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Abstract Free vibration analysis of a rotating double-tapered Timoshenko beam undergoing flapwise trans-
verse vibration is presented. Using an assumed mode method, the governing equations of motion are derived
from the kinetic and potential energy expressions which are derived from a set of hybrid deformation variables.
These equations of motion are then transformed into dimensionless forms using a set of dimensionless parame-
ters, such as the hub radius ratio, the dimensionless angular speed ratio, the slenderness ratio, and the height and
width taper ratios, etc. The natural frequencies and mode shapes are then determined from these dimensionless
equations of motion. The effects of the dimensionless parameters on the natural frequencies and modal charac-
teristics of a rotating double-tapered Timoshenko beam are numerically studied through numerical examples.
The tuned angular speed of the rotating double-tapered Timoshenko beam is then investigated.

Keywords Free vibration · Modal characteristics · Double-tapered rotating Timoshenko beams ·
Hybrid deformation variables · Dimensionless parameters

1 Introduction

The modal characteristics, i.e., the natural frequencies and the corresponding mode shapes, of rotating beams,
especially tapered ones, are critical to the design and analysis of rotating structures, such as the rotating
machinery, helicopter blades, wind turbine blades, etc., since most rotating beams in engineering applications
are tapered. The modal characteristics of rotating beams often vary significantly from those of non-rotating
beams due to the influence of centrifugal inertia force. Due to this significant variation of modal characteristics
resulted from rotation, the modal characteristic of rotating beams has been widely investigated.

Study of the modal characteristics of rotating beams originated from the pioneering work of Southwell
and Gough [1]. Based on the Rayleigh energy theorem, an equation, known as the Southwell equation, that
relates the natural frequency to the rotating frequency of a uniform beam was developed. This study was further
extended by Liebers [2], Theodorsen [3] and Schilhansl [4], to obtain more accurate natural frequencies of
rotating beams. However, due to the large amount of calculation and lack of computational devices, the mode
shapes were not available in these investigations. Later, using digital computers, investigations in mode shapes
and more accurate natural frequencies were published for uniform rotating and non-rotating beams [5–13].

The modal characteristics of rotating and non-rotating tapered beams have also been widely investigated.
Hodges and Dowell [14] derived the non-linear equations of motion of twisted non-uniform rotor blades based
on the Hamilton’s Principle and the Newtonian method. Klein [15] analyzed the vibration of a non-rotating
tapered beam with a method which combined the advantages of a finite element approach and of a Rayleigh–
Ritz analysis. Downs [16] applied a dynamic discretization technique to calculate the natural frequencies of a
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non-rotating double-tapered beam. Swaminathan and Rao [17] used the Ritz method to calculate the flexural
frequencies of a pretwist rotating blade with a width taper. Gupta and Rao [18] applied an finite element analysis
to evaluate the natural frequencies of non-rotating tapered and twisted Timoshenko beams. Hodges [19] used
the direct analytical method of Ritz to solve for the modal characteristics of a non-uniform rotating beam with
discontinuities. Sato [20] used the Ritz method to study the transverse vibration of a linearly tapered beam with
ends constrained elastically against rotation and subjected to an axial force. Subrahmanyama and Rao [21]
determined the natural frequencies and mode shapes of a pretwisted tapered blading using the Reissner method.
Lau [22] studied the free vibrations of a tapered beam with an end mass using the exact method. Banerjee and
his coworkers [23–25] investigated the vibration of different types of beams using the finite element method.
Grossi et al [26–28] used, respectively, the Rayleigh–Ritz method and the Rayleigh–Schmidt method to ana-
lyze the truncated tapered beams with rotational constraints at both ends. Bazoune and Khulief [29] developed
a finite beam element for vibration analysis of a rotating double-tapered Timoshenko beam. This work was
further extended to account for different boundary conditions [30]. Naguleswaran [31–33] used the Frobenius
method to analyze the free vibration of different types of non-uniform beams. Lee and Kuo [34] provided
an exact solution based on the Green’s function method for the dynamic analysis of a general elastically end
restrained Bernoulli–Euler beam with polynomial varying bending rigidity, applied axial end force, and elastic
foundation modulus along the beam, subjected to an arbitrary transverse force. Lee and Lin [35] investigated
the influence of taper ratio, elastic root restraint, setting angle, and rotational speed on the bending natural
frequencies of a rotating non-uniform beam using a semi-exact numerical method. This work was further
extended for a Timoshenko beam [36] and to account for the effect of a tip mass [37]. Using the differential
transform method in [38], Ozdemir and Kaya [39] investigated flexural vibration of a rotating double-tapered
Euler–Bernoulli beam, the flapwise bending vibration of a rotating tapered cantilevered Bernoulli–Euler beam
[40], and the flapwise bending vibration of a rotating double-tapered Timoshenko beam [41].

In the present study, free vibration of a rotating, double-tapered, cantilever Timoshenko beam that under-
goes flapwise transverse vibration is investigated using the hybrid deformation variables introduced in Kane
et al. [42] and in Yoo et al [11,43,44]. The combined effect of angular speed, hub radius, slenderness ratio,
shear/extension modulus ratio, and the height and width taper ratios on the modal characteristics of a rotating
Timoshenko beam is successfully investigated in this study. The tuned angular speed, which does not exist in
the rotating Euler–Bernoulli beam undergoing flapwise bending vibration, is also found for a uniform rotating
Timoshenko beam.

2 Equations of motion

2.1 Approximation of deformation variables

The governing equations of motion are derived for the flapwise transverse vibration of a rotating double-tapered
Timoshenko beam shown in Fig. 1. The following assumptions are made in the present work so as to simplify
the formulations and to focus on the critical effects due to rotation.
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Fig. 1 Configuration of the beam and the deformation of the beam and the neutral axis
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– The flapwise transverse displacement is small.
– The neutral and centroidal axes in the cross-section of the beam coincide so that neither eccentricity nor

torsion needs to be considered.
– The planar cross-sections that are initially perpendicular to the neutral axis of the beam remain plane, but

no longer perpendicular to the neutral axis.
– The material of the Timoshenko beam is homogeneous and isotropic.

Figure 1 also shows the deformation of the beam and the deformation of the neutral axis of the beam.
A generic point P0 which lies on the undeformed neutral axis moves to P when the beam is deformed. Two
Cartesian variables u and w are shown to describe the deformation of point P in the x- and z-directions,
respectively. θ is the rotational angle of the cross-section in the x–z plane. The stretch of the arc length of the
neutral axis, s, is also shown in Fig. 1. The arc length stretch, s, a non-Cartesian variable will be used, instead
of u, to compute the strain and kinetic energies. The strains and rotational angles at each cross-section of the
beam are also shown in the figure.

In the present study, the arc length stretch s will be used in deriving the equations of motion. To do this,
the geometric relation between the arc length stretch s and the Cartesian variables is required. This relation is
given in Ref. [45], as

u = s − 1

2

x∫

0

(
w′)2

dσ (1)

where a symbol with a prime (′) represents the partial derivative with respect to the integral domain variable.
In the present work, s, w, and θ are approximated by spatial functions and the corresponding coordinates.

By employing the Rayleigh–Ritz method, the deformation variables are approximated as follows [11]

s(x, t) =
μ1∑
j=1

φ1 j (x)q1 j (t) (2)

w(x, t) =
μ2∑
j=1

φ2 j (x)q2 j (t) (3)

θ(x, t) =
μ3∑
j=1

φ3 j (x)q3 j (t) (4)

In the above equations, φ1 j , φ2 j , and φ3 j are the assumed modal functions for s, w, and θ , respectively. The
qi j ’s are the generalized coordinates, and μ1, μ2, and μ3 are the number of assumed modes used for s, w, and
θ , respectively. The total number of modes, μ, equals the summation of these individual number of modes,
i.e.,

μ = μ1 + μ2 + μ3 (5)

2.2 The strain energy of the system

The potential energy of a Timoshenko beam, employing the hybrid set of deformation variables, is given by
[46]

U = 1

2

L∫

0

[
E A

(
∂s

∂x

)2

+ E I

(
∂θ

∂x

)2

+k AG

(
θ − ∂w

∂x

)2
]

dx (6)

where E is the Young’s modulus, G is the shear modulus, k is the shear correction factor, A is the cross-sec-
tional area, I is the second area moment of inertia of the cross-section about the y-axis , and L is the length
of the beam.
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Substituting Eqs. (2)–(4) into Eq. (6), one obtains the following potential energy expression in terms of
the generalized coordinates, qi j

U = 1

2

L∫

0

⎡
⎢⎣E A

⎛
⎝ μ1∑

j=1

φ′
1 j q1 j

⎞
⎠

2

+ E I

⎛
⎝ μ3∑

j=1

φ′
3 j q3 j

⎞
⎠

2

+ k AG

⎛
⎝ μ3∑

j=1

φ3 j q3 j −
μ2∑
j=1

φ′
2 j q2 j

⎞
⎠

2
⎤
⎥⎦ dx (7)

To derive the equations of motion of the rotating beam, the partial derivatives of U with respect to the
generalized coordinates, qi j , are required. Differentiating U partially with respect to q1i , q2i , and q3i , respec-
tively, in Eq. (7) yields

∂U

∂q1i
=

L∫

0

E A
μ1∑
j=1

φ′
1iφ

′
1 j q1 j dx (8)

∂U

∂q2i
=

L∫

0

k AG

⎛
⎝ μ2∑

j=1

φ′
2iφ

′
2 j q2 j −

μ3∑
j=1

φ′
2iφ3 j q3 j

⎞
⎠ dx (9)

∂U

∂q3i
=

L∫

0

⎡
⎣E I

⎛
⎝ μ3∑

j=1

φ′
3iφ

′
3 j q3 j

⎞
⎠

+ k AG

⎛
⎝ μ3∑

j=1

φ3iφ3 j q3 j −
μ2∑
j=1

φ3iφ
′
2 j q2 j

⎞
⎠
⎤
⎦ dx (10)

2.3 The kinetic energy of the system

The velocity vector v of an arbitrary point Q (not necessary on the beam axis) in the beam (see Fig. 1) is
expressed as

v = dr
dt

+Ωk × r (11)

where Ω is the angular speed of the rotating hub, and r is the vector from the center of the hub to point Q.
Using the coordinate system fixed to the rigid hub, r can be expressed as follows:

r = (r + x + u − zθ)i + yj + (z + w)k (12)

where r is the radius of the rigid hub.
Substituting Eq. (12) into Eq. (11) and noting that both unit vectors i and j are time dependent, one can

derive the velocity at the arbitrary point Q as follows

v = (u̇ − zθ̇ −Ωy)i +Ω(r + x + u − zθ)j + ẇk (13)

With the velocity expression (13), the kinetic energy of the rotating beam can be calculated as

T = 1

2

∫

V

ρv · vdV = 1

2

L∫

0

ρ

∫

A

v · vdAdx

= 1

2

L∫

0

ρ
[
Au̇2 + I θ̇2 +Ω2 A(r + x + u)2 + IΩ2θ2 + Aẇ2] dx (14)
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Using Eq. (1) into the kinetic energy expression (14), one obtains the following kinetic energy in terms of the
hybrid deformation variables, s, w, and θ

T = 1

2

L∫

0

ρ

⎧⎪⎨
⎪⎩I θ̇2 + A

⎛
⎝ṡ −

x∫

0

w′ẇ′dσ

⎞
⎠

2

+Ω2 A

⎡
⎣r + x + s − 1

2

x∫

0

(
w′)2 dσ

⎤
⎦

2

+IΩ2θ2 + Aẇ2

⎫⎪⎬
⎪⎭ dx (15)

Substituting Eqs. (2)–(4) into Eq. (15), one obtains the following kinetic energy expression in terms of the
generalized coordinates, qi j

T = 1

2

L∫

0

ρ

⎧⎪⎨
⎪⎩I

⎛
⎝ μ3∑

j=1

φ3 j q̇3 j

⎞
⎠

2

+ A

⎛
⎝ μ1∑

j=1

φ1 j q̇1 j −
x∫

0

μ1∑
j=1

φ′
1 j q1 j

μ1∑
j=1

φ′
1 j q̇1 j dσ

⎞
⎠

2

+AΩ2

⎡
⎢⎣r + x +

μ1∑
j=1

φ1 j q1 j − 1

2

x∫

0

⎛
⎝ μ2∑

j=1

φ′
2 j q2 j

⎞
⎠

2

dσ

⎤
⎥⎦

2

+IΩ2

⎛
⎝ μ3∑

j=1

φ3 j q3 j

⎞
⎠

2

+ A

⎛
⎝ μ2∑

j=1

φ2 j q̇2 j

⎞
⎠

2
⎫⎪⎬
⎪⎭ dx (16)

To derive the equations of motion, the partial derivatives of T with respect to the generalized coordinates qi j

and generalized velocities q̇i j are needed. The derivatives of
∂T

∂q̇i j
’s with respect to t are also needed. Taking

derivatives of T with respect to qi j and q̇i j , and neglecting higher order non-linear terms, one has

∂T

∂q1i
=

L∫

0

ρAΩ2

⎡
⎣(r + x)φ1i +

μ1∑
j=1

φ1iφ1 j q1 j

⎤
⎦ dx (17)

∂T

∂q2i
= −

L∫

0

ρAΩ2

⎡
⎣(r + x)

⎛
⎝

x∫

0

μ2∑
j=1

φ′
2iφ

′
2 j q2 j dσ

⎞
⎠
⎤
⎦ dx

= −
L∫

0

ρAΩ2[r(L − x)+ 1

2
(L2 − x2)]

μ2∑
j=1

φ′
2iφ

′
2 j q2 j dx (18)

∂T

∂q3i
=

L∫

0

ρΩ2 I
μ3∑
j=1

φ3iφ3 j q3 j dx (19)

d

dt

∂T

∂q̇1i
=

L∫

0

ρAφ1i

⎛
⎝ μ1∑

j=1

φ1 j q̈1 j −Ω

μ2∑
j=1

φ2 j q̇2 j

⎞
⎠ dx (20)

d

dt

(
∂T

∂q̇2i

)
=

L∫

0

ρA
μ2∑
j=1

φ2iφ2 j q̈2 j dx (21)

d

dt

(
∂T

∂q̇3i

)
=

L∫

0

ρ I
μ3∑
j=1

φ3iφ3 j q̈3 j dx (22)
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In obtaining Eq. (18), the following relations derived from integration by parts have been used,

L∫

0

⎛
⎝ρAΩ2r

x∫

0

μ2∑
j=1

φ′
2iφ

′
2 j q2 j dσ

⎞
⎠ dx =

L∫

0

ρAΩ2[r(L − x)]
μ2∑
j=1

φ′
2iφ

′
2 j q2 j dx (23)

L∫

0

⎛
⎝ρAΩ2x

x∫

0

μ2∑
j=1

φ′
2iφ

′
2 j q2 j dσ

⎞
⎠ dx =

L∫

0

ρAΩ2
[

1

2

(
L2 − x2)] μ2∑

j=1

φ′
2iφ

′
2 j q2 j dx (24)

2.4 Equations of motion

The Lagrange’s equations of motion for free vibration of a distributed parameter system is given by [47]

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+ ∂U

∂qi
= 0 i = 1, 2, . . . , μ (25)

where μ is the total number of modal coordinates, and T and U the kinetic energy and potential energy of the
beam, respectively.

Substituting Eqs. (8)–(10) and (17)–(22) into Eq. (25), one obtains the following linearized equations of
motion

μ1∑
j=1

M11
i j q̈1 j +

μ1∑
j=1

(
K S

i j −Ω2 M11
i j

)
q1 j = rΩ2 P1i +Ω2 Q1i , i = 1, 2, . . . , μ1 (26)

μ2∑
j=1

M22
i j q̈2 j +

μ2∑
j=1

(
K B2

i j +Ω2 Mρ2
i j

)
q2 j −

μ3∑
j=1

K C23
i j q3 j = 0, i = 1, 2, . . . , μ2 (27)

μ3∑
j=1

M I 3
i j q̈3 j +

μ3∑
j=1

(
K I 3

i j + K A3
i j −Ω2 M I 3

i j

)
q3 j −

μ2∑
j=1

K D32
i j q2 j = 0, i = 1, 2, . . . , μ3 (28)

where

Mmn
i j =

L∫

0

ρAφmiφnj dx (29)

M I 3
i j =

L∫

0

ρ Iφ3iφ3 j dx (30)

Mρn
i j =

L∫

0

ρA

[
r(L − x)+ 1

2
(L2 − x2)

]
φ′

niφ
′
nj dx (31)

K I 3
i j =

L∫

0

E Iφ′
3iφ

′
3 j dx (32)

K A3
i j =

L∫

0

k AGφ3iφ3 j dx (33)
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K B2
i j =

L∫

0

k AGφ′
2iφ

′
2 j dx (34)

K C23
i j =

L∫

0

k AGφ′
2iφ3 j dx (35)

K D32
i j =

L∫

0

k AGφ3iφ
′
2 j dx (36)

K S
i j =

L∫

0

E Aφ′
1iφ

′
1 j dx (37)

P1i =
L∫

0

ρAφ1i dx (38)

Q1i =
L∫

0

ρAxφ1i (39)

It is seen that the equation of motion for stretch is not coupled with the equations of motion for flapwise
transverse motion.

2.5 Dimensionless transformation

Since the equation of motion for stretch [Eq. (26)] is not coupled with the equations of motion for flap-
wise transverse motion [Eqs. (27)–(28)]. We will only solve the equations of motion for flapwise transverse
motion.

In the present study, the following tapering relations for the height and width of the beam are used.

b(x) = b0

(
1 − cb

x

L

)p
(40)

h(x) = h0

(
1 − ch

x

L

)q
(41)

where b0 and h0 are the width and height at the root of the beam, respectively, p and q are the constants
depending on the type of taper of the beam, and cb and ch are the width and height taper ratios, respectively,
defined by

cb = 1 − b

b0
(42)

ch = 1 − h

h0
(43)

In this study, both p = 1 and q = 1 are used to model a beam that tapers linearly in two planes.
With Eqs. (40) and (41), the variations of the cross-sectional properties can be obtained as

A(x) = A0

(
1 − cb

x

L

)p (
1 − ch

x

L

)q
(44)

I (x) = I0

(
1 − cb

x

L

)p (
1 − ch

x

L

)3q
(45)

where A0 and I0 are area and the principal moment of inertia about the y-axis at the root cross-section of the
beam, respectively.
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With the above tapering relations, we can rewrite the equations of motion in a dimensionless form. For this
transformation, several dimensionless variables and parameters are defined as follows [44]:

τ = t

T
(46)

ξ = x

L
(47)

θi j = qi j

L
(48)

γ = ΩT (49)

δ = r

L
(50)

where T is a generalized time parameter defined as

T =
√
ρA0L4

E I0
(51)

The variables γ and δ represent the angular speed ratio and the hub radius ratio, respectively.
Substituting the dimensionless variables and parameters defined in Eqs. (46)–(51) into Eqs. (27)–(28), the

dimensionless equations of motion can be written as

μ2∑
j=1

M
22
i j θ̈2 j +

μ2∑
j=1

(
ηβ2 K

B2
i j + γ 2 M

ρ2
i j

)
θ2 j − ηβ2

μ3∑
j=1

K
C23
i j θ3 j = 0, i = 1, 2, . . . , μ2 (52)

μ3∑
j=1

M
I 3
i j θ̈3 j − ηβ4

μ2∑
j=1

K
D32
i j θ2 j +

μ3∑
j=1

(
β2 K

I 3
i j + ηβ4 K

A3
i j − γ 2 M

I 3
i j

)
θ3 j = 0, i = 1, 2, . . . , μ3 (53)

where

β =
√

A0L2

I0
(54)

η = kG

E
(55)

M
22
i j =

1∫

0

(1 − cbξ)
p(1 − chξ)

qψ2iψ2 j dξ (56)

M
I 3
i j =

1∫

0

(1 − cbξ)
p(1 − chξ)

3qψ3iψ3 j dξ (57)

M
ρ2
i j =

1∫

0

(1 − cbξ)
p(1 − chξ)

q
[
δ(1 − ξ)+ 1

2
(1 − ξ2)

]
ψ ′

2iψ
′
2 j dξ (58)

K
I 3
i j =

1∫

0

(1 − cbξ)
p(1 − chξ)

3qψ ′
3iψ

′
3 j dξ (59)

K
An3
i j =

1∫

0

(1 − cbξ)
p(1 − chξ)

qψ3iψ3 j dξ (60)

K
B2
i j =

1∫

0

(1 − cbξ)
p(1 − chξ)

qψ ′
2iψ

′
2 j dξ (61)
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K
C23
i j =

1∫

0

(1 − cbξ)
p(1 − chξ)

qψ ′
2iψ3 j dξ (62)

K
D32
i j =

1∫

0

(1 − cbξ)
p(1 − chξ)

qψ3iψ
′
2 j dξ (63)

in which ψi j are the normalized assumed modal functions of ξ , and ( )′ denotes the derivative with respect to
ξ .

The parameter β is the slenderness ratio of the Timoshenko beam, and η is the effective shear-to-tensile
stiffness ratio.

To compute the natural frequencies and their corresponding mode shapes using MATLAB, the equations
of motion (52, 53) will be written into a matrix form as follows

Mθ̈θθ + Kθθθ = 0 (64)

where

M =
[

M22 0
0 M33

]
(65)

K =
[

K22 K23

K32 K33

]
(66)

θθθ =
{
θθθ2
θθθ3

}
(67)

where the elements of the sub-matrices are defined as

M22
i j = M

22
i j (68)

M33
i j = M

I 3
i j (69)

K 22
i j = ηβ2 K

B2
i j + γ 2 M

ρ2
i j (70)

K 23
i j = −ηβ2 K

C23
i j (71)

K 32
i j = −ηβ4 K

D32
i j (72)

K 33
i j = β2 K

I 3
i j + ηβ4 K

A3
i j − γ 2 M

I 3
i j (73)

The eigenvalue problem represented by Eq. (64) can be solved by assuming a harmonic motion for θθθ , i.e.,

θθθ = e jωτ��� (74)

in which j is a imaginary number, ω is the dimensionless natural frequency, and��� is the eigenvector (mode
shape) corresponding to ω. The actual natural frequency, ωbeam of the Timoshenko beam can be calculated
from the dimensionless natural frequencies, as

ωbeam =
√

E I0

ρA0L4 ω =
√

E

ρ

ω

βL
(75)

Using Eq. (74) in Eq. (64), we can solve ω from the following eigenvalue problem,

ω2M��� = K��� (76)

where

��� =
{
���2

���3

}
(77)

is the eigenvectors which can be used to calculate the mode shapes for the corresponding natural frequency.
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Fig. 2 Convergence of the first three natural frequencies

3 Numerical results

In order to obtain numerical results, several assumed modal functions have been tested to construct the matrices
defined in Eqs. (64)–(73). Theoretically, any compact set of functions which satisfy the essential boundary
conditions of the Timoshenko beam can be used as the test functions. The normalized modes of a non-rotating
Euler–Bernoulli cantilever beam, the orthogonal Legendre polynomials, the polynomial comparison functions,
etc., have been tested in the present simulation. All these functions can provide a reasonably accurate result
with fewer than 10 assumed modes. The following sections present the results using the normalized modes and
their derivatives of a non-rotating Euler–Bernoulli cantilever beam as the modal functions in the simulation.

3.1 Convergence of natural frequencies

The convergence of the first three natural frequencies of a rotating Timoshenko beam is shown in Fig. 2 for a
typical set of parameters used in the computation. The “number of modes” in the figure represents the number
of the assumed modes for each individual deformation variable. It can be seen from the figure that the natural
frequencies converge rapidly as more modes are added in the computation, and using ten modes for each indi-
vidual deformation variable is sufficient to obtain a reasonable accuracy for the first three natural frequencies.
More assumed modes may be required for the higher natural frequencies.

3.2 Comparison of the computational results

To verify the accuracy of the present modeling method, the numerical results from the present modeling method
are compared with those presented in Ref. [41]. In Table 1, variation of the natural frequencies of a uniform
beam is compared with the ones given in [41] for different slenderness ratios and different angular speeds. It
is seen that the natural frequencies increase with an increasing rotational speed and an increasing slenderness
ratio. The results obtained from the present method show a maximum of 0.1% difference from those presented
in [41].

In Table 2, the natural frequencies of a double-tapered non-rotating Timoshenko beam are compared with
those from [41]. The results obtained from the present method show a maximum of 0.11% difference from
those presented in [41].

3.3 Effect of the hub radius ratio and rotational speed on the natural frequencies

The variation of the first three natural frequencies of a rotating double-tapered Timoshenko beam with respect
to the rotational speed γ and the hub radius ratio δ is shown in Fig. 3. The slenderness ratio β = 30 and the
material parameter η = 0.33 are used in the simulation. Three hub radius ratios (δ = 0, 0.5, 2) are considered
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Table 1 Comparison of the first four natural frequencies of a non-tapered rotating Timoshenko beam (δ = 0, η = 0.25)

β γ = 0 γ = 4 γ = 8 γ = 12

Present Ref. [41] Present Ref. [41] Present Ref. [41] Present Ref. [41]

Euler–Bernoulli 3.5059 3.5160 5.5850 5.5850 9.2568 9.2568 13.1704 13.1702
22.0296 22.0345 24.2726 24.2733 29.9950 29.9954 37.6037 37.6031
61.8502 61.6971 63.9627 63.9666 70.2896 70.2929 79.6136 79.6144

120.2983 120.9010 123.2354 123.2610 130.0251 130.0490 140.5155 140.5340
50 3.5000 3.4998 5.5623 5.5616 9.2132 9.2096 13.0972 13.0870

21.3692 21.3547 23.6240 23.6061 29.3501 29.3215 36.9140 36.8659
57.5636 57.4705 59.9130 59.8117 66.4010 66.2748 75.8382 75.6698

107.2812 106.9260 109.8286 09.4590 117.0778 116.6650 128.0863 127.6040
25 3.4534 3.4527 5.4980 5.4951 9.0975 9.0854 12.9229 12.8934

19.6965 19.6497 22.0126 21.9557 27.7933 27.7082 35.3077 35.1811
49.1256 48.8891 51.7372 51.4822 58.7562 58.4507 68.6107 68.2339
84.8053 84.1133 87.9002 87.1836 96.4247 95.6423 108.7570 107.8870

16.67 3.3803 3.3787 5.4013 5.3954 8.9423 8.9209 12.7180 12.6724
17.6251 17.5470 20.0593 19.9662 25.9651 25.8362 33.4388 33.2672
41.0522 40.7447 44.0648 43.7365 51.7950 51.4154 62.0432 61.6011
67.0789 66.3623 70.8683 70.1298 80.7277 79.9414 93.8868 93.0672

12.5 3.2863 3.2837 5.2840 5.2749 8.7746 8.7456 12.5134 12.4581
15.5873 15.4883 18.1781 18.0628 24.1961 24.0479 31.4634 31.2846
34.6138 34.3005 38.0639 37.7317 46.3420 45.9683 56.3909 55.9744
54.2503 53.6516 58.5494 57.9491 68.3629 67.8215 77.4992 77.1047

10 3.1774 3.1738 5.1570 5.1448 8.6077 8.5735 12.3066 12.2467
13.7694 13.6607 16.5184 16.3946 22.4979 22.3506 29.0691 28.9100
29.6487 29.3614 33.4810 33.1793 41.7829 41.4632 49.9746 49.6484
44.3234 43.9102 48.1460 47.8101 53.5041 53.2833 56.9137 56.6750

Table 2 Comparison of the first four natural frequencies of a tapered non-rotating Timoshenko beam (γ = 0, β = 12.50,
δ = 0, η = 0.327)

ch cb = 0.0 cb = 0.2 cb = 0.4 cb = 0.6 cb = 0.8

Present Ref. [41] Present Ref. [41] Present Ref. [41] Present Ref. [41] Present Ref. [41]

0.0 3.3273 3.3240 3.5520 3.5485 3.8544 3.8505 4.2926 4.2883 5.0112 5.0062
16.3052 16.2889 16.6728 16.6561 17.1441 17.1270 17.8047 17.7869 18.9213 18.9024
36.7440 36.7073 37.0239 36.9869 37.3982 37.3608 37.9595 37.9216 39.0239 38.9849
58.3361 58.2778 58.5866 58.5281 58.9366 58.8777 59.4920 59.4326 60.6072 60.5467

0.2 3.4314 3.4246 3.6577 3.6504 3.9623 3.9544 4.4041 4.3953 5.1301 5.1199
15.9223 15.8905 16.2687 16.2362 16.7150 16.6816 17.3456 17.3110 18.4285 18.3917
35.5010 35.4301 35.7768 35.7054 36.1425 36.0704 36.6873 36.6141 37.7207 37.6454
57.0048 56.8910 57.2436 57.1293 57.5701 57.4552 58.0789 57.9630 59.0993 58.9813

0.4 3.5712 3.5605 3.7993 3.7879 4.1064 4.0941 4.5522 4.5386 5.2861 5.2703
15.3989 15.3528 15.7239 15.6769 16.1453 16.0970 16.7462 16.6961 17.7955 17.7423
33.8890 33.7876 34.1624 34.0602 34.5222 34.4189 35.0543 34.9495 36.0621 35.9542
54.9204 54.7561 55.1543 54.9893 55.4683 55.3024 55.9488 55.7815 56.9073 56.7371

0.6 3.7698 3.7623 3.9999 3.9919 4.3097 4.3011 4.7593 4.7498 5.4997 5.4887
14.6741 14.6448 14.9771 14.9472 15.3725 15.3418 15.9424 15.9106 16.9561 16.9223
31.6871 31.6239 31.9583 31.8945 32.3131 32.2486 32.8343 32.7688 33.8184 33.7509
51.7257 51.6225 51.9603 51.8566 52.2703 52.1660 52.7362 52.6309 53.6544 53.5473

0.8 4.1259 4.1177 4.3603 4.3516 4.6749 4.6655 5.1296 5.1194 5.8746 5.8629
13.7849 13.7574 14.0651 14.0370 14.4343 14.4055 14.9738 14.9439 15.9547 15.9229
28.6933 28.6360 28.9609 28.9031 29.3104 29.2519 29.822 29.7625 30.787 30.7255
46.9225 46.8288 47.1624 47.0683 47.4759 47.3811 47.9388 47.8431 48.8367 48.7392

in the calculation. As expected, the natural frequencies increase with the increasing rotational speed due to
the stiffening effect of the centrifugal force that is directly proportional toΩ2. Moreover, since the centrifugal
force that is directly proportional to the hub radius makes the beam stiffer with the increasing hub radius ratio,
the slope of frequency loci increases as the hub radius ratio increases.

3.4 Effect of slenderness ratio

The effect of the slenderness ratio (β) on the natural frequencies is shown in Fig. 4. The ratios of the natural
frequencies of a Timoshenko beam over the natural frequencies of an Euler–Bernoulli beam are depicted in the
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Fig. 4 The effect of the slenderness ratio on the natural frequencies

figure for the first five frequencies. It is seen that the dimensionless natural frequencies increase as the slen-
derness ratio increases. Please note that the actual natural frequencies of the beam decrease as the slenderness
ratio increases and the natural frequencies of a Timoshenko beam are always lower than the natural frequencies
of an Euler–Bernoulli beam. It is also seen that the effect of the slenderness ration on the natural frequencies
is more significant for a higher rotational speed. Moreover, it is noticed that the effect of the slenderness ratio
is dominant on the higher modes and this effect diminishes rapidly as the frequency order decreases. This is
something expected because the Timoshenko beam theory is generally used when the higher mode frequencies
are of interest.

3.5 Effect of taper ratios

The variation of the natural frequencies of a non-rotating Timoshenko beam with respect to the height taper
ratio is shown in Fig. 5. The ratios of the natural frequencies of a tapered beam over the natural frequencies
of a non-tapered beam are depicted in the figure for the first three frequencies. It is seen that the height taper
ratio has a increasing effect on the first natural frequency, while it has a decreasing effect on the other natural
frequencies.

The effect of the width taper ratio on the natural frequencies of a non-rotating Timoshenko beam is shown
in Fig. 6. Once again, the ratios of the natural frequencies of a tapered beam over the natural frequencies of
a non-tapered beam are depicted in the figure for the first three frequencies. It is seen that the effect of the
width taper ratio on the natural frequencies is different from that of the height taper ratio. The width taper ratio
has a increasing effect on all natural frequencies. Moreover, the increasing effect is more significant on the
fundamental frequency than on the other frequencies.
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Since both the height and width taper ratios have in increase effect on the first natural frequency, it can
be concluded that the first natural frequency of a tapered beam is always higher than that of a non-tapered
beam. However, the combined effect of the height and width taper ratios on the higher modes depends on the
combination of these two taper ratios. Figure 7 shows the combined effect of the height and width taper ratios
on all natural frequencies when ch = cb = 0.5. It is clear that the combined effect of the height and width
taper ratios is significant on the first natural frequency.

3.6 Resonance and tuned angular speed

Resonance will occur when the angular speed of the rotating beam equals to the natural frequency of the beam.
The angular speed which causes the resonance is usually called the tuned angular speed [11].

Reference [11] proved that the flapwise tuned angular speed does not exist for a rotating beam from the
Euler–Bernoulli theory. However, the tuned angular speed may exist for a rotating Timoshenko beam since the
natural frequencies of a Timoshenko beam are lower than the natural frequencies of a Euler–Bernoulli beam.
Figure 8 shows the loci of the first two natural frequencies (for δ = 0, δ = 1, and δ = 5) of a non-tapered
Timoshenko beam and the straight line of ω = γ . The tuned angular speed occurs when the loci of the natural
frequencies intersect with the straight line of ω = γ . It can be seen that the tuned angular speed occurs at
γ = 21.01 for δ = 0, but it does not exist for δ = 1 and δ = 5.

Since the first natural frequency of a tapered beam is higher than a non-tapered beam, and the tuned angular
speed only occurs at the first natural frequency, the taper ratios of the beam have a significant effect on the
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existence and magnitude of the tuned angular speed of a rotating Timoshenko beam. In our calculation, the
tuned angular speed is not found for ch = cb = 0.5. It may exist mathematically, at a very large angular speed,
which is of no practical meaning in engineering applications.

3.7 Mode shape variations

The differences of the first three mode shapes obtained from the Euler–Bernoulli and Timoshenko beam theo-
ries are shown in Fig. 9 for a non-tapered beam with β = 10. Noticeable difference has been observed for the
mode shapes with and without considering the shear and rotary effect of the beam.

4 Conclusions

In the present study, the equations of motion for the flapwise vibration analysis of a double-tapered rotating
Timoshenko beam are derived using the hybrid deformation variables. The equations of motion are transformed
into dimensionless forms in which the dimensionless parameters are identified. The effects of different dimen-
sionless parameters on the natural frequencies are numerically studied. The following results are obtained:

– The natural frequencies increase with the increasing rotational speed due to the stiffening effect of the
centrifugal force induced from the rotation. Moreover, this effect is more significant on higher modes than
on lower modes.
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– The rate of increase in the natural frequencies increases as the hub radius ratio increases.
– Even though the dimensionless natural frequencies increase with an increasing slenderness ratio of a beam,

the actual natural frequencies of a rotating Timoshenko bean decrease with an increasing slenderness ratio
of the beam. The natural frequencies of a Timoshenko beam are lower than the those of an Euler–Bernoulli
beam.

– While the width taper ratio has an increasing effect on all natural frequencies, the height taper ratio has an
increasing effect only on the first natural frequency.

– Even though the tuned angular speed was not found from the Euler–Bernoulli beam theory, it may exist
in a rotating Timoshenko beam. The existence and magnitude of the tuned angular speed depend on the
combination of the height and width taper ratios.
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