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Abstract Thermo-mechanical vibrations of a simply supported spring-mass-beam system are investigated
analytically in this paper. Taking into account the thermal effects, the nonlinear equations of motion and inter-
nal/external boundary conditions are derived through Hamilton’s principle and constitutive relations. Under
quasi-static assumptions, the equations governing the longitudinal motion are transformed into functions of
transverse displacements, which results in three integro-partial differential equations with coupling terms.
These are solved using the direct multiple-scale method, leading to closed-form solutions for the mode func-
tions, nonlinear natural frequencies and frequency–response curves of the system. The influence of system
parameters on the linear and nonlinear natural frequencies, mode functions, and frequency–response curves
is studied through numerical parametric analysis. It is shown that the vibration characteristics depend on the
mid-plane stretching, intra-span spring, point mass, and temperature change.

Keywords The method of multiple timescales · Nonlinear vibration · Spring-mass-beam system

1 Introduction

Various engineering devices and machine components can be modeled as a flexible beam with nonlinear char-
acteristics. In some of these applications, the beam is subjected to several concentrated elements such as point
masses, non-ideal additional supports, springs, spring-mass systems, etc., at several locations along the beam
length [1–8]; see references [9–11] for a review. On the other hand, in many applications, these systems are
often subjected to vibration under thermal (temperature gradient induced) [12–18] and dynamical loadings.
Therefore, these structures require a more complex analysis than a simple continuum, due to the simultaneous
presence of additional concentrated elements and dynamic and thermal loads.

The vibrations of beams have been investigated for many years and were reviewed, for example, by
Nayfeh and Mook [9]. In a fundamental work by Eisley [19], the nonlinear vibrations of beams and rect-
angular plates were investigated using a single-mode approximation. An approximate solution for the large
amplitude vibration response of beams was obtained in [20] using the Ritz–Galerkin method. Further work on
the subject involved, for example, the inclusion of rotary inertia and transverse shear in modeling of solid and
sandwich beams [21], and large deformation nonlinearity [22], where perturbation and shooting techniques
were employed to solve the equations of motion. These investigations were then extended for beams with
concentrated elements in [23–27]. One of the first complete studies on this subject was by Dowell [23] for a
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Fig. 1 A spring-mass-beam system under thermal loading

nonlinear beam-spring-mass system. Birman [24], on the other hand, investigated the dynamic response of the
system resting on a nonlinear foundation. These studies were extended in [25,26] for a system with flexible
boundary conditions and a geometric nonlinearity.

As is well known, temperature fields develop thermal stress due to thermal expansion or contraction which
influences the dynamic behavior of mechanical systems. The literature on thermal vibrations of mechanical
structures is quite abundant; here, only a few papers are reviewed. Treyssede [13] studied the nonlinear vibra-
tions of thermally prestressed Euler–Bernoulli beams, where the effects of imperfections and prebending were
investigated. The vibration and thermal buckling of sandwich beams consisting of a viscoelastic core and
composite facing were studied in [14]. The finite-element method was used in [15] to treat the active control of
thermo-mechanical vibrations of a composite beam. Additional contributions were made in [16] to investigate
the free and forced thermal vibrations of a FGM Timoshenko beam, in [17] to deal with the simultaneous
presence of magnetic fields and thermal loads, and in [18] to study the thermal effects on the large amplitude
vibration of Timoshenko beams.

The present study focuses on vibration analysis of a spring-mass-beam system in the simultaneous presence
of dynamical and thermal loadings. The beam is considered as a three-part system, and the equations of motion
are derived using Hamilton’s principle, which renders additionally the appropriate internal/external boundary
conditions. The equations of motion form a set of nonlinear partial differential equations with nonlinear, time-
dependent, and coupled internal boundary conditions. These are solved analytically via the method of multiple
timescales, which provides direct insight into the basic relationships between the system parameters and the
vibration response. The dependencies are shown via a numerical parametric study in the last section.

2 Model development and formulation

Shown in Fig. 1 is a simply supported beam carrying a concentrated mass and subjected to an additional non-
linear spring, which are located at different positions along the length of the beam. This system is additionally
subjected to a uniform temperature rise.

The system consists of a beam of length L , constant density ρ, cross-sectional area A, and Young’s modu-
lus E , subjected to a uniform temperature rise of �T . The spring, with linear and nonlinear stiffness coefficients
of k̂1 and k̂2, and the point mass M̂ are attached to the beam at distances x̂s and x̂m from the left-end of the beam,
respectively. The beam is considered as a three-part system, i.e., 0 < x̂ < x̂s, x̂s < x̂ < x̂m and x̂m < x̂ < L .
Also, ŵ1, ŵ2, and ŵ3 represent the respective transverse displacement for these three spans; û1, û2, and û3
are the corresponding longitudinal displacements. Properties before the spring (0 < x̂ ≤ x̂s) are noted with
subscript 1, between the spring and point mass (x̂s < x̂ ≤ x̂m) with 2, and after the point mass (x̂m < x̂ < L)
with 3.

The assumptions in deriving the equations of motion are as follows: (1) Euler–Bernoulli beam theory is
considered; (2) only the planar displacements are considered; (3) the nonlinearity type is geometric, due to
the stretching of the mid-plane of the beam; (4) the maximum order of nonlinearity is cubic; (5) the mass
is assumed to be a point mass; (6) the spring force acting on the beam is nonlinear due to the geometric
nonlinearity; (7) the spring is attached to the centerline of the beam.

The strain (in Lagrangian description) in the beam for each span is given by
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ε j (x̂, t̂) = ∂ û j
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+ 1

2

(
∂ŵ j
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)2

, j = 1, 2, 3. (1)

Considering this, the expression for the variation in potential strain energy of the beam, together with the
spring, takes the form
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∂4ŵ3

∂ x̂4 δŵ3 dx̂
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∂ŵ3

∂ x̂

)2
)

− γ

]
δû3
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∂ŵ1

∂ x̂

)2
)

− γ

]
δû1
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∂ŵ1

∂ x̂

(
E

(
∂ û1
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∂ŵ2

∂ x̂

(
E

(
∂ û2
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where γ = EαT �T , in which αT is the thermal expansion coefficient, and π denotes the potential energy.
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The variation in the kinetic energy of the beam with the end mass can be expressed as follows
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where T is the kinetic energy. In Eq. 3, under the quasi-static assumption, the longitudinal inertial terms were
not considered.

The application of Hamilton’s principle gives

δ
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∂4ŵ j

∂ x̂4 = A

{
∂2ŵ j
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∂ŵ1

∂ x̂
= ∂ŵ2
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∂2ŵ2

∂ x̂2 = ∂2ŵ3
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Simplifying and adding Eq. 4c while employing the boundary conditions yields
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∂ŵ2

∂ x̂

)2

dx̂ +
L∫

x̂m

(
∂ŵ3

∂ x̂

)2

dx̂

⎤
⎥⎦ , j = 1, 2, 3. (5)



Thermo-mechanical nonlinear vibration analysis of a spring-mass-beam system 321

Inserting this into Eq. 4b and writing the transverse motion-related terms of Eq. 4d–4g gives
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(7)

where r is the radius of gyration of the cross-sectional area, and ε is a small parameter in order to ensure that
the nonlinear terms are small compared with the linear ones. Furthermore, the εFj cos(
t) ( j = 1, 2, 3) terms
are distributed harmonic forces exerted on the i th span. These were not in the derivations from the beginning
for simplicity.

3 The application of the method of multiple timescales

In the two timescale-expansion form of the method of multiple timescales [28–45], a uniformly valid expansion
is sought in the following form

w j (x, t; ε) = w j0 (x, T0, T1) + εw j1 (x, T0, T1) + O(ε2), j = 1, 2, 3, (8)

where w10, w20, and w30 are functions describing the unperturbed motion of the beam; w11, w21, and w31
represent the corrections to the linear response; T0 = t and T1 = εt represent the fast and the slow timescales,
respectively, and O(ε2) denotes terms of order ε2 and higher. The method of multiple timescales will determine
how the fundamental motions w10, w20, and w30 are corrected by ε-terms (small perturbations).

The chain rule in time differentiation provides the relations
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Inserting Eq. 8 into Eq. 6a–6e, using Eq. 9, as well as equating coefficients of like powers of ε, the equations
of order 1 and ε and the corresponding internal/external boundary conditions are obtained as
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The general solution for Eq. 10a may be expressed in the following form

w j0 (x, T0, T1) =
∞∑

n=1

[(
Xn(T1)e

iωn T0 + X̄n(T1)e
−iωn T0

)
w̃ jn(x)

]
, j = 1, 2, 3, (12)

where Xn are the complex-valued amplitude functions of slow timescale, i the imaginary unit, and w̃1n, w̃2n ,
and w̃3n represent the nth linear mode functions for the three different spans.
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Substituting Eq. 12 into Eq. 10a–10e and balancing the coefficients of eiωn T0 results in

d4w̃ jn

dx4 + γT
d2w̃ jn

dx2 − ω2
nw̃ jn = 0, j = 1, 2, 3, (13a)

at x = 0: w̃1n = d2w̃1n
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dx2 = 0, (13c)
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Since Eq. 13a–13e form a set of linear ordinary differential equations, the solutions are assumed to take the
following form

w̃1n(x) = c1n cosh(β1nx) + c2n sinh(β1nx) + c3n sin(β2nx) + c4n cos(β2nx), (14a)

w̃2n(x) = d1n cosh(β1nx) + d2n sinh(β1nx) + d3n sin(β2n x) + d4n cos(β2nx), (14b)

w̃3n(x) = e1n cosh(β1nx) + e2n sinh(β1nx) + e3n sin(β2nx) + e4n cos(β2nx), (14c)
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√
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√
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(
i = 1, 2, 3, 4;
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)
, N being the number of modes, are different constants.

Inserting Eq. 14a–14c into Eq. 13b–13e gives

[M]12×12 [c1n c2n c3n c4n d1n d2n d3n d4n e1n e2n e3n e4n]T = [0]12×1, (15)

where [M]12×12 is called the coefficient matrix.
This article considers the system near the nth resonance; for the general case where there are no internal

resonances, it is sufficient to retain only the nth term in Eq. 12, i.e.,

w j0 (x, T0, T1) =
[
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]
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Inserting this into Eq. 11a–11e gives
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e−iωn T0

)
w̃ jn

+
(

X3
ne3iωn T0 + 3X2

n X̄neiωn T0 + 3X̄3
n Xne−iωn T0 + X̄3

ne−3iωn T0
)

×1

2

d2w̃ jn

dx2

⎛
⎝

xs∫
0

(
dw̃1n

dx

)2

dx +
xm∫

xs

(
dw̃2n

dx

)2

dx +
1∫

xm

(
dw̃3n

dx

)2

dx

⎞
⎠

+ Fj

2

(
ei
T0 + e−i
T0

)
, j = 1, 2, 3, (17a)

at x = 0: w11 = ∂2w11

∂x2 = 0, (17b)

at x = 1: w31 = ∂2w31

∂x2 = 0, (17c)
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at x = xs : w11 = w21,
∂w11

∂x
= ∂w21

∂x
,

∂2w11

∂x2 = ∂2w21

∂x2 ,

∂3w11

∂x3 − ∂3w21

∂x3 − k1w11 = k2w̃
3
1n

(
X3

ne3iωn T0 + 3X2
n X̄neiωn T0 + 3X̄2

n Xne−iωn T0 + X̄3
ne−3iωn T0

)
,

(17d)

at x = xm : w21 = w31,
∂w21

∂x
= ∂w31

∂x
,

∂2w21

∂x2 = ∂2w31

∂x2 ,
∂3w21

∂x3 − ∂3w31

∂x3 − M
∂2w21

∂T 2
0

= 2Mw̃2n

(
iωn

dXn

dT1
eiωn T0 − iωn

d X̄n

dT1
e−iωn T0

)
. (17e)

4 The solvability condition, nonlinear natural frequencies, and limit cycles

Equations 17a–17e form a set of coupled, nonlinear partial differential equations whose homogeneous parts
possess nontrivial solutions. Therefore, they have a set of solutions if only if the solvability condition [26,42]
is satisfied.

Fulfilling the solvability condition for the primary resonance case in Eqs. 17a–17g, 
 = ωn+εσn (where σn
is the nth detuning parameter), results in

X2
n X̄n + iα1n

dXn

dT1
= 1

2
α2neiσn T1, (18a)

where

α1n =
2Mωn w̃2

2n (xm ) + 2ωn

(∫ xs
0 w̃2

1ndx + ∫ xm
xs w̃2

2ndx + ∫ 1
xm w̃2

3ndx
)

3k2w̃4
1n (xs ) − 3

2

(∫ xs
0

(
dw̃1n

dx

)2
dx + ∫ xm

xs

(
dw̃2n

dx

)2
dx + ∫ 1

xm

(
dw̃3n

dx

)2
dx

)(∫ xs
0

d2w̃1n
dx2 w̃1ndx + ∫ xm

xs
d2w̃2n

dx2 w̃2ndx + ∫ 1
xm

d2w̃3n
dx2 w̃3ndx

) ,

(18b)

α2n = F1
∫ xs

0 w̃1ndx + F2
∫ xm

xs w̃2ndx + F3
∫ 1

xm w̃3ndx

3k2w̃4
1n (xs ) − 3

2

(∫ xs
0

(
dw̃1n

dx

)2
dx + ∫ xm

xs

(
dw̃2n

dx

)2
dx + ∫ 1

xm

(
dw̃3n

dx

)2
dx

)(∫ xs
0

d2w̃1n
dx2 w̃1ndx + ∫ xm

xs
d2w̃2n

dx2 w̃2ndx + ∫ 1
xm

d2w̃3n
dx2 w̃3ndx

) .

(18c)

In order to determine the nonlinear natural frequencies of the system, α2n (which is related to the forcing
amplitude) is set to zero, then Eq. 8a can be rewritten as

X2
n X̄n + iα1n

dXn

dT1
= 0. (19)

This equation is a nonlinear ordinary differential equation in terms of the slow timescale. In order to solve this
equation, one may consider a transformation of the following form

Xn (T1) = 1

2
aneiθn , (20)

with an = an (T1) and θn = θn (T1) being real-valued functions.
Inserting Eq. 20 into Eq. 19 and separating the real and imaginary parts yields

α1n
dan

dT1
= 0, (21a)

1

4
a3

n − α1nan
dθn

dT1
= 0. (21b)

Solving Eq. 21a yields

an = a0(n), (22)

where a0(n) is a constant value; there is no energy dissipation in the model, and hence, the amplitude of the
response does not decay with time.
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Solving Eq. 21b using Eq. 22 gives

dθn

dT1
= 1

4α1n
a2

0(n). (23)

Substituting Eq. 23 into Eq. 20 and inserting the resulting equation into Eq. 16(a–c), the nth nonlinear natural
frequency of the system is obtained as

(ωnl)n = ε

4α1n
a2

0(n) + ωn . (24)

In order to obtain a relation between the detuning parameter and the vibration amplitude of the resonant case,
one may substitute Eq. 20 into Eq. 18a. Separating the real and imaginary parts of the resulting equation, and
writing γn = σnT1 − θn yields

α1n
dan

dT1
− α2n sin γn = 0, (25a)

1

4
a3

n − α1nan
dθn

dT1
− α2n cos γn = 0. (25b)

The steady-state forced response is obtained by setting dγn
dT1

= dan
dT1

= 0 (an = a0n , where a0n is a constant) in
Eqs. 25a, 25b. Eliminating γn from the resulting equations yields the following

(σ1)1,2 = 1

α1na0n

(
1

4
a3

0n ∓ |α2n|
)

, (26)

which relates the amplitude of the nth resonant amplitude to the corresponding detuning parameter.

5 Numerical results

The objective of this section is to describe the effects of system parameters (such as the spring and mass
locations, mass value, linear and nonlinear stiffness coefficients of the spring, as well as the thermal coefficient
factor) on the linear and nonlinear natural frequencies and frequency–responses of the system.

The linear natural frequencies of the system as a function of various system parameters are presented in
Tables 1, 2, 3 and 4. These analytical results are compared with those obtained numerically via eight-mode
Galerkin discretization, using the simply supported beam eigenfunctions as appropriate comparison functions.
Reviewing these tables leads to several conclusions: (1) changing the spring-mass location along the beam
length increases the first linear natural frequency up to the mid-span of the beam, with a decrease thereafter; (2)
the linear natural frequencies increase with increasing linear stiffness coefficient of the spring; (3) increasing
the value of the concentrated mass decreases the linear natural frequencies of the system (Table 3); (4) as the
thermal coefficient factor increases, the linear natural frequencies decrease.

Table 1 The first, second, and third natural frequencies of the system as a function of the spring-mass location; k1 = 100,
M = 0.5, γT = 1

xs = xm ω1 ω2 ω3

Analytical
method

Galerkin’s
technique

Analytical
method

Galerkin’s
technique

Analytical
method

Galerkin’s
technique

0.1 9.848 9.849 34.068 34.074 71.439 71.504
0.2 10.726 10.726 30.780 30.787 75.495 75.542
0.3 11.435 11.435 32.084 32.091 86.665 86.678
0.4 11.848 11.848 36.013 36.018 81.492 81.552
0.5 11.980 11.980 38.975 38.975 71.660 71.763
0.6 11.848 11.848 36.013 36.018 81.492 81.552
0.7 11.435 11.435 32.084 32.091 86.665 86.678
0.8 10.726 10.726 30.780 30.787 75.495 75.542
0.9 9.848 9.849 34.068 34.074 71.439 71.504
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Table 2 The first, second, and third natural frequencies of the system as a function of the spring coefficient; xs = 0.4, xm =
0.6, M = 0.5, γT = 1

k1 ω1 ω2 ω3

Analytical
method

Galerkin’s
technique

Analytical
method

Galerkin’s
technique

Analytical
method

Galerkin’s
technique

20 7.969 7.969 36.130 36.136 81.423 81.484
40 8.970 8.971 36.505 36.512 81.446 81.507
60 9.828 9.828 36.883 36.890 81.468 81.529
80 10.577 10.578 37.263 37.270 81.491 81.552
100 11.242 11.243 37.664 37.652 81.514 81.575
120 11.838 11.840 38.027 38.036 81.537 81.598
140 12.377 12.380 38.410 38.420 81.560 81.621
160 12.868 12.871 38.793 38.804 81.584 81.644
180 13.317 13.320 39.177 39.188 81.607 81.668
200 13.729 13.733 39.559 39.571 81.631 81.691

Table 3 The first, second, and third natural frequencies of the system as a function of the value of the concentrated mass;
xs = 0.4, xm = 0.6, k1 = 100, γT = 1

M ω1 ω2 ω3

Analytical
method

Galerkin’s
technique

Analytical
method

Galerkin’s
technique

Analytical
method

Galerkin’s
technique

0.1 14.603 14.605 39.113 39.115 86.110 86.119
0.2 13.501 13.503 38.557 38.562 84.358 84.382
0.3 12.608 12.610 38.163 38.169 83.122 83.161
0.4 11.868 11.869 37.870 37.877 82.211 82.262
0.5 11.242 11.243 37.664 37.652 81.514 81.575
0.6 10.704 10.705 37.465 37.474 80.965 81.035
0.7 10.235 10.237 37.319 37.329 80.522 80.599
0.8 9.823 9.824 37.199 37.209 80.158 80.240
0.9 9.456 9.457 37.098 37.108 79.852 79.940

Table 4 The first, second, and third natural frequencies of the system as a function of the value of γT ; xs = 0.4, xm = 0.6, k1 =
100, M = 0.5

γT ω1 ω2 ω3

Analytical
method

Galerkin’s
technique

Analytical
method

Galerkin’s
technique

Analytical
method

Galerkin’s
technique

0 11.463 11.465 38.090 38.098 81.976 82.037
0.25 11.408 11.410 37.979 37.987 81.860 81.922
0.50 11.353 11.354 37.868 37.876 81.745 81.806
0.75 11.297 11.299 37.756 37.764 81.630 81.691
1 11.242 11.243 37.664 37.652 81.514 81.575
1.25 11.185 11.187 37.532 37.540 81.399 81.459
1.50 11.129 11.131 37.419 37.427 81.283 81.343
1.75 11.072 11.074 37.306 37.314 81.167 81.227
2 11.015 11.017 37.193 37.201 81.050 81.110

Next, the influence of the system parameters on the first nonlinear natural frequency was studied
(Figs. 2, 3, 4, 5, 6). Several conclusions may be drawn from these plots. First, the system is elastic, and
therefore, the nonlinear natural frequencies are independent of time. Second, for a given first mode amplitude,
changing the spring-beam location along the beam length from the left-end to the mid-span results in a larger
value for the first nonlinear frequency of the system (Fig. 2), whereas increasing the value of the concentrated
mass has an opposite effect. Third, for a given first mode amplitude, increasing the linear stiffness coefficient
of the spring causes the first nonlinear natural frequency to increase (Fig. 4). Fourth, increasing the nonlinear
stiffness coefficient of the spring leads to an increase in the curvature of the first nonlinear natural frequency,
as seen in Fig. 5. Lastly, for a given first mode amplitude, as the thermal coefficient factor γT is increased, the
first nonlinear natural frequency decreases, as seen in Fig. 6.

Finally, the influence of the system parameters on the frequency–response curves of the system
(Figs. 7, 8, 9, 10) was examined. Several conclusions can be drawn from these figures: (1) as M is increased,
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Fig. 2 The first mode amplitude as a function of the first nonlinear natural frequency of the system for different spring-mass
locations (xs = xm values are indicated on the curves); k1 = 100, k2 = 10, M = 0.5, and γT = 1
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Fig. 3 The first mode amplitude as a function of the first nonlinear natural frequency of the system for a selection of the point-mass
values (M values are indicated on the curves); k1 = 100, k2 = 10, xs = 0.4, xm = 0.6, and γT = 1
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Fig. 4 The first mode amplitude as a function of the first nonlinear natural frequency of the system for several values of the linear
stiffness coefficient of the spring (k1 values are indicated on the curves); k2 = 10, xs = 0.4, xm = 0.6, M = 0.5, and γT = 1
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Fig. 5 The first mode amplitude as a function of the first nonlinear natural frequency of the system for a selection of the nonlinear
stiffness coefficient of the spring (k2 values are indicated on the curves); k1 = 100, xs = 0.4, xm = 0.6, M = 0.5, and γT = 1
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Fig. 6 The first mode amplitude as a function of the first nonlinear natural frequency of the system for a selection of γT (γT
values are indicated on the curves); k1 = 100, k2 = 10, xs = 0.4, xm = 0.6, and M = 0.5

the curvature and hence the nonlinearity of the system decrease (Fig. 7); (2) increasing γT causes the curve
to bend slightly more to the right and the hardening behavior of the system increases (Fig. 8); (3) as k2 is
increased, the curves bend more to the right, and hence, the jump phenomenon is affected and the hardening
behavior of the system increases (Fig. 9); (4) increasing the forcing amplitude causes the response amplitude
to increase, as seen in Fig. 10.

6 Conclusions

In this study, the thermo-mechanical vibrations of a simply supported spring-mass-beam system are investigated
analytically. The beam in considered as a three-part system and Hamilton’s principle along with constitutive
relations are used to derive the nonlinear equations of motion and internal/external boundary conditions, while
taking into account the thermal effects. The equations of motion form a set of nonlinear partial differen-
tial equations with nonlinear, time-dependent, and coupled internal boundary conditions. Under quasi-static
assumptions, these equations are converted into a set of integro-partial differential equations. These PDEs are
then solved via the method of multiple timescales, which results in the vibration response of the system.

The influence of system parameters on its vibration response is investigated through a numerical para-
metric study. The most important conclusions are summarized as: (1) for a given first mode amplitude, either
changing the spring-beam location along the beam length from the left-end to the mid-span or increasing the
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Fig. 7 The first frequency–response curve of the system for several values of the concentrated mass (M values are indicated on
the curves); F1 = F2 = F3 = 5, k1 = 100, k2 = 10, xs = 0.4, xm = 0.6, and γT = 1.
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Fig. 8 The first frequency–response curve of the system for several values of γT (γT values are 0.0, 2.0, 4.0, and 6.0 from left to
right); F1 = F2 = F3 = 5, k1 = 100, k2 = 10, M = 0.5, xs = 0.4, and xm = 0.6
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Fig. 9 The first frequency–response curve of the system for several values of the nonlinear stiffness coefficient of the spring
(k2 values are indicated on the curves); F = F1 = F2 = F3 = 5, k1 = 100, M = 0.5, xs = 0.4, xm = 0.6, and γT = 1
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Fig. 10 The first frequency–response curve of the system for several values of the forcing amplitude, F = F1 = F2 = F3
(F values are indicated on the curves); k1 = 100, k2 = 10, M = 0.5, xs = 0.4, xm = 0.6, and γT = 1

linear and nonlinear stiffness coefficients of the spring causes the first nonlinear natural frequency to increase;
(2) on the other hand, increasing the value of the concentrated mass and the thermal coefficient factor γT has
an opposite effect; (3) increasing γT and k2 causes the frequency–response curves of the system to bend more
to the right and the hardening behavior of the system increases, whereas increasing M has an opposite effect;
(4) increasing the forcing amplitude causes the response amplitude to increase.
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