the generalized coordinate describing femur rotation may vary only with σ = 0.03 during the measured cycle,
what means that femur rotation is not very significant during normal walking. Due to the measured rotation
may be more contaminated by the skin artifact errors and it makes sense to give more importance to better
captured motion by introducing weighting factors in Eq. (9) as

Jdev =
t f∫

t0

nx∑

i=1

ωi

(
xi (t) − xm

i (t)
)2

σ 2
i

dt (11)

In this investigation, weighting factors have been calculated as

ωi = σi
/
σmax

i (12)

being σmax
i the maximum σi (i = 1, 2, . . .). Notice that due to the much larger variability of the ground reaction

forces, the weighting factors for generalized coordinates are calculated with their corresponding σmax
i .
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Finally, the value of the cost function is calculated using the the metabolical cost of transportation, Et , and
the measure of the deviation from normal walking patterns, Jdev, as follows:

f = ωE
Et

100
+ ωJ Jdev, (13)

where Et is divided by the factor 100 to obtain a value with the same order of magnitude of Jdev for balancing
of the two terms of the cost function (13) to get comparable numbers, and ωE and ωJ are two weighting factors.

3.2 Parameterization

The procedure suggested by Ackermann [1] and used in this research avoids the forward integration through
parameterization of the time histories of the generalized coordinates by using spline polynomials and by
searching for their optimum values at certain node positions. Since walking is a periodic motion, other authors
have also used Fourier series to parameterize the motion, i.e., Peasgood et al. [18]. Spline functions have many
possibilities that can be used to improve the efficiency of the procedure. In fact, it is easy to have access to the
derivatives of the parameterized function, avoiding the numerical differentiation used by Ackermann [1]. In
addition, the interpolation can be split into two parts: a more computationally expensive one that can be done
in a pre-processing stage and the other that is done during the optimization.

As explained by Ackermann [1] and Bessonnet et al. [8], in order to avoid jerky variations of moments at
the joints, generalized coordinates must be approximated by using C3 splines, at least. This, in general, would
lead to solve a linear system of equations of size 5n − 5, being n the number of nodes used to approximate.
However, it is possible to reduce the size of the interpolation problem by algebraic manipulations previous to
the solution of the linear systems. In this work, fifth-order splines with periodic boundary conditions are used
to parameterize muscle forces and generalized coordinates.

It is observed that when periodic boundary conditions are used to obtain the interpolating spline polynomi-
als from a set of points which are not fully periodical in terms of the function values and their derivatives, an
oscillating behavior is induced into the spline polynomials. This undesirable oscillating behavior may hamper
the convergence of the optimization algorithm. The reasons for this lack of periodicity are twofold. On the
one hand, the measured motion that is used as a normal walking pattern and serves as the basis to evaluate the
deviation from normal walking patterns is not perfectly periodic. The attempt to minimize such a deviation
transfers the mentioned non-periodic behavior to the muscle forces and generalized coordinates. On another
hand, during the iterations of the optimization algorithm, any partial result may admit a certain degree of non-
periodicity due to numerical reasons. In this research, the above mentioned oscillatory behavior is decreased
by forcing the periodicity of the set of points used to calculate the interpolating polynomials. In the case of
fifth-order periodical splines, the degree of periodicity is defined according to

f1 = fN

f ′
1 + O

(
h3) = f ′

N + O
(
h3)

f ′′
1 + O

(
h3) = f ′′

N + O
(
h3)

f ′′′
1 + O

(
h3) = f ′′′

N + O
(
h3)

(14)

where f1, f ′
1, f ′′

1 , and f ′′′
1 are the values of the function to be interpolated at the first point node and its first,

second, and third derivatives, respectively, and h is the distance between points. It shall be noted that the
order of accuracy used could be selected to be higher. Using Taylor series expansions, it is possible to find the
derivatives at the first node by using a backward difference formula and the derivatives at the last node, N ,
by using a forward difference formula. Then, Eq. (14) result in a system of four linear equations from which
it is possible to obtain the values of f1, f2, fN−1, and fN that improve the periodicity of the data set to be
interpolated.

3.3 Constraint formulation

The solution of the optimization algorithm must fulfill a set of constraints as stated at the beginning of this
Chapter. The set of constraints is summarized as follows.
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1. Neural excitations must be bounded in the interval [0, 1]. This kind of constraint ensures that muscle forces
are consistent with the activation and contraction dynamics of the muscles.

2. Ground clearance must be positive or equal to zero to ensure no penetration of the feet into the ground.
3. Positive normal contact forces to avoid bilateral constraints between the feet and the ground.
4. Tangent contact forces on the feet must be consistent with Coulomb’s friction model to avoid foot sliding.
5. The averaged velocity is fixed.
6. Design variables are bounded. These bounds may be due to some physiological reasons like for example

the amplitud of the relative motion allowed by a certain joint.
7. Other physiological constraints that may help to the convergence of the optimization algorithm like for

instance constraining the maximal achieved knee flexion during the swing phase or the maximal achieved
hip extension during the stance phase, see Ackermann [1].

8. Equations of motion must be fulfilled according to a certain tolerance.
9. Kinematic constraints must be fulfilled within a certain tolerance.

Exactly satisfying the equations of motion, although it would be desirable, seems to be extremely difficult.
One reason for that is the parameterization of the motion and muscle forces by using splines. Doing so, we are
assuming a certain error in the representation of the motion since it does not have to be a combination of splines
polynomials. Therefore, we have to accept a small violation of the equations of motion. In order to quantify
such an infringement, the constraints are formulated in terms of joint torques since we know approximately the
usual range of values from inverse dynamics of normal walking. In what follows, the optimization constraints
of the equations of motion are formulated.

As it has been stated, muscle forces as well as generalized coordinates are considered as design variables.
This means that during the iterative solution of the optimization problem, we will have generalized coordinates
and muscle forces that are not completely consistent. In case we have a consistent set of muscle forces and
generalized coordinates, the following system of equation holds

Mq̈ + k = qr + BAf m + CT
phλph (15)

Then, we know that there is a unique set of Lagrange multipliers λph for each phase of the motion that can be
calculated for example by using the pseudo-inverse of the Jacobian matrix of the constraints, see Strang [23],
as

λph =
(
CT

ph

)+ (
Mq̈ + k − qr − BAf m)

(16)

In case the motion and the muscle forces are not fully consistent, the previous equation provides an esti-
mation of the Lagrange multipliers in a least square sense [23] and for that reason it is denoted as

λ∗
ph =

(
CT

ph

)+ (
Mq̈ + k − qr − BAf m)

(17)

Due to this inconsistence between the motion and the muscle forces, we have to accept a certain error em in
the equations of motion

Mq̈ + k = qr + BAf m + CT
phλ∗

ph + em (18)

Then, using Eqs. (17, 18), and the pseudo-inverse of CT
ph , one can write

CT
phλ∗

ph = CT
phλ∗

ph + em →
(
CT

ph

)+
em = 0 (19)

It shall be noted here that the number of components of vector em is equal to the number of generalized coor-

dinates while the number of rows of matrix
(
CT

ph

)+
is the number of active constraints, na , at the phase ph

of motion. In the previous equation, it has been used that
(
CT

ph

)+
CT

ph = I since, due to the non-redundant

set of kinematic constraints used, the columns of CT
ph are independent.

As it was said at the beginning of this section, the constraints coming from the equations of motion are
formulated in terms of joint torques. Thus, the torques at the joints can be evaluated from the muscle forces as

τm = Af m (20)
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where τm is the vector of joint torques with a number of components, nb, equal to the number of actuated
joint angles. On another hand, the torques can be calculated by using the estimated Lagrange multipliers of
Eq. (17) as

τ ∗ = B+ (
Mq̈ + k − qr − CT

phλ∗
ph

)
(21)

Now, substituting Eqs. (18) into (21) and using the properties of the pseudo-inverse once more, one has

τ ∗ = B+ (
Bτm + em

)
(22)

what, in case that B has independent columns and there is a full consistence between muscle forces and motion
(τm = τ ∗), leads to

B+em = 0 (23)

It is worth of noting here that the number of linear equations in (23) is equal to the number of actuated joints nb.
Equations (19) and (23) form a system of na + nb linear equations. It can be concluded that em = 0 if

na +nb is larger than the number of generalized coordinates, and therefore, if τm = τ ∗, then em = 0. However,
na + nb is not always larger than the number of generalized coordinates in all phases of motion. For example,
in the work of Ackermann [1], the planar model studied has na = 2 kinematic constraint equations in phases
4 and 8. Since the number of actuated joints is nb = 6 and the number of generalized coordinates is 9, it is not
possible to fulfill all the constraints of motion by having τm = τ ∗. The three-dimensional model used in this
research work has na = 5 in phases 3 and 7 and na = 4 in phases 4 and 8 and again the equality τm = τ ∗ does
not guaranty that em = 0. Therefore, the constraint

∣∣τm
i − τ ∗

i

∣∣ ≤ εm , being εm a certain tolerance, cannot be
used to ensure em to be small enough throughout the whole walking cycle.

In order to ensure the fulfillment of the equations of motion, the error is defined using the generalized force
vector associated with joint torques instead of the vector of torques itself. This can be done since the terms of
the generalized force vector of the joint torques acting on the coordinates describing the absolute motion of
the trunk and pelvis with respect to the inertial frame are zero. This way, the generalized force vector of the
joint torques can be obtained from muscle forces

qm = BAf m, (24)

and from the estimated Lagrange multipliers according to (15) or (18), respectively

q∗ = Mq̈ + k − qr − CT
phλ∗

ph . (25)

The optimization constraint of the equations of motion is now written as
∣
∣qm

i − q∗
i

∣
∣ ≤ εm i = 1, 2, . . . , nc, (26)

where εm is the tolerance of the constraint satisfaction. The error term to be bound at each control point is

ei, j (χ) = (
qm

i − q∗
i

)
j (27)

what, according to Eq. (26), leads to two constraints per control point and per each component of the generalized
joint torque vector as follows

ei, j (χ) /εm − 1 ≤ 0

−1 − ei, j (χ) /εm ≤ 0
(28)

Of course, this formulation results into a larger number of constraints of the equations of motion per control
point as compared to the formulation used by Ackermann [1], who defined the violation of the constraint by
taking the maximum of the norm of the error at control points as

max
(|e j (χ) |) ≤ εm j = 1, 2, . . . , nb (29)

Even if the number of constraint equations is increased, the formulation used in this research leads to a bet-
ter possed constrained optimization problem. Using Eq. (28), the constraints of the equations of motion are
continuous and the Jacobian of the constraints provides a better information when searching for the optimum,
what results in a smaller number of iterations of the optimization algorithm.
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4 Numerical results

This Chapter shows some numerical results of the simulations carried out using the optimization framework
presented. First, a two-dimensional symmetrical model has been analyzed to check the performance of the
approach and the convergency of the model for different parameterizations. Later, non-symmetrical models
are analyzed. The first is two-dimensional non-symmetrical while the second is three-dimensional, both of
them including unilateral disorders.

4.1 Two-dimensional symmetrical model

A two-dimensional symmetrical (2DS) model can also be found in the work of Ackermann [1], and therefore,
a comparison of the numerical results and performance is possible. Since many improvements are introduced,
the comparison serves also to validate the added modifications.

The two-dimensional model used in this section is modeled by using 9 coordinates and 7 bodies. A sketch
of the model can be seen in Fig. 4. As it is shown, the model is contained in the sagittal plane. The symmetry
of the model allows a big simplification in the number of optimization variables. In fact, it is assumed that the
left leg experiences in the second half of the walking cycle the same motion as the right leg in the first half.
In addition, the motion of the pelvis is assumed to be the same in both halves of the cycle. Muscle forces of
the left leg are exactly the same as those of the right one but shifted half a walking cycle. Therefore, the sym-
metrical model is represented by the generalized coordinates of the pelvis during the first half of the walking
cycle and the generalized coordinates and muscle forces of the right leg during the whole walking cycle.

Table 2 shows the results of several models that differ one to another in the number of nodes used to
parameterize the generalized coordinates and muscle forces. Every model has an odd number of nodes in
order to have a node exactly at the time instant equal to half of the walking period. Thus, the number of nodes
ranges from 19 to 35. The convergency of the different models to a unique solution is remarkable. As can be
observed in Table 2, increasing the number of nodes always leads to a smaller difference in the value of the
cost function f . The same behavior is observed in the values of the metabolical cost of transportation, Et , and
the deviation from normal walking pattern, Jd measured in the lab.

The last column of data in Table 2 shows the computation time required for each model. In the case of the
27 and 35 nodes models, the computation times could not be feasibly measured due to other processes running

Fig. 4 Sketch of the two-dimensional model with its generalized coordinates
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Table 2 Performance of the different models

N N f Et (J/m) Jd CT (h)

19 13.33 626.00 7.07 0.55

21 7.54 415.73 3.38 1.85

23 6.52 351.01 3.01 2.87

25 5.50 310.62 2.39 3.25

27 4.99 283.28 2.16 5.65a

29 4.62 254.22 2.08 8.66

31 4.45 246.32 1.99 9.52

33 4.37 238.57 1.98 13.17

35 4.31 236.10 1.95 16.16a

N N stands for number of nodes, f is the cost function, Et is the metabolical cost of transportation, Jd is the measure of deviation
from normal walking patterns, CT stands for computation time
a Estimated CT values
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Fig. 5 Different positions of the 2D walker during a gait cycle. The left leg is identified by positions −0.5 and 0.5 m, the right
leg is found at positions −0.1 and 1.0 m

on the same computer, and their values have been estimated by fitting a polynomial to the rest of values. The
tolerances for the fulfillment of the equations of motion and of the kinematical constraints were εm = 2 Nm
and εk = 2 mm as in the work of Ackermann [1]. On another hand, the termination tolerances for the SQP
optimization algorithm were fixed to T ol Fun = 10−4, T olCon = 10−4, and T ol X = 10−6, being T ol Fun
the termination tolerance for the cost function, T olCon the termination tolerance for the constraints violation,
and T ol X the termination tolerance for design variables vector. The computation times shown in Table 2 have
been obtained using a processor Intel� Xeon� CPU E5530 at 2.40 GHz with 4 cores and 6 GiB RAM. It has
been observed that the pre-computation of the matrices involved in the spline interpolation, the elimination of
numerical differentiation, and the proper formulation of the equations of motion and kinematical constraints
have helped to reduce the computation time to achieve a converged solution. Figure 5 shows different positions
of a walker during a gait cycle simulated using 29 nodes.

It is worth of mention that the values of the metabolical cost of transportation, Et , and the deviation from
the normal measured motion, Jd , do not coincide with the values reported by Ackermann [1]. These differences
can be due to the different parameterization used in this research and the different definition of the measure
of the deviation from normal walking. Ackermann [1] used the standard deviation to scale the deviation from
simulated values and measured ones, while the mean square deviation from the mean value has been used in
this research. The weighting factors wE and wJ used here are both equal to 1. As shown by Ackermann [1],
a difference in the mentioned weighting factors may lead to different values of the optimized magnitudes,
i.e., the metabolical cost of transportation, Et , and the deviation from measured motion, Jd .
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Fig. 6 Time histories of the generalized coordinates of the 35 nodes symmetrical model solution (solid thin line), of the 18 nodes
2DNS model (solid thick line) and of the 18 nodes 2DNS model with one-sided disorder (dash dot thick line)

4.2 Two-dimensional non-symmetrical model

A two-dimensional non-symmetrical (2DNS) model as the one represented in Fig. 4 is tested in this section
against one-sided disorders. In this case, the disorder consists of an increase in the weight of the right foot
by 2 kg. In principle, one-sided disorders are expected to cause walking motions that cannot be described
in the sagittal plane anymore even though the human being tries to keep as vertical as possible for stability
reasons and to walk as normal as possible for esthetic reasons. The behavior of the 2DNS model in presence
of a one-sided disorder is studied here and later compared with that of a three-dimensional model. The main
advantage of the 2DNS model is it ability to reproduce non-symmetrical motions while keeping a reasonable
computational complexity.

As was mentioned before, the measured walking motion is not perfectly symmetrical. In order to study
the influence of one-sided disorders, a fully symmetrical walking motion is taken from a 35 nodes symmet-
rical model and used as reference motion. The symmetrical motion used is kinematically and dynamically
consistent with the musculoskeletal model used in this section. Therefore, a loss of symmetry cannot be
induced by the reference motion. Figure 6 shows the time histories of the generalized coordinates describing
the two-dimensional motion for the reference solution (solid thin line), a 18 nodes solution of the 2DNS
model with symmetrical inertial properties (solid thick line) and a 18 nodes solution of the 2DNS model
with unsymmetrical inertial properties due to an artificial weight of 2 kg attached to the right foot (dash
dot thick line). It can be seen that both models (with and without the 2 kilos weight) follow the refer-
ence motion. However, the disordered motion shows some differences around the 50% of the cycle when
the right foot must be elevated. Since its weight increases the natural trend to decrease its elevation and
therefore, increase the right ankle rotation at phases 4, 5, and 6. As a consequence, the left leg has to
adapt to this situation by extending the knee and increasing the left ankle flexion at the left leg stance
phase.

Interestingly, the model used is able to describe the adaptation motion of both legs. As it is expected, the
disordered model shows a higher metabolical cost of transportation (418.49 J/m) and also a higher deviation
(3.07) from the reference motion than the model with symmetrical inertial properties (374.94 J/m and 2.11,
respectively).
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Fig. 7 Time histories of the ground reaction forces of the 35 nodes symmetrical model solution (solid thin line), of the 18 nodes
2DNS model (solid thick line) and of the 18 nodes 2DNS model with one-sided disorder (dash dot thick line)

Figure 7 shows the time histories of the normal and tangent contact forces at the feet for the reference
solution, the symmetrical and the disordered walking motions. The most significant feature is the increase in
the right foot normal force at the end of the right leg stance phase due to the attached weight. The contact
forces at the left foot are quite similar to those of the model with symmetric inertial properties.

Figure 8 shows a comparison of the neural excitations corresponding to the muscles of the right leg with
(dash dot line) and without (solid line) the attached weight. It can be seen that the main effect of increasing
the weight of the foot is a wider and higher activation of some of the right leg muscles, what results in a larger
metabolical energy cost. The simulated motions allow a certain level of co-contraction, for example, at the
first 20% of the cycle for the tibialis anterior (T A), soleus (SO L), and gastrocnemius (G AS). However, the
peak of the T A muscle coincides with a zero value of its antagonists with respect to the ankle joint, muscles
G AS and SO L , what seems to be energetically efficient since the coincidence of two peaks of antagonist
muscles would result in a silly waste of energy. In the case of the weighted motion, a similar situation happens
for the RF and H AM , which are antagonist with respect to the hip joint, at the final 40% percent of the
cycle.

The 2DNS model has a very limited applicability since it is reduced to motions that can be described in the
sagittal plane. Of course, unilateral disorders are mainly affecting the balance in the frontal plane and, for this
reason, a three-dimensional non-symmetrical model is a more appropriate choice. However, it is interesting to
study how much information can be extracted from the much less expensive 2DNS model.

4.3 Three-dimensional non-symmetrical model

In the three-dimensional non-symmetrical (3DNS) model studied in this section, see Fig. 1, all generalized
coordinates and muscle forces are considered independent. This fact significantly increases the size of the
model, and in order to keep the computation time as small as possible, only 18 nodes are used to param-
eterize each time-dependent variable. However, the optimization algorithm used took up to 65 h to find a
solution within tolerances of T ol X = 10−4, T ol Fun = 10−2, and T olCon = 10−2, what requires the
scaling of constraints and design variables to ensure the enough accuracy of the constraint satisfaction. In
this case, the measured motion has been used as a reference motion or normal walking pattern, respec-
tively. Two similar 18 nodes 3DNS models are solved with one of them having a weight of 2 kg attached
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Fig. 8 Neural excitation time histories of normal (solid line) and disordered (dash dot line) walking motions

to the right foot. The simulations results are shown in Figs. 9, 10, 11, 12, and 13 together with experimen-
tally measured results. As shown by the two-dimensional model the attachment of a weight to the ankle
results in a higher energy expenditure during walking. The metabolical cost of transportation of the model
without the attached weight is 569.56 J/m while 631.14 J/m are obtained when the weight is attached. On
another hand, the deviation from normal walking patterns increased from 3.06 to 3.40 when the weight is
attached.

In detail, the time histories of the generalized coordinates of the two models are shown in Figs. 9 and 10
together with the experimentally measured motion. As in the symmetrical model, the motion in the sagittal
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Fig. 9 Time histories of the generalized coordinates experimentally measured (solid thin line), simulated with the 18 nodes 3DNS
model (solid thick line) and with the 18 nodes 3DNS model with one-sided disorder (dash dot thick line)

plane is approximately captured by the 3DNS model while there are some differences in the motion out of
the sagittal plane. The influence of the attached weight can be noticed in the pitch rotation of the pelvis-trunk
(HAT) body, βI 1, in the second half of the cycle.

Again, due to the increased weight of the right foot, the natural trend is to decrease the right foot elevation
in the second half of the cycle. As it was pointed out in the 2DNS model, the maximum rotation (dorsiflexion)
increases as it is shown in Fig. 10. The effect of this alteration in the gait pattern on the left leg is slightly
different than in the 2DNS model. In this case, there is an increase in the left knee and left ankle flexion
but it is less significant than in the 2DNS model because the 3DNS model can now slightly modify also the
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Fig. 10 Time histories of the generalized coordinates experimentally measured (solid thin line), simulated with the 18 nodes
3DNS model (solid thick line) and with the 18 nodes 3DNS model with one-sided disorder (dash dot thick line)

three rotations at the hip. Therefore, the 3DNS model can absorb the effect of the disorder introduced without
significantly modify the motion of the left leg.

Figure 11 shows the time histories of the three components of the ground reaction forces at both feet. The
similarity between the solutions with and without the attached weight is remarkable. The solutions are now
coinciding better than in the 2DNS model, because of the aforementioned ability of the 3DNS model to accept
minor variations of its variables to absorb the effect of one-sided disorders. Enforcing the model to follow
a certain symmetrical motion makes the simulated motion to maintain the same level for the normal contact
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Fig. 11 Time histories of the ground reaction forces experimentally measured (solid thin line), simulated with the 18 nodes 3DNS
model (solid thick line) and with the 18 nodes 3DNS model with one-sided disorder (dash dot thick line)

force by adapting the time histories of the generalized coordinates accordingly. Changing the weight factors
in Eq. (13) to give less importance to the motion to be followed, this effect could be reduced.

The different neural activation time histories of the muscles of the right and left legs of the 18 nodes
3DNS model are shown in Figs. 12 and 13, respectively. It can be observed a higher neural excitation level of
the T A muscle between 60 and 70% of the cycle coinciding with the increase in the maximum dorsiflexion
at the right ankle. Also, the adaptation of the left leg requires higher activation levels of the left leg muscles,
but the changes are less visible than in the 2DNS mode.

As shown in this section, the 3DNS model provides much richer information of the dynamics of human
gait with one-sided disorders. The model could also be improved by adding extra degrees of freedom to better
represent the upper limb motion offering new research directions.

5 Conclusions

Based on the research carried out and on the numerical results obtained, the following conclusions could be
drawn.

Formulating the equations of motion of the musculoskeletal system by using NewEul-M2 is very important
since it was possible to obtain the equations of the system symbolically with a minimum number of generalized
coordinates and joint constraints. However, the symbolical manipulation of the equations was a limiting factor
for the complexity of the model finally used.

It was possible to decrease the computational effort of the spline interpolation problem by reducing the
size of the problem after some algebraic manipulations and by pre-computing the most expensive part of the
information required (the most expensive part) to evaluate the interpolated function before the optimization
algorithm starts.

The errors coming from numerical differentiation and the non-uniform distribution of such errors are
avoided by analytical differentiation. The numerical differentiation via finite difference formulae is eliminated
by implementing the first and second time derivatives of the interpolating polynomials and by obtaining the
analytical derivatives of the contractile element force law.
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Fig. 12 Neural excitations of the right leg muscles with (dotted line) and without (solid line) wearing the 2 kg weight

The number of muscles is reduced by grouping muscles with the same mechanical function in muscles
groups. This allows a reduction in the number of design variables of the optimization problem without decreas-
ing the possibilities of motion of the model.

The number of iterations of the optimization algorithm is reduced by formulating the constraints associated
with the equations of motion and with the kinematic constraints at all control points. Even if the number of
constraints of the constrained optimization problem is increasing, the saving in time due to the decrease in the
number of iterations justified the implementation of such constraints.

Formulating the constraints of the phases of the motion in which the musculoskeletal system is underac-
tuated by using no external torques at the metatarsophalangeal joint leads to a solution very similar to the
one obtained by adding such torques. Using no external torques is more consistent with the approach used,
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Fig. 13 Neural excitations of the left leg muscles with (dotted line) and without (solid line) wearing the 2 kg weight

in which each muscle must behaves according to its own activation and contraction dynamics and contributes
to the total metabolical cost of transportation.

The two-dimensional non-symmetrical model of the musculoskeletal system may be used to analyse the
influence of non-severe one-sided disorders as long as the motion of the human body remains in the sagittal
plane. The natural trend to keep the walking pattern as close as possible to healthy patterns allows that the
two-dimensional non-symmetrical model may still be used in such situations. However, more severe disorders
can only be studied with three-dimensional models.

The three-dimensional symmetrical model showed the importance of modeling the trunk and pelvis as
different bodies. Not doing so results in a very reduced motion of the pelvis-trunk body since the natural
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compensation of the pelvis rotation by counter rotation of the trunk cannot be represented. The three-dimen-
sional symmetrical model with a single pelvis-trunk body shows a very small motion out of sagittal plane.

The three-dimensional non-symmetrical model showed a better adaptation to one-sided disorders than
the two-dimensional non-symmetrical model. In the three-dimensional non-symmetrical model, the pres-
ence of an attached mass at one foot is compensated by smaller variations of more generalized coordinates.
As a result, the differences in the simulated ground reaction forces of two three-dimensional non-symmetrical
models with and without an attached weight are smaller than in the two-dimensional two-symmetrical model.
This fact shows the importance of including three-dimensional dynamical effects when simulating one-sided
disordered walking patterns.

Including the metabolical energy expenditure and the activation and contraction dynamics of muscles in
the simulation method allows the possibility to study coordination aspects of human walking and shows a
potential application of this approach to the design of rehabilitation therapies and to the design of assistive
devices. Efficient methods as presented in this research for the simulation of human walking are most important
for the development of rehabilitation therapies and the design of assistive devices.

Acknowledgments This research was supported in part by the Spanish Ministry of Science and Innovation through the grant
2008-0249 and through the project DPI2009-11792. This support is gratefully acknowledged.

Conflict of interest The authors do not have any conflicts of interest with regard to this paper and the materials contained herein.

Appendix A: Muscles spanning the musculoskeletal model

This appendix shows the data used to model the different muscles of the musculoskeletal model. All these
parameters are estimated from Refs. [1,6,15] for a subject with a height of 1.80 m and a weight of 75 kg.
In Table 3 SOL stands for Soleus, TA for Tibialis anterior, GAS for Gastrocnemius, VAS for Vastii, RF for
Rectus femoris, HAMS for Hamstrings, TFL for Tensor fascia latae, GMAXL for Gluteus maximus lateral,
GMAXM for Gluteus maximus medial, GMEDA for Gluteus medius anterior, GMEDP for Gluteus medius
posterior, ADM for Adductor magnus, ADLB for Adductor longus brevis and ILPSO for Ilipsoas. From the
data in Table 3, the length of the different muscles is calculated as follows:

lr = l0 − rhαα13 − rhββ13 − rhγ γ13 − rkββ34 − raββ45 (A.1)

ll = l0 + rhαα16 − rhββ16 + rhγ γ16 − rkββ67 − raββ78 (A.2)

where lr and ll are the lengths of muscles of the right and left legs, respectively.

Table 3 Muscle group properties, being f m
max the maximum muscle force

Muscle f m
max (N) lce

opt (m) lslack (m) αp [◦] rhβ (cm) rhα (cm) rhγ (cm) rkβ (cm) raβ (cm) l0 (cm) f t (%) width
group

SOL 3,883 0.055 0.254 23.6 0 0 0 0 5.30 28.4 20 1.039
TA 1,528 0.082 0.317 6 0 0 0 0 −3.70 40.6 25 0.442
GAS 1,639 0.055 0.420 14.3 0 0 0 2.00 5.30 48.7 45 0.888
VAS 7,403 0.093 0.223 4.4 0 0 0 −4.30 0 27.1 53 0.627
RF 1,320 0.114 0.320 5 −4.41 −1.14 −0.10 −3.82 0 41.2 55 1.443
HAMS 2,814 0.109 0.340 8 4.91 1.24 −0.33 4.17 0 44.3 45 1.197
TFL 262 0.095 0.425 3 −5.13 −3.82 2.67 0 0 53.1 30 0.560
GMAXL 1,730 0.145 0.106 2 3.32 −2.72 −1.96 0 0 20.6 55 0.625
GMAXM 686 0.154 0.120 5 5.13 2.25 −1.36 0 0 24.6 50 0.625
GMEDA 1,319 0.065 0.055 4 1.13 −1.94 4.11 0 0 10.6 50 0.625
GMEDP 1,215 0.065 0.048 7 2.06 −3.26 1.55 0 0 11.3 50 0.625
ADM 1,245 0.121 0.120 4 3.44 6.00 0.29 0 0 32.1 45 1.000
ADLB 994 0.128 0.042 6 −1.19 6.91 0.57 0 0 20.8 35 0.560
ILPSO 1,627 0.104 0.135 8 −3.31 −0.79 0.35 0 0 22.8 50 1.298

lce
opt the optimal length of the contractile element, lslack the tendon length, αp the pennation angle, rhα, rhβ and rhγ the

moment arms around the hip joint, rkβ the moment arm around the knee joint, raβ the moment arm around the ankle joint, l0 a
parameter used to measure the muscle length, f t the percentage of fast twitch fibers and width a parameter required to evaluate
the contractile element force
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Appendix B: Muscle contraction dynamics

The force-length-velocity relation used in this work is taken from the work of Nagano and Gerritsen [16], who
adopted the formulae describing the muscle contraction dynamics from van Soest and Bobbert [26] and Cole
et al. [10]. For the concentric contraction phase (vce < 0), the contractile element velocity vce is written as
follows:

vce = −� lce
opt

⎛

⎝ ( fisom + Arel) Brel
f ce

a· f m
max

+ Arel
− Brel

⎞

⎠ (B.1)

where � = min (1, 3.33 a). To simplify the inversion of the contraction dynamics, Ackermann [1] used a
constant value for factor � equal to 1 obtaining consistent results. In this work, the same assumption for factor
� is made. In Eq. (B.1), Arel and Brel are two muscle constant that may depend on the percentage of fast twitch
fibers [25] or training conditions [16]. Typical values for this parameters used in [16] and [1] are Arel = 0.41
and Brel = 5.2. The force relative to f m

max produced at isometric contraction, fisom, is

fisom = c

(
lce

lce
opt

)2

− 2c

(
lce

lce
opt

)

+ c + 1 (B.2)

being c = −1/width2. Values for the width parameter can be found in Nagano and Gerritsen [16]. On another
hand, in the eccentric contraction phase (vce > 0), the contractile element velocity can be written as

vce = −lce
opt

⎛

⎝ c1
f ce

a· f m
max

+ c2
− c3

⎞

⎠ (B.3)

being

c1 = �Brel ( fisom + c2)
2

( fisom + Arel) S f

c2 = − fisom fasymp (B.4)

c3 = c1

fisom + c2

where fasymp is the asymptotic maximum force value in the eccentric phase relative to f m
max and S f is the ratio

between concentric and eccentric derivatives of force with respect to vce. In this work, S f = 1 is used in order
to enforce continuity of the slope of the force–velocity curve at vce = 0.

Appendix C: Muscle activation dynamics

The activation dynamics can be described according to Nagano and Gerritsen [16] by means of the first-order
differential equation

ȧ = (u − a) (t1u − t2) (C.1)

where t2 = 1/td and t1 = 1/(ta − t2), being ta and td the activation and deactivation time constants. Notice
that if the activation and its time derivative are known, it is possible to calculate the neural excitation from
Eq. (C.1) by solving a quadratic equation, which will be analyzed later.
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