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Abstract The rectilinear motion of a vibration-driven mechanical system composed of two identical modules
connected by an elastic element is considered in this paper. Each module consists of a main body and an
internal mass that can move inside the main body. Anisotropic linear resistance is assumed to act between each
module and the resistant medium. The motion of the system is excited by two acceleration-controlled masses
inside the respective main bodies. The primary resonance situation that the excitation frequency is close to
the natural frequency of the system is considered, and the steady-state motion of the system as a whole is
mainly investigated. Both the internal excitation force and the external resistance force contain non-smooth
factors and are assumed to be small quantities of the same order when compared with the maximum value
of the force developed in the elastic element during the motion. With this assumption, method of averaging
can be employed and an approximate value of the average steady-state velocity of the entire system is derived
through a set of algebraic equations. The analytical results show that the magnitude of the average steady-state
velocity can be controlled by varying the time shift between the excitations in the modules. The optimal value
of the time shift that corresponds to the maximal average steady-state velocity exists and is unchanging with the
external coefficients of resistance. For a system with specific parameters, numerical simulations are carried out
to verify the correctness of the analytical results. The optimal value of the time shift is numerically obtained,
and the optimal situation is studied to show the advantages of the control.

Keywords Vibration-driven system · Internal mass · Anisotropic linear resistance · Steady-state motion ·
Method of averaging · Optimal control

1 Introduction

In recent years, vibration-driven systems have attracted great attention from researchers due to their extensive
potential applications in medical treatment, engineering diagnosis, seabed exploration, and disaster rescue,
etc. They can move in various environments without propelling components (such as wheels, legs, oars, jets,
screws, and other outward devices). The propulsion of the system is provided due to the vibrations of inter-
nal masses and the interaction of the system with the resistive environment. This principle can explain some
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motions of limbless animals, e.g., snakes or worms. Such systems have a number of advantages over systems
based on conventional principles of locomotion. They are simple in design and their bodies can be fabricated
into very small size, and thus can be probably utilized as the dynamic models of certain micro-robots and
bionic robots.

A large numbers of publication [1–14] work at the systems with movable internal masses. When a desig-
nated excitation force is applied to the internal mass, the reaction force exerts on the main body and changes
its velocity. The system can thus move forward under control on account of the anisotropic resistance force
acting between the main body and the plane. Mechanisms based on this principle do not require complicated
gear case and can be made hermetic and smooth, i.e., without external moving parts, which enable them to be
used in capsule-type micro-robots. This kind of robots has a large applicability in restricted place and vulner-
able media, for example, robots for inspection in narrow industrial pipelines and self-propelled endoscopes
in human vessels [1]. Such system can also be driven to a prescribed position with high degree of accuracy
(∼ 10−8m), which is promisingly utilized in high-precision units in scanning electron microscopes, as well as
micro- and nano-technological equipments [2,3].

A systematic study on the optimal control of the rectilinear motion of a system with an internal mass on
a rough horizontal plane was carried out by F.L. Chernousko [4–7,10]. In [4,5], Coulomb’s dry friction was
assumed to act between the main body and the plane. The internal mass was allowed to move within a fixed
limit along a line parallel to the line of motion of the main body. It is assumed that, at the beginning and
ending instants of each period, the velocities of the main body equal to zero and the internal mass locates at
the extreme left position inside the main body, with zero velocity too. In order to realize a steady-state motion
(velocity-periodic motion) of the system, periodic control modes were constructed for the relative motion of the
internal mass, including velocity-controlled mode and acceleration-controlled mode, also called “two-phase
motion” and “three-phase motion”, respectively. In velocity-controlled mode, each period includes two inter-
vals of constant velocity, and the velocity of the internal mass relative to the main body is a piecewise-constant
function. When the internal mass arrives at the extreme left-hand and right-hand position, its velocity changes
instantaneously both in magnitude and direction, i.e., an impact occurs. The parameters to be varied in this
case are the magnitudes of the relative velocities of the internal mass. In acceleration-controlled mode, the
relative acceleration is a piecewise-constant function that three intervals of constant acceleration are contained
in a period. The magnitudes of the relative acceleration can be varied within a pre-set upper limit. Close
attention was paid to the average velocity of the steady-state motion of the system as a whole, which reflects
the efficiency and is one of the key characters of the system. For both modes, optimal parameters were decided
to realize the maximal average velocity of the steady-state motion. In [6,7], for velocity-controlled mode, the
resistance force between the main body and the environment was extended to piecewise-linear resistance and
quadratic-law resistance. Without the condition that the velocities of the main body and the internal mass vanish
simultaneously, optimal parameters of the velocity-controlled mode were found that corresponds to the maxi-
mal average velocity of the steady-state motion. In [8], for acceleration-controlled mode and piecewise-linear
resistance, the relationships of the control parameters were found to realize a steady-state motion through
both analytical and numerical ways. Optimal and feasible parameters of the acceleration-controlled mode, at
which the maximal average velocity of the steady-state motion was reached, were determined. In [9], with no
constraints imposed on the structure of the control law and with Coulomb’s dry friction acting between the
system and the plane, an optimal control was constructed for a two-mass system moving along a rough plane to
maximize the average velocity over a period. Unlike [4,5], only periodicity condition was asked to be satisfied
by the internal mass. The constraint on the amplitude of the internal motion, as well as the condition that the
velocity of the internal mass equals to zero at the instants when the velocity of the main body vanishes, was
not imposed on. Some experimental progress, including a pendulum-driven cart, a vibro-robot in a tube, and
a capsubot, was made by Li, Furuta, and Chernousko [1,10,11].

Bolotnik, Zimmermann, and Sobolev et al. [12–14] studied the optimal control of the rectilinear motion of a
rigid body on a rough horizontal plane by means of two internal masses. One of the masses moves horizontally
parallel to the line of the motion of the main body, whereas the other mass moves in the vertical direction, which
makes it possible to influence the normal reaction of the supporting surface, and hence, the dry friction force.
In [12], both masses perform harmonic oscillations relative to the carrying body. The vertical and horizontal
oscillations of the internal masses have the same frequency but are shifted in phase. It was shown that the
direction and magnitude of the average velocity of the steady-state motion (velocity-periodic motion) can be
controlled through varying the phase shift between the internal horizontal and vertical oscillations, as well as
the their frequencies. In the case when small force of dry and linear viscous friction acted between the carrying
body and environment, an algebraic equation for calculating the average velocity of the steady-state motion
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was obtained. The optimal value of the phase shift, at which the magnitude of the average velocity reaches
maximum, was found. By means of unbalanced exciters, an experimental investigation based on the above
principle was carried out by Sobolev and Sorokin [13]. The optimal control of a rigid body moving along
a rough horizontal plane due to motions of two internal masses was designed in [14]. Instead of harmonic
oscillations, generic periodic motions were constructed for the internal masses. With the constraints that the
period was fixed and the magnitudes of the accelerations of the internal masses relative to the main body did
not exceed prescribed limits, optimal motions were obtained to ensure steady-state motion of the system with
maximal average velocity.

The rectilinear motions of chain of bodies connected to one another by means of springs and dashpots
were studied by a number of authors [15–19]. The asymmetry of the resistance force, which is required for a
directional motion, is common in engineering and can be provided through covering the contact surface of the
system with scale-like plates. The system is driven by varying forces acting between the bodies or internal peri-
odical excitations. In [15], a forward rectilinear motion of a system of two rigid bodies along a horizontal plane
was considered. Dry friction is assumed to act between the bodies and the plane, and the motion is controlled
by forces of interaction between the bodies. Without any restriction on the control forces, optimal parameters
of the system and a control law were found, corresponding to the maximum mean velocity of the system as a
whole. In [16], the dynamics of a system of two bodies joined by a nonlinear elastic element were considered.
The motion is excited by harmonic forces acting between the bodies. An approximate steady motion with a
constant “on the average” velocity is obtained through method of averaging. The motion of n mass points in
a common straight line was studied in [17]. All the masses except the middle one are equipped with scales
contacting the ground. The middle mass is subjected to a harmonic external force. In [18], a one-dimensional
motion of two-mass points in a resistive medium was considered. The resistance force is described by small
non-symmetric viscous (piecewise-linear) friction, whose magnitude depends on the direction of motion. The
mass points are interconnected with a kinematic constraint or with an elastic spring. Method of averaging
was adopted to obtain the expression of the average velocity of the system’s steady-state motion. Work [19]
devoted to a system composed of two identical modules connected by a linear spring. Each module consists of
a main body and an unbalanced vibration rotor, which represents the system studied in [12]. The steady-state
motion was mainly considered and a nearly resonant excitation mode was investigated. Based on method of
averaging, possibilities for control of the magnitude and direction of the speed of the system were established
when friction was assumed to be small.

As one can see in [19], a two-module vibration-driven system has some advantages over one-module
system. Without changing the amplitude of the excitation, the system’s average steady-state velocity can be
easily controlled through varying the phase shift, i.e., the controllability is improved. It is also a more practical
dynamic model for some kinds of bionic robots, such as worm-like robots. In all these studies on system with
chain of bodies, harmonic motions or harmonic forces are applied on the joint or inside the bodies, which
only involves the analysis on smooth excitation (control). On the other hand, velocity-controlled mode and
acceleration-controlled mode raised by Chernousko are two novel excitation modes, which do not require
common rotation-type driver and can be possibly achieved through the locomotion of a magnetic device in
magnetic field. Systems with such control modes are very promisingly to be further minimized, and become
the dynamic model for some micro-robots. However, since the non-smooth characters of these two control
modes, little work has been carried out on the motion of two-module vibration-driven systems induced by
internal velocity- and acceleration-controlled masses.

The purpose of this study is to examine the rectilinear motion of a two-module vibration-driven system
in a resistant medium induced by internal acceleration-controlled masses. Each module of the system under
consideration can be used as a single-module vibration-driven system, whose steady-state motion was studied
in [8]. It was shown that several rigorous conditions on the internal motion were required to be satisfied to
achieve a steady-state (velocity-periodic) motion of the system. Changing the magnitudes of the parameters of
the acceleration-controlled mode, one was able to optimize the mean velocity of the system. In this paper, the
two modules of the vibration-driven system are connected through a linear elastic element. Anisotropic linear
resistance is assumed to act between the modules and the environment. Major attention is given to the primary
resonance situation that the excitation frequency is close to the frequency of natural elastic oscillation. We will
investigate analytically the steady-state motion of the system in the case when the force of friction is small
when compared with the elastic force developed from the elastic element. Though both the internal excitations
and external resistance forces contain factors of non-smooth, method of averaging will be employed in this
investigation. An approximate value of the average steady-state velocity of the entire system can be obtained
through a set of algebraic equations. We will show that, unlike a single-module system, the average steady-state
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Fig. 1 Two-module system with internal acceleration-controlled masses

velocity can be easily controlled by varying the time shift between the two internal excitations. The optimal
value of the time shift corresponding to the maximal magnitude of the average steady-state velocity will be
numerically obtained. Numerical integration of the exact full equations of motion demonstrates an acceptable
agreement with the results obtained on the basis of the averaged equations.

2 Dynamical model of the vibration-driven system

2.1 Description of the dynamical system

Consider a system consisting of two identical modules connected by an elastic member (e.g., a spring). Each
module is composed of a main body and a movable internal mass. Both bodies can move along a same straight
line in a resistant medium. The internal masses also move along a horizontal line parallel to the line of motion of
the main bodies (see Fig. 1). Acceleration-controlled modes, i.e., three-phase motions, are applied to both the
internal masses. In order to avoid collision of the internal mass and the main body, the relative displacement of
the internal mass is fixed within an interval, which can be determined by the dimension of the cavity in the main
body or by setting up clapboards inside the main body. We assume that both the two internal masses vibrate
with the same frequency and amplitude but are shifted in phase. Anisotropic linear resistance is assumed to
act between the main bodies and the medium.

In what follows, for sake of brevity, the main bodies and the internal masses will be referred as body 1,
body 2 and mass 1, mass 2, respectively. Introduce the following notation: M is the mass of each of the bodies
1 and 2; m is the mass of each of the internal masses 1 and 2; c is the stiffness coefficient of the elastic
member; L is the length of the fixed interval for the relative displacement of the internal masses; F1, −F1
and F2, −F2 are the interaction forces between the main body and the internal mass in modules 1 and 2,
respectively; R1 and R2 are the external resistance forces acting on bodies 1 and 2, respectively. Let x1 and
x2 denote the absolute coordinates measuring the displacements of bodies 1 and 2 relative to the environment;
ξ1 and ξ2 the coordinates measuring the displacements of mass 1 relative to body 1 and mass 2 relative to
body 2. Then, the corresponding velocities and accelerations of body 1, body 2 and mass 1, mass 2 can be
expressed into the first-order derivatives and second-order derivatives of x1, x2 and ξ1, ξ2.

2.2 Equations of motion

The motion of the system is governed by the following differential equations

m(ξ̈1 + ẍ1) = −F1,

Mẍ1 = F1 + c(x2 − x1) − R1,

m(ξ̈2 + ẍ2) = −F2,

Mẍ2 = F2 − c(x2 − x1) − R2.

(1)

Eliminating the interaction forces F1 and F2 of (1), we obtain

(M + m)ẍ1 = −mξ̈1 − c(x1 − x2) − R1,

(M + m)ẍ2 = −mξ̈2 + c(x1 − x2) − R2.
(2)
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(a) (b) (c)

Fig. 2 Acceleration-controlled mode of mass 2: a relative acceleration; b relative velocity; c relative displacement

In these equations, Ri (i = 1, 2) is the resistance force acting on body i . The anisotropic linear resistance is
defined as

Ri = −(M + m) f (ẋi )ẋi , i = 1, 2, (3)

in which,

f (ẋi ) =
{

f+, if ẋi ≥ 0,
f−, if ẋi < 0,

i = 1, 2. (4)

f+ and f− are coefficients of resistance, which are all non-negative constants. We assume f+ �= f−, which
imply the anisotropism of the interface or the asymmetry of the shape of bodies 1 and 2. Without loss of
generality, we assume

f+ < f−, (5)

which means the resistance for the forward motion is less than for the backward motion.

2.3 Internal acceleration-controlled mode

In the present study, we confine our consideration to internal acceleration-controlled mode, which was named
as internal three-phase motion in [4–7]. Both masses 1 and 2 vibrate with the same frequency and with the
same amplitude, while are shifted in phase. Without loss of generality, it is assumed that the motion of mass
1 falls behind that of mass 2, i.e.,

ξ̈1(t) = ξ̈2(t − τ0), (6)

where τ0 ≥ 0 is the time shift between the internal motions of masses 1 and 2. The situation that τ0 < 0
corresponds to a form of motion that mass 1 goes ahead of mass 2. However, in view of the periodicity of the
internal excitation, a negative value of τ0 is equivalent to a positive value T − τ0, which corresponds to the
form of motion that mass 1 falls behind mass 2 again. Hence, in what follows, it suffices to consider the value
of τ0 in the range from 0 to T .

For mass 2, the period interval [0, T ] consists of three segments in which ξ̈2 is constant. Each duration
of the segments is denoted by τ j ( j = 1, 2, 3) and the corresponding relative acceleration is denoted by
w j ( j = 1, 2, 3), respectively. Thus, one has

ξ̈2(t) = w1, when t ∈ (0, τ1),

ξ̈2(t) = −w2, when t ∈ (τ1, τ1 + τ2),

ξ̈2(t) = w3, when t ∈ (τ1 + τ2, T ), T = τ1 + τ2 + τ3,

⎫⎪⎬
⎪⎭ (7)

where w j ( j = 1, 2, 3) are positive constants (See Fig. 2a).
A fixed interval for the relative displacement of mass 2 relative to body 2 is expressed as

0 ≤ ξ2(t) ≤ L . (8)
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Case 1 Case 2 Case 3

Fig. 3 Three possible cases for acceleration-controlled mode of mass 1

Since the acceleration-controlled mass 2 performs a periodic motion with period T , the functions ξ2(t), ξ̇2(t),
and ξ̈2(t) are all periodic functions with the same period. Without loss of generality, the origin of the time is
chosen at the instant when ξ2 = 0, we put

ξ2(0) = ξ2(T ) = 0. (9)

As the relative displacement of mass 2 takes its minimal values at the beginning and ending moments of a
period, it follows that

ξ̇2(0) = ξ̇2(T ) = 0. (10)

Besides, it is required that the maximal relative displacement of mass 2 is attained at at a certain instant of
time θ ∈ (0, T ), i.e.,

ξ2(θ) = L , ξ̇2(θ) = 0. (11)

Integrating ξ̈2(t) with the acceleration (7), and taking the conditions (9)∼(11) that should be satisfied by
mass 2 into consideration, one obtain the relative velocity and relative displacement of mass 2, which are
illustrated in Fig. 2 b,c. From conditions (9)∼(11), all the other control parameters of mass 2 for acceleration-
controlled mode, including τ j ( j = 1, 2, 3) and T can be expressed in terms of w j ( j = 1, 2, 3) and L ,
namely

τ1 =
[

2w2L

w1(w1 + w2)

] 1
2

,

τ2 =
(

2L

w2

) 1
2
[(

w1

w1 + w2

) 1
2 +

(
w3

w2 + w3

) 1
2
]

,

τ3 =
[

2w2L

w3(w2 + w3)

] 1
2

,

T = τ1 + τ2 + τ3 =
(

2L

w2

) 1
2
[(

w1 + w2

w1

) 1
2 +

(
w2 + w3

w3

) 1
2
]

.

(12)

The acceleration-controlled mass 1, whose motion is defined by (6), performs a periodic motion too. Noting
that a negative value of time may be taken when t < τ0, ξ̈2(t − τ0) = 0 is additionally defined for t < τ0
in the first period. Definition (6) remains valid for the left part of the first period and all the other periods.
This setting is acceptable for the reason that the change on the first period alone has little influence on the
steady-state motion of the system in the whole time histories. Besides, through such additional definition,
conditions (9)∼(11) can all be satisfied for mass 1. Then, all the control parameters of mass 2 can be employed
by mass 1.

In light of the three segments of the relative acceleration in a period, three possible cases are derived for
the motion of mass 1, corresponding to different segments the time shift τ0 locates in. For case 1, τ0 ∈ (0, τ3);
for case 2, τ0 ∈ (τ3, τ2 + τ3); and for case 3, τ0 ∈ (τ2 + τ3, T ). The acceleration–time diagrams of mass 1 in a
period for the three possible cases are shown in Fig. 3, marked with case 1, case 2, and case 3. The expressions
of relative acceleration of mass 1 for the three cases have the forms:
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Case 1:

ξ̈1(t) = w3, when t ∈ (0, τ0),

ξ̈1(t) = w1, when t ∈ (τ0, τ0 + τ1),

ξ̈1(t) = −w2, when t ∈ (τ0 + τ1, τ0 + τ1 + τ2),

ξ̈1(t) = w3, when t ∈ (τ0 + τ1 + τ2, T );

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13)

Case 2:

ξ̈1(t) = −w2, when t ∈ (0, τ0 − τ3),

ξ̈1(t) = w3, when t ∈ (τ0 − τ3, τ0),

ξ̈1(t) = w1, when t ∈ (τ0, τ0 + τ1),

ξ̈1(t) = −w2, when t ∈ (τ0 + τ1, T );

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(14)

Case 3:

ξ̈1(t) = w1, when t ∈ (0, τ0 − τ2 − τ3),

ξ̈1(t) = −w2, when t ∈ (τ0 − τ2 − τ3, τ0 − τ3),

ξ̈1(t) = w3, when t ∈ (τ0 − τ3, τ0),

ξ̈1(t) = w1, when t ∈ (τ0, T ).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(15)

Practically, the relative accelerations of mass 1 and mass 2 should satisfy the constraints

0 < w j < W, j = 1, 2, 3, (16)

where W is the highest permissible acceleration of the relative motion and is an assigned positive constant.

2.4 Non-dimensionalization

Introduce the dimensionless variables in according to the following formulas (the asterisk ∗ is a symbol of
dimensionless variables):

x∗
i = x

S
, ξ∗

i = ξi

S
, t∗ = t

√
c

M + m
, ε = f−

√
M + m

c
,

α = m

M + m

√
c

M + m
, β = α

f−
, f ∗(ẋ∗

i ) = f (ẋi )

f−
(i = 1, 2).

(17)

In the above transformations, S is a unit of length used for non-dimensionalization and can be set arbitrarily.
For the sake of simplicity, S is chosen as

S = W (M + m)

c
.

Then, the dimensionless relative acceleration ξ̈∗
i equal to ξ̈i

W , (i = 1, 2) and are on the order of O(100).
Proceed to the dimensionless variables in (2) and then omit the asterisks, one obtain the dimensionless

governing equation

ẍ1(t) + (x1 − x2) = −εβξ̈1(t) − ε f (ẋ1)ẋ1,

ẍ2(t) − (x1 − x2) = −εβξ̈2(t) − ε f (ẋ2)ẋ2.
(18)

Here,

f (ẋi ) =
{

k, if ẋi ≥ 0,
1, if ẋi < 0,

i = 1, 2, (19)

where k is the dimensionless coefficient of resistance for forward motion, k = f+
f− and 0 ≤ k ≤ 1.
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3 The steady-state motion of the system

3.1 Method of averaging

In what follows, we assume that ε is a small parameters, while the quantities β and |x2 − x1| are on the
following orders

ε � 1, β ∼ O(100), |x2 − x1| ∼ O(100). (20)

Since ε can be represented as ε = f−
√

M+m
c = f−S

√
c(M+m)
cS , the smallness of the parameter ε shows that the

value of the resistance force is small compared with the amplitude of the elastic force.
By subtracting the first equation of (18) from its second equation, the equation of the relative motion of

the system’s modules can be obtained as

η̈ + 2η = ε
[−β(ξ̈2 − ξ̈1) − [ f (ẋ2)ẋ2 − f (ẋ1)ẋ1]

]
, (21)

where η = x2 − x1.
Assuming that no resistance force and excitation force acts on the bodies, the relative motion oscillates

with the natural frequency, i.e., the resonant frequency. This free vibration is governed by equation (21) with
zero right-hand side (ε = 0). The general solution of the free vibration has the form

η = A cos(
√

2t − θ0), (22)

where A and θ0 are arbitrary constants represent the amplitude and the initial phase of the oscillation, respec-
tively. The natural frequency of the free vibration is ω0 = √

2.
To analyze the response of the system in primary resonance, we assume that the difference of the excitation

frequency ω = 2π
T from the resonant frequency ω0 has an order of magnitude of ε, i.e.,

ω2 = ω2
0(1 + εσ ), (23)

where σ is the off-resonance detuning. Here, σ is a const and σ ∼ O(100). Then, equation (21) can be
transformed into

η̈ + ω2η = ε
[−β(ξ̈2 − ξ̈1) − [ f (ẋ2)ẋ2 − f (ẋ1)ẋ1] + σω2

0η
]
. (24)

To enable the method of averaging, the following changes of variables are introduced to reduce the system
(18) into a standard form

x1 = X − a cos ϕ, x2 = X + a cos ϕ,

Ẋ = V, ẋ1 = V + aω sin ϕ, ẋ2 = V − aω sin ϕ,

ϕ = ωt − θ,

(25)

where X = x1+x2
2 is the absolute coordinate of the center of mass of the two rigid bodies, and V is the

absolute velocity. a, ϕ and θ are the functions of t . Adding the two equations of (18) together, and combining
equation(24), system (18) can be rewritten as

V̇ = −ε
[
β(ξ̈1 + ξ̈2) + [ f (ẋ1)ẋ1 − f (ẋ2)ẋ2]

]
,

η̈ + ω2η = ε
[−β(ξ̈2 − ξ̈1) − [ f (ẋ2)ẋ2 − f (ẋ1)ẋ1] + σω2

0η
]
.

(26)

From relations (25), we have

η(t) = x2(t) − x1(t) = 2a cos ϕ, η̇(t) = ẋ2 − ẋ1 = −2aω sin ϕ. (27)

Differentiating the first equation of (27) with respect to t , one can eliminate the second equation of (27) and
obtain

ȧ cos ϕ + aθ̇ sin ϕ = 0. (28)

Differentiating the second equation of (27) and substituting the results into equation (24) yields

− ȧ sin ϕ + aθ̇ cos ϕ = ε

2ω

[−β(ξ̈2 − ξ̈1) − [ f (ẋ2)ẋ2 − f (ẋ1)ẋ1] + σω2
0η
]
. (29)
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Equations (28), (29), as well as the first equation of (26) give the standard form of equations (18) governing
V, a and θ :

V̇ = − ε

2

[
β(ξ̈1 + ξ̈2) + ( f (V − aω sin ϕ)(V − aω sin ϕ) + f (V + aω sin ϕ)(V + aω sin ϕ))

]
,

ȧ = − ε

2ω

[−β(ξ̈2 − ξ̈1) − ( f (V − aω sin ϕ)(V − aω sin ϕ)

− f (V + aω sin ϕ)(V + aω sin ϕ)) + 2aσω2
0 cos ϕ

]
sin ϕ,

θ̇ = ε

2aω

[−β(ξ̈2 − ξ̈1) − ( f (V − aω sin ϕ)(V − aω sin ϕ)

− f (V + aω sin ϕ)(V + aω sin ϕ)) + 2aσω2
0 cos ϕ

]
cos ϕ.

(30)

In equations (30), the quantity ϕ is the fast variable, while V, a and θ are slow variables. By averaging the
right-hand sides of these equations with respect to the fast variable ϕ from 0 to 2π , we obtain the averaged
system in the form

V̇ = − ε

2π · 2
P,

ȧ = − ε

2π · 2ω
Q,

θ̇ = ε

2π · 2aω
R,

(31)

where

P =
2π∫

0

[
β(ξ̈1 + ξ̈2) + ( f (V − aω sin ϕ)(V − aω sin ϕ)

+ f (V + aω sin ϕ)(V + aω sin ϕ))] dϕ,

Q =
2π∫

0

[−β(ξ̈2 − ξ̈1) − ( f (V − aω sin ϕ)(V − aω sin ϕ)

− f (V + aω sin ϕ)(V + aω sin ϕ)) + 2aσω2
0 cos ϕ

]
sin ϕ dϕ,

R =
2π∫

0

[−β(ξ̈2 − ξ̈1) − ( f (V − aω sin ϕ)(V − aω sin ϕ)

− f (V + aω sin ϕ)(V + aω sin ϕ)) + 2aσω2
0 cos ϕ

]
cos ϕ dϕ.

(32)

In the following, this average system will be mainly studied.
On account of the fact that both the excitation and resistance contain the non-smooth characters, the inte-

gration will be performed piecewise. The integration range is divided at the instants when the magnitudes
of relative accelerations of the internal masses change, as well as the instants when the signs of the absolute
velocities of the main bodies change. The results of integration (32) for the three different cases listed in section
2.3 are expressed as Pm, Qm and Rm (m = 1, 2, 3), respectively:

Pm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4a ω u π, if u < −1,

2aω
[
(1 + k)πu

−2(1 − k)
(√

1 − u2 + u arcsin u
)]

, if |u| ≤ 1,

4k a ω u π, if u > 1.

Qm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Am + 2a ω π, if u < −1,

Am − a ω
[

− (1 + k)π

+2(1 − k)
(

u
√

1 − u2 + arcsin u
)]

, if |u| ≤ 1,

Am + 2k a ω π, if u > 1.

Rm = Bm + 2a σ ω2
0 π,

(33)
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where

u = V

aω
. (34)

For the three different motion cases, Am and Bm (m = 1, 2, 3) are functions with parameters ω j ( j =
1, 2, 3), τ0 and θ :

Am =
2π∫

0

−β(ξ̈2 − ξ̈1) sin ϕdϕ,

Bm =
2π∫

0

−β(ξ̈2 − ξ̈1) cos ϕdϕ.

(35)

One should be alerted again that these two integrations are performed piecewise. The integration variable ϕ for
ξ̈i (t) is obtained through a transformation ϕ = ωt − θ . We take A1 as an example to illustrate the procedures
of integrating,

A1 =
2π∫

0

−β(ξ̈2 − ξ̈1) sin ϕdϕ

= −β

⎡
⎣

2π∫
0

ξ̈2 sin ϕdϕ −
2π∫

0

ξ̈1 sin ϕdϕ

⎤
⎦

= −β

⎡
⎢⎣

ωτ1−θ∫
−θ

w1 sin ϕdϕ +
ω(τ1+τ2)−θ∫
ωτ1−θ

(−w2) sin ϕdϕ +
ωT −θ∫

ω(τ1+τ2)−θ

w3 sin ϕdϕ

−
ωτ0−θ∫
−θ

w3 sin ϕdϕ −
ω(τ0+τ1)−θ∫
ωτ0−θ

w1 sin ϕdϕ −
ω(τ0+τ1+τ2)−θ∫
ω(τ0+τ1)−θ

(−w2) sin ϕdϕ

−
ωT −θ∫

ω(τ0+τ1+τ2)−θ

w3 sin ϕdϕ

⎤
⎥⎦ .

3.2 The steady-state motion

Since any non-stationary process approaches a steady state due to the resistance force, in what follows, the
steady-state motion of the vibration-driven system as a whole will be of our interest. The variable V , i.e., the
velocity of the steady-state motion of the system’s center of mass, will be used to characterize the velocity of
the system as a whole. When the motion of the system enter the steady state, the velocity of the steady-state
motion is constant “on average” with periodic oscillation imposed on. We define the system carry out a steady-
state motion if V = const, a = const, and θ = const, i.e., V̇ = 0, ȧ = 0, and θ̇ = 0. Thus, the analysis of the
steady-state motion is reduced to studying the solution of the algebraic equations:

Pm = 0, Qm = 0, Rm = 0, m = 1, 2, 3. (36)

From the results of integration (33) and the definition of steady-state motion (36), we know that the system
can conduct a steady-state motion only if |u| ≤ 1, then it follows that

(1 + k)π u − 2(1 − k)
(√

1 − u2 + u arcsin u
)

= 0, (37)

Am − aω
[
−(1 + k)π + 2(1 − k)

(
u
√

1 − u2 + arcsin u
)]

= 0, (38)

Bm + 2aσ ω2
0 π = 0, m = 1, 2, 3. (39)
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According to equation (34), only the steady-state values of u and a are needed to calculate V . From
equation (37), the steady-state value of u can be obtained once the parameters k is fixed. Letting H(k, u) =
(1+k)π u −2(1−k)

(√
1 − u2 + u arcsin u

)
, and calculating the derivative H ′

u of the function H(k, u) with

respect to u for |u| < 1, we obtain

H ′
u(k, u) = (1 + k)π − 2(1 − k) arcsin u > 0. (40)

Since H(k, 0) = −2(1 − k) < 0 and H(k, 1) = 2kπ > 0, the equation (37) must have a unique root u = us
for a fixed k according to the monotonicity obtained in (40), and the root locates in the interval (0, 1). To
investigate the dependence of the steady-state value us on k, we differentiate the function H(k, u) with respect
to k, with |u| < 1

H ′
k(k, u) = 2

√
1 − u2 + u (π + 2 arcsin u) > 0. (41)

On the basis of the relation

dus

dk
= − H ′

k

H ′
u
, (42)

and from equations (40) and (41), it can be concluded that dus
dk

< 0. Thus, the steady-state value us decreases
as k increases.

By eliminating the variable a from (38) and (39), we obtain a new equations for θ

Am + Bm ω

2σ ω2
0 π

[
−(1 + k)π + 2(1 − k)

(
u
√

1 − u2 + arcsin u
)]

= 0, m = 1, 2, 3. (43)

Since equation (43) contains three unknown parameters, i.e., θ, τ0 and k (u is a one-variable function of k),
the parameter θ can be expressed with the form θ = I (τ0, k). When a pair of values of τ0 and k is given,
the steady-state value of θ , i.e., θs , can be obtained. Substituting the value of θs back to equation (39), the
steady-state value of a can be expressed through

as = − Bm

2σ ω2
0 π

. (44)

Finally, using equations (34), (37) and (44), the average steady-state velocity of the system can be given by

Vs = usasω. (45)

Notice that the change on the value of σ leads to changes on the values of the three internal accelerations,
hence, the changes on the integrations Am and Bm (m = 1, 2, 3) in equation (43). Then, if the sign of σ
is changed, by solving equations (43) and (44), different steady-state values of θ and a will be obtained. It
is possible that the new steady-state value θs corresponds to a negative steady-state value as . However, the
negative values of as do not mean that the steady-state velocity will change its direction.

In fact, we notice that if (as, θs) is the solution of equation (38) and (39) (or equation (43) and (44)) for
the set of parameters (τ0, , k), then (−as, θ ± π) is also the solution. Since the relation a cos(ωt + θ) =
−a cos(ωt + θ ± π) is satisfied, the two solutions are equivalent to each other. Therefore, when σ changes its
sign, even we obtain a negative value of as , a positive value (−as) can always be found if we change θs into
θs + π or θs − π , which does not affect the steady-state solution of the system. Consequently, being different
with [19], the steady-state velocity will not change its direction if we change the sign of the off-resonance
detuning σ

We then investigate the derivative da
dτ0

:

da

dτ0
= − 1

2σ ω2
0 π

dBm

dτ0
= − 1

2σ ω2
0 π

(
∂ Bm

∂θ

dθ

dτ0
+ ∂ Bm

∂τ0

)
, (46)

in which, ∂ Bm
∂θ

= −Am . The steady-state value as will reach the maximum only if the optimal value of τ0

satisfies the relation da
dτ0

= 0. Besides, it is worthy noting that Am, dθ
dτ0

and ∂ Bm
∂τ0

make no reference to the
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parameter k. Thus, the equation da
dτ0

= 0 is k independent, and the optimal value of τ0 is not related to the
parameter k.

Based on the above analysis, three important conclusions on the dynamics of the system can be drawn for
the case of small resistance and weak excitation.

1. The steady-state value us has inverse relation to the parameter k. For a prescribed environment where
the system works, i.e., a fixed value of k, the steady-state value us can be determined through equation (37).
And from equation (43), θs depends on τ0, hence, in views of equation (44), as depends on τ0. Therefore, the
magnitude of the average steady-state velocity Vs can be obtained and depends on the time shift τ0.

2. The magnitudes of the internal accelerations change with the excitation frequency, i.e., the value of
off-resonance detuning σ . However, the qualitative characteristics of the steady-state motion of the system do
not depend on the sign of the off-resonance detuning σ . Changing the detuning σ in sign does not lead to the
reverse in direction of motion of the system.

3. For a fixed value of k, without changing the amplitude and the frequency of the internal excitation, one
is able to control the magnitude of the average steady-state velocity of the system by changing the time shift
between the internal excitations. The optimal value of τ0, which corresponds to the maximal magnitude of the
average steady-state velocity, has no relation with the parameter k. Once an optimal value of τ0 is obtained for
a system with arbitrary value of k, this is the optimal value for all k ∈ [0, 1].

4 Numerical analysis

In this section, the analytical results will be verified by several numerical examples. The optimal situation that
corresponds to the maximal average steady-state velocity will be discussed.

4.1 The steady-state motion

The following values of parameters are firstly taken to simulate the system:

M = 1.2 kg, m = 0.72 kg, c = 100 N/m,

L = 0.15 m, f+ = 0.2 s−1, f− = 0.4 s−1,

w1 = 6 m/s2, w2 = 5 m/s2, w3 = 4 m/s2,

τ1 = 0.15 s, τ2 = 0.34 s, τ3 = 0.20 s,

W = 10 m/s2.

(47)

Such parameters locate within a feasible region, and hence, are meaningful in guiding design for practical
mechanical systems. With these parameters, the conditions (9)∼(11) are all satisfied for the internal motions
of masses 1 and 2. The natural frequency of the system is

ω0 =
√

2c

M + m
= 10.21 s−1, (48)

and in this example, the excitation frequency is

ω = 2π

T
= 2π

τ1 + τ2 + τ3
= 8.98 s−1. (49)

Then, the length scale S and all the dimensionless parameters ε, k, and β are given

S = 0.19 m, ε = 0.055 k = 0.5, β = 6.77. (50)

The parameters ε and β satisfy the first two constraints of (20), and the last one constraint will be verified
numerically later. The dimensionless natural frequency and excitation frequency are

√
2 and 1.24, respectively.

According to equation (23), the off-resonance detuning is

σ = 1

ε

(
ω2

ω2
0

− 1

)
= −4.06. (51)
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Fig. 4 The plot of θs versus τ0 with parameters (47)

Fig. 5 The plot of as versus τ0 with parameters (47)

From equation (37), the steady-state value us is not related to the value of τ0 and can be obtained when k
is fixed. Then, the steady-state value θs can be determined through equation (43). The dependence θs = θs(τ0)
is presented in Fig. 4, which shows that θs is a monotonic increasing function with respect to τ0 from 0 to
T = 0.69 s. After that, substituting the steady-state values us, θs , as well as the value of τ0 into equation (44),
the steady-state value of the amplitude a can be obtained. In Fig. 5, the relation between τ0 and as is presented.
By contrast with θs(τ0), as(τ0) is not monotonic on τ0, instead, a maximal value of as exists inside the range
of τ0 from 0 to T , which corresponds to the optimal situation that will be discussed later.

With the values of us and as determined, the average steady-state velocity Vs can be obtained via equa-
tion (46). Taking k = 0.5 as an example, the steady-state value us equals to 0.22 through equation(37). For
τ0 ∈ [0, T ], the approximate average steady-state velocities are obtained and illustrated in Fig. 6 with solid
line. Using 4th-order Runge–Kutta method, we simulate the exact equations of motion (2) with zero initial
displacements and zero initial velocities of bodies 1 and 2. The numerical average steady-state velocities are
shown in Fig. 6 with symbols. Figure 6 reflects that the analytical results based on method of averaging are in
good agreement with those obtained from numerical simulation for almost all the values of τ0, except for the
case that the time shift between the excitations in different modules is close to zero.

Specially, three values of τ0, i.e., τ0 = 0.1 s, τ0 = 0.3 s and τ0 = 0.55 s, corresponding to the three
different cases described in section 2.3, are taken out as examples. For τ0 = 0.1 s, which belongs to case 1,
the dimensionless results give

as ≈ 0.22, Vs ≈ 0.06082.
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Fig. 6 The average steady-state velocity Vs resulting from numerical simulation (symbols) of the exact equations of motion and
the approximate solution (solid curve) with parameters (47)

In the dimensional units,

Vs ≈ 0.08427 m/s. (52)

For τ0 = 0.3 s, which belongs to case 2, the calculation results in the dimensionless values

as ≈ 0.50, Vs ≈ 0.1365,

and the dimensional ones

Vs ≈ 0.1892 m/s. (53)

For τ0 = 0.55 s, which belongs to case 3, the dimensionless results yield

as ≈ 0.32, Vs ≈ 0.08692,

which in the dimensional units corresponds to

Vs ≈ 0.1204 m/s. (54)

The average steady-state velocity obtained by numerical means are 0.0843 m/s, 0.1765 m/s and 0.1288 m/s
for τ0 = 0.1 s, τ0 = 0.3 s and τ0 = 0.55 s, respectively, which are all in good agreement with the values of
(52), (53) and (54).

Figure 7 shows the time histories of the dimensional variable V for τ0 = 0.1 s, τ0 = 0.3 s, and τ0 = 0.55 s.
It is apparent from these plots that after a transient, the motion enter into a steady-state mode with a constant
average steady-state value of V . Periodic oscillations are imposed on the constant average steady-state velocity.

Moreover, so as to verify the last constraint in (20), the dimensionless amplitudes of the relative motions
are given: 0.52 for τ0 = 0.1 s, 1.04 for τ0 = 0.3 s, and 0.63 for τ0 = 0.55 s. These results meet the constraint
|x1 − x2| ∼ O(100) in an acceptable accuracy. However, as is shown in Fig. 6, when the value of τ0 is
taken near zero or T , errors between the analytical results and numerical results are big. This is because the
values of |x1 − x2| are fairly small around τ0 = 0 and τ0 = T , which contradict the necessary constraint
|x1 − x2| ∼ O(100) for the method of averaging. What need points out is, the big errors around the value of
τ0 = 0 s and τ0 = T do not mean that the original system does not have a solution with steady-state motion,
but that such solution cannot be acquired by first-order approximation of method of averaging.

From Figs. 6 and 7, we notice that with the change of the value of parameter τ0, the steady-state velocity
changes obviously. For τ0 = 0.1 s, the system oscillates with a relatively small value of average steady-state
velocity, while with a large amplitude of oscillation. When adding the value of τ0, the average steady-state
velocity increases, and the velocity amplitude decrease simultaneously. However, if the value of τ0 keeps
increasing, the average steady-state velocity does not monotonously increase, instead, it drops down, and the
velocity amplitude increases meanwhile. Thus, a critical value of parameter τ0 must exist between the region
[0, T ]. At this critical point, the motion has the maximal magnitude of average steady-state velocity as well
as the minimal value of the velocity amplitude, which stands for a motion with little retroversion and higher
efficiency. Such motion is the optimal one and is what we are interested. Next, the critical value of the parameter
τ0 as well as the optimal situation will be studied.
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(a)

(c)

(b)

Fig. 7 The time history of the velocity V : a τ0 = 0.1 s; b τ0 = 0.3 s; c τ0 = 0.55 s

(a) (b)

Fig. 8 The time history of the velocity V : a zero time shift τ0 = 0 s; b optimal situation τ0 = 0.35 s

4.2 Optimal situation

Observing Figs. 5 and 6 again, one know that at the extreme point, a maximal value of as is reached, which
corresponds to the maximal average steady-state velocity. By numerical means, the value of τ0 at the extreme
point is 0.35 s, which is the critical value we need. In accordance with the theoretical analysis in section 3.2,
it is this optimal value (τ0)opt = 0.35 s that keeps valid for all the k ∈ [0, 1]. At τ0 = 0.35 s, the optimal
situation is achieved, the steady-state value as reaches to its maximum, and so is the average steady-state
velocity. Through method of averaging, the dimensionless maximal average steady-state velocity is 0.1400,
and the dimensional one is 0.1940 m/s for the averaged system. Via numerical simulation, the time histories
of the velocity V for τ0 = 0 s and the optimal value τ0 = 0.35 s are shown in Fig. 8a, b, respectively. It reads
that for τ0 = 0.35 s, the dimensional maximal average steady-state velocity is 0.1848 m/s, which coincides
with the analytical result in high accuracy. By contrast, the dimensional steady-state velocity for zero time
shift is only 0.04728 m/s. Making a comparisons between these two situations, one may find that the average
steady-state velocity increases significantly due to our control over the time shift between the two internal
excitations. On the other hand, the velocity amplitude has a remarkable decline to 0.042 m/s for the optimal
situation with τ0 = 0.35 s from 0.75 m/s for the zero time shift situation.

Figure 9 shows the time histories of the velocity of each body in the cases of τ0 = 0 s and τ0 = 0.35 s. It is
clearly that when there is no time shift, modules 1 and 2 move synchronously, with a low velocity. No elastic
force is generated on the elastic element, that is, the motions of modules 1 and 2 do not influence each other at
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(a)

(b)

Fig. 9 The time histories of the velocity ẋ1 (solid line) and ẋ2 (dot line): a zero time shift τ0 = 0 s; b optimal situation τ0 = 0.35 s

all. While when the optimal value τ0 = 0.35 s is applied, modules 1 and 2 move with a half-cycle difference
and with a higher velocities. At the time when one of the body moves backward with the maximal backward
velocity, the other body just moves forward with the maximal forward velocity. Thus, an elastic force is gen-
erated owing to the deformation of the elastic element, and it seems that one body “pushes forward” the other.

5 Conclusion

System with movable internal masses is a kind of vibration-driven system, which has absorbed lots of studies
around the world. Such system is simple in design and is promisingly to be used in micro-robots.

In this paper, the motion of a two-module vibration-driven system is studied. The system consists of two
rigid bodies connected by an elastic element and is excited by internal acceleration-controlled masses inside the
respective bodies. The resistance force between the system and the environment is assumed to be anisotropic
linear. In the case of small coefficients of resistance and weak excitations, method of averaging is adopted to
deal with the non-smooth factors in both the internal excitation and the external resistance. A series of algebraic
equations is obtained to determine an approximate value of the average steady-state velocity of the system as
a whole. It is shown that the magnitudes of average steady-state velocity of the entire system can be controlled
by changing the time shift between the motions of the two internal masses. With such control, motion without
retroversion can be achieved and the efficiency of the system improves significantly. In order to achieve a
motion with maximal average steady-state velocity, the optimal value of the time shift is determined, and the
optimal situation is studied. For a system with specific design parameters, numerical simulations validate our
analytical results based on method of averaging.
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