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Abstract Thermo-mechanical analysis of functionally graded hollow sphere subjected to mechanical loads and
one-dimensional steady-state thermal stresses is carried out in this study. The material properties are assumed
to vary non-linearly in the radial direction, and the Poisson’s ratio is assumed constant. The temperature dis-
tribution is assumed to be a function of radius, with general thermal and mechanical boundary conditions on
the inside and outside surfaces of the sphere. In the analysis presented here, the effect of non-homogeneity in
FGM thick sphere was implemented by choosing a dimensionless parameter, named βi (i = 1, . . . , 3), which
could be assigned an arbitrary value affecting the stresses in the sphere. It is observed that the solution process
for βi (i = 3) = −1 are different from those obtained for other values of βi (i = 1, . . . , 3). Cases of pressure,
temperature, and combined loadings were considered separately. It is concluded that by changing the value of
βi (i = 1 . . . 3), the properties of FGM can be so modified that the lowest stress levels are reached. The present
results agree well with existing results. Using FEM simulations, the analytical findings for FGM spheres under
the influence of internal pressure and temperature gradient were compared to finite element results.
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1 Introduction

Functionally graded materials (FGMs) are being increasingly considered in various applications in the recent
years. These materials have received considerable attention in many engineering applications since they were
first reported in 1984 in Japan [1,2]. Actually, FGMs are mixtures of two or more different materials. Volume
fraction of each material varies continuously along certain direction(s). The gradual change in material prop-
erties can be tailored to meet the requirements of different applications and working environments. The FGMs
were initially designed as thermal barrier materials for aerospace structures.

Compared with the fiber-reinforced or laminated composite materials, FGMs are more preferable in many
thermal–mechanical applications. It is because continuous change in the microstructure of FGMs may not be
subjected to a mismatch of mechanical properties across the interface as a reinforced or laminated material
does. As a result, these materials are able to withstand high-temperature gradients without structural failures.
This feature is vital, especially in space and aeronautical applications. The aims of researchers are to understand
the effect of composition on stresses and to design the optimum FGM hollow circular cylinder and sphere.

During the past years, many researchers have studied the characteristic behavior of FGMs under different
loading conditions. Tanigawa [3] presented an extensive review that covered a wide range of topics from
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thermoelastic to thermo-inelastic problems. He compiled a comprehensive list of papers on the analytical
models of thermoelastic behavior of FGMs. Obata and Noda [4] studied the steady-state thermal stresses
in FGM hollow cylinders and spheres to understand the effect of the volumetric ratio of constituents and
porosity on thermal stresses. The unsteady-state thermal stress of FGM circular hollow cylinders based on
the multilayered method was presented by Kim and Noda [5] by using Green function method. A work was
also published by Horgan and Chan [6] where it was noted that increasing the positive exponent of the radial
coordinate provided a stress shielding effect, whereas decreasing it created stress amplification. Nayebi and
Abdi [7] developed a numerical program to investigate the steady-state behavior of thick-walled spherical and
cylindrical pressure vessels subjected to cyclic pressure and/or temperature using linear kinematic hardening
in the plastic condition and a Norton power law in the creep condition. Geometric non-linearity and effect of
coupling item for different thermal loading conditions were considered in the works of Reddy et al. [8–13].
They carried out theoretical as well as finite element analyses of the thermo-mechanical behavior of FGM
cylinders, plates, and shells.

Much research has been conducted on isotropic or laminated composite plates and shells. However,
it seems that very little has been done on FGM thick vessels. Analytical solutions have been done by
Johnson and Mellor [14] for thick cylindrical vessels under pressure and temperature loading. Applying the
Frobenius series method, Zimmerman and Lutz [15] found a way round the problem of the uniform heating
of FG circular cylinder. They derived the exact solution for the problem of radially heated cylinder whose
modulus of elasticity and thermal expansion coefficient vary linearly with radius. Exact solutions for stresses
in FG pressure vessels were given by Tutuncu and Ozturk [16]. They obtained the closed-form solutions
for stresses and displacements in FG cylindrical and spherical vessels under internal pressure. Another gen-
eral analysis of one-dimensional steady-state thermal stresses in a hollow thick cylinder made of FGM was
obtained by Eslami et al. [17]. They used a direct method to solve the heat conduction and Navier equations.
Furthermore, the temperature distribution was assumed to be a function of radius. In a similar work, Eslami
et al. [18] investigated the thermal and mechanical stresses in a FGM sphere using the same method as in
[17]. In addition, Poultangari et al. [19] studied the thermal and mechanical stresses in a FGM sphere under
non-axisymmetric thermo-mechanical loads. An alternate analytical method to carry out the elastic analysis
of thick-walled spherical pressure vessels subjected to internal pressure was presented by You et al. [20].
They considered two kinds of pressure vessel: one consists of two homogeneous layers near the inner and
outer surfaces of the vessel and one functionally graded layer in the middle and another only consists of the
FGM.

Pan and Roy [21] derived exact solutions for multilayered FGM cylinders under static deformation. They
obtained these solutions by making use of the method of separation of variables and expressed it in terms
of the summation of the Fourier series in the circumferential direction. Jabbari et al. [22] making use of the
generalized Bessel function and Fourier series solved the temperature and Navier equations analytically and
offered a general theoretical analysis of three-dimensional mechanical and thermal stresses for a short hollow
cylinder made of functionally graded material. In a study carried out by You et al. [23], the deformations and
stresses in thick-walled cylindrical vessels made of FGMs were obtained. Such vessels have a varying Young’s
modulus and thermal expansion coefficient and are subjected to internal pressure and uniform temperature
change. Given the assumption that the material is isotropic with constant Poisson’s ratio and exponentially
varying modulus of elasticity through the thickness, thermal and mechanical stresses in a FGM sphere for
exponentially varying material properties were obtained by Eslami et al. [24]. Tutuncu [25] obtained power
series solutions for stresses and displacements in FG cylindrical vessels subjected to internal pressure alone.
In a recent study by Chen and Lin [26], assuming that the property of FGMs is in exponential function form,
they conducted the elastic analyses for both a thick cylinder and a spherical pressure vessel which was made
of functionally graded materials. In this paper, thermo-mechanical properties of functionally graded materials
were assumed to be temperature independent and vary continuously in the radial direction of the cylinder.
Abrinia et al. [27] presented a new analysis for the FGM thick cylinders under combined pressure and tem-
perature Loadings. They obtained the distribution of stresses in radial and circumferential directions for FGM
cylinders under the influence of internal pressure and temperature gradient. Zamani Nejad and Rahimi [28]
investigated the thermal and mechanical stresses under generalized plane strain and plane stress assumptions,
respectively. Concerning the stress analysis of cylindrical and spherical structural elements, Tutuncu and Temel
[29] presented a novel approach to stress analysis of pressurized FGM cylinders, disks, and spheres. In this
work, axisymmetric displacements and stresses in functionally graded hollow cylinders, disks, and spheres sub-
jected to uniform internal pressure were determined using plane elasticity theory and complementary functions
method.



Analytical and numerical analysis for the FGM thick sphere 231

In this paper, a thick hollow sphere made of FGM under one-dimensional steady-state temperature
distribution with general types of boundary conditions (thermal and mechanical) was studied. The thermal
and mechanical properties of the sphere were expressed as power law functions of the radial direction. The
heat conduction and Navier equations were solved to obtain the analytical solution of the problem. Finally,
the analytical results for a FG hollow sphere under spherically symmetric thermo-mechanical loadings were
compared with finite element results. This analysis uses the basic equation suggested by references [14,18]
and extends them to include the effect of temperature as well. The arbitrary values used in this study for the
inhomogeneity constant β do not necessarily represent a certain material.

2 Theoretical formulation and equilibrium equations

Consider a thick hollow sphere made of FGM, with the internal radius “a” and external radius “b” and “r”,
which is normalized as r = R

a where “R” having a value between “a” and “b”. For the following analysis, a
spherical coordinate system (R, φ, θ) is adopted with the origin at the center of the sphere. The geometry of
the sphere in relation with the coordinate axes is shown in Fig. 1. Then, in order to account for the changing
material properties along the radius, a power law relationship [18] is used as follows

E(r) = Eir
β1, α(r) = αi r

β2 , λ(r) = λi r
β3, (1a, b, c)

where β1, β2, and β3 are the power law indices of the material. Substituting r = 1 in above equation could draw
that Ei , αi , and λi are the modulus of elasticity, the coefficient of thermal expansion, and thermal conductivity
coefficient of inner surface, respectively.

Note that the value of Poisson’s ratio has been taken as constant because although the material is not
homogenous but considering that all materials almost have a constant Poisson’s ratio value in the elastic range,
this is a reasonable assumption. Now the formulation begins with the expressions for the strain and stress
distributions through the thickness of the sphere using the equilibrium equation as follows

dσr

dr
+ 2

r
(σr − σφ) = 0, (2)

where σr and σφ are the radial and circumferential stress components, respectively. For spherically symmetric
problem, we have uθ = uφ = 0 and ur = ur (r), where ui (i = r, φ, θ) are the components of displacement
respectively. Then, the strain–displacement relations are simplified as

εr = dur

dr
, εφ = ur

r
. (3a, b)

Fig. 1 Cross-section of a cylindrical pressure vessel with internal radius “a” and external radius “b”
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It could be easily shown that the stresses in the radial and circumferential directions are given by

σr = Eirβ1

(1 + ν)(1 − 2ν)

[
(1 − ν)εr + 2νεφ − (1 + ν)αi r

β2 T (r)
]
, (4a)

σφ = σθ = Eirβ1

(1 + ν)(1 − 2ν)

[
νεr + εφ − (1 + ν)αi r

β2 T (r)
]
, (4b)

where T (r) is the temperature distribution determined from the heat conduction equation. The substitution of
Eqs. (4) and (3a, b) into Eq. (2) produces the Navier equation

r2u′′
r + Aru′

r + Bur = 1 + ν

1 − ν
αi r

β2
{
r(β1 + β2)T (r) + r2T ′(r)

}
, (5)

where

A = 2 + β1, B = 2 [ν(β1 + 1) − 1]

1 − ν
. (6a, b)

and (′) denotes differentiation with respect to r .

3 Stress distributions

The Navier equation for the radial displacement ur was given in Eq. (5). It is a non-homogenous form of
Euler–Cauchy equation. Solutions of Eq. (5) for two cases of temperature distribution are given below.

3.1 Temperature distribution with considering β3 �= −1

In the steady-state condition, the heat conduction equation for the one-dimensional problem in spherical
coordinate system simplifies to

1

r2

d

dr

(
r2λ(r)

dT (r)

dr

)
= 0, (7)

The thermal boundary condition for an FGM hollow sphere is given as

λ(r)
dT

dr
= hi (T − Ti ), on r = 1 (8a)

−λ(r)
dT

dr
= ho(T − To), on r = k (8b)

where Ti and To are the temperatures of the surrounding media, hi and ho are the transfer coefficient, and
subscripts i and o correspond to surfaces R = a and R = b, respectively.

Using relation (1c), and the boundary conditions (8), the general solution of Eq. (7) becomes

T (r) = c5r−(β3+1) + c6, (9)

where

c5 = (Ti − To)

λi (β3 + 1)[ 1
k2ho

+ 1
hi

] − ( 1
kβ3+1 − 1)

, (10a)

c6 =
λi (β3 + 1)[ Ti

k2ho
+ To

hi
] − (

Ti
kβ3+1 − To)

λi (β3 + 1)[ 1
k2ho

+ 1
hi

] − ( 1
kβ3+1 − 1)

. (10b)

By substituting Eqs. (10) and (9) into Eq. (5), the Navier equation would be

r2u′′
r + Aru′

r + Bur = Crβ2−β3 + Drβ2+1, (11)
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where

C = αi
1 + ν

1 − ν
(β1 + β2 − β3 − 1)c5, (12a)

D = αi
1 + ν

1 − ν
(β1 + β2)c6. (12b)

Equation (11) is the non-homogeneous Euler differential equation with general and particular solutions whose
complete solution ur is

u(r) = c1rm1 + c2rm2 + c3rβ2−β3 + c4rβ2+1, (13)

where m1,2 are given by homogeneous solution as following

m1,2 = 1 − A ± √



2
, 
 = (A − 1)2 − 4B, (14a, b)

c3 and c4 can be calculated by substituting particular solutions into Eq. (11) as

c3 = C

(β2 − β3 − 1 + A)(β2 − β3) + B
, (15a)

c4 = D

(β2 + A)(β2 + 1) + B
. (15b)

By substituting Eq. (11) into Eqs. (3a, b) and (4), the resulting stress expressions are

σr = Eirβ1

(1 + ν)(1 − 2ν)

{
c1 Q1rm1−1 + c2 Q2rm2−1 + c3 Q3rβ2−β3−1 + c4 Q4rβ2 − (1 + ν)αi r

β2 T (r)
}
,

(16a)

σφ = Eirβ1

(1 + ν)(1 − 2ν)

{
c1G1rm1−1 + c2G2rm2−1 + c3G3rβ2−β3−1 + c4G4rβ2 − (1 + ν)αi r

β2 T (r)
}
,

(16b)

where

Q1 = 2ν + (1 − ν) m1, G1 = 1 + νm1, (17a)

Q2 = 2ν + (1 − ν) m2, G2 = 1 + νm2, (17b)

Q3 = (β2 − β3)(1 − ν) + 2ν, G3 = (β2 − β3)ν + 1, (17c)

Q4 = (β2 + 1)(1 − ν) + 2ν, G4 = (β2 + 1)ν + 1. (17d)

In Eq. (16), c1 and c2 are unknown constants that can be obtained by applying boundary condition. For the
hollow sphere submitted to uniform pressures pi and po on the inner and outer surfaces, respectively, the
mechanical boundary conditions can be expressed as

σr

∣∣
∣∣ r = 1 = −pi , on r = 1, (18a)

σr

∣
∣∣
∣ r = k = −po , on r = k. (18b)

Note that these are normalized form of what were mentioned in [14].
Substituting the boundary conditions (18) into Eq. (16), the constants of integration become

c1 = 1

Q1 (km1 − km2)

{
c3 Q3(k

m2 − kβ2−β3) + c4 Q4(k
m2 − k1+β2) − (1 + ν)αi (k

m2 Ti − k1+β2 To)
}

+ (1 + ν)(1 − 2ν)

Ei Q1 (km1 − km2)

{
km2 pi − k1−β1 po

}
, (19a)

c2 = − 1

Q2 (km1 − km2)

{
c3 Q3(k

m1 − kβ2−β3) + c4 Q4(k
m1 − kβ2+1) − (1 + ν)αi (k

m1 Ti − k1+β2 To)
}

− (1 + ν)(1 − 2ν)

Ei Q2 (km1 − km2)

{
km1 pi − k1−β1 po

}
. (19b)
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3.2 Temperature distribution with considering β3 = −1

In the steady-state condition, the heat conduction equation for the one-dimensional problem in spherical
coordinate system with considering β3 = −1 simplifies to

1

r2

d

dr

(
λi r

dT (r)

dr

)
= 0, (20)

The thermal boundary condition for an FGM hollow sphere is given as:

λi

r

dT

dr
= hi (T − Ti ), on r = 1, (21a)

−λi

r

dT

dr
= ho(T − To), on r = k. (21b)

The general solution of Eq. (20) with considering relation of thermal conductivity coefficient (1c) and boundary
conditions (21) is

T (r) = c5 ln r + c6, (22)

where

c5 = − (Ti − To)

(ln k + λi
hok2 ) + λi

hi

, (23a)

c6 =
(ln k + λi

hok2 )Ti + λi To
hi

(ln k + λi
hok2 ) + λi

hi

. (23b)

By substituting Eq. (22) into Eq. (5) yields

r2u′′
r + Aru′

r + Bur = Crβ2+1 ln r + Drβ2+1, (24)

where

C = αi
1 + ν

1 − ν
(β1 + β2)c6, (25a)

D = αi
1 + ν

1 − ν
{(β1 + β2)c6 + c5}. (25b)

Equation (24) is the non-homogeneous Euler differential equation with general and particular solutions. Con-
sidering the solutions of homogeneous form of this equation which was presented in previous section, we
know that general solution of homogenous form of above Euler–Cauchy equation is

uh(r) = c1rm1 + c2rm2 , (26)

where m1,2 are presented in Eq. (14a, b).
The particular solution u p(r)is assumed to have the form

u p(r) = c3rβ2+1 ln r + c4rβ2+1, (27)

where c3 and c4 can be determined by substituting particular solutions in Eq. (24) as following

c3 = C

(β2 + A)(β2 + 1) + B
, (28a)

c4 = D

(β2 + A)(β2 + 1) + B
. (28b)

The complete solution for u(r) is the sum of general and particular solutions as

u(r) = ug(r) + u p(r), (29)
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Thus,

u(r) = c1rm1 + c2rm2 + c3rβ2+1 ln r + c4rβ2+1. (30)

By substituting Eq. (30) into Eqs. (3a, b) and (4), the resulting stress expressions are

σr = Eirβ1

(1 + ν)(1 − 2ν)

{
c1 Q1rm1−1 + c2 Q2rm2−1 + c3 Q3rβ2 ln r + c4 Q4rβ2 − (1 + ν)αi r

β2 T (r)
}
, (31a)

σφ = Eirβ1

(1 + ν)(1 − 2ν)

{
c1G1rm1−1 + c2G2rm2−1 + c3G3rβ2 ln r + c4G4rβ2 − (1 + ν)αi r

β2 T (r)
}
, (31b)

where

Q1 = 2ν + (1 − ν) m1, G1 = 1 + νm1, (32a)

Q2 = 2ν + (1 − ν) m2, G2 = 1 + νm2, (32b)

Q3 = (β2 + 1)(1 − ν) + 2ν, G3 = (β2 + 1)ν + 1, (32c)

Q4 =
(

C

D
+ β2 + 1

)
(1 − ν) + 2ν, G4 =

(
C

D
+ β2 + 1

)
ν + 1. (32d)

and the constants c1 and c2 are determined from the boundary conditions (18) as

c1 = 1

Q1 (km1 − km2)

{−c3 Q3kβ2+1 ln k + c4 Q4(k
m2 − k1+β2) − (1 + ν)αi (k

m2 Ti − k1+β2 To)
}

+ (1 + ν)(1 − 2ν)

Ei Q1 (km1 − km2)

{
km2 pi − k1−β1 po

}
, (33a)

c2 = − 1

Q2 (km1 − km2)

{−c3 Q3kβ2+1 ln k + c4 Q4(k
m1 − kβ2+1) − (1 + ν)αi (k

m1 Ti − k1+β2 To)
}

− (1 + ν)(1 − 2ν)

Ei Q2 (km1 − km2)

{
km1 pi − k1−β1 po

}
. (33b)

4 Finite element analysis

A geometry specimen was modeled using a commercial FE code, ABAQUS, for a comparative study. In the
FEM model, due to symmetry, only a quarter of the sphere specimen geometry was considered. An 8-node
axisymmetric quadrilateral element was used to represent the FGM specimen. The final FEM model consisted
of 1580 elements in total. In the model, the variation in material properties was implemented by having 20
layers, with each layer having a constant value of material properties. Figure 2 illustrates the meshing region.

The nodal points along the horizontal edge passing through the center were free to move in X direction but
were constrained from moving in the Y direction to reflect the symmetry of sphere specimen geometry.

5 Result and discussion

The analytical solution and numerical analysis presented in the previous section were applied to a thick hollow
sphere of inner radius, a = 40 mm, and outer radius of b = 60 mm.

A special case is considered in which there is no heat transfer taking place between the inner and outer
surfaces with the surrounding medium (hi , ho → ∞) and the surface temperature at the inner and outer
surfaces is prescribed as Ti and To, respectively. The boundary conditions for temperature are taken as Ti =
300◦C, To = 25◦C. The modulus of elasticity and the thermal coefficient of expansion at the inner surface
of the sphere were taken as Ei = 200 GPa and αi = 1.2(10−6)/◦C, respectively. It is also assumed that the
Poisson’s ratio ν has a constant value of 0.3. The power index for the modulus of elasticity, coefficient of
thermal expansion, and heat conduction coefficient are assumed to be identical (β1 = β2 = β3 = β).
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Fig. 2 Finite element mesh region

Fig. 3 Distribution of normalized radial displacement under the loading of pressure

5.1 Pressure only

Consider the thick sphere is subjected to mechanical stresses. The inside pressure is assumed to be p =
80 M Pa, and outside pressure, zero. For different values of β, radial displacement, radial stress, and cir-
cumferential stress along the radial direction are plotted in Figs. 3, 4, and 5. The results for radial stress and
circumferential stress were normalized with respect to internal pressure loading. (Note that u(r) = U (R)

a are
normalized form of what were mentioned in [14])

Here, a higher value of β means increasing stiffness (see Eq. 1a, b, c). It is observed that the radial stress
and the radial displacement increase as the power law index of FGM sphere decreases.

The mechanical circumferential stress versus the radial direction is shown in Fig. 5. It is seen that for β < 1
the circumferential stress variations decrease along the radial direction. When β > 1, the situation is reversed
and the circumferential stress increases along the radial direction. The curve associated with β = 1 shows
that the variation in circumferential stress along the radial direction is minor and is almost uniform across the
radius. At an approximate radial distance of r = 1.23, the stress values for all values of β converge toward the
stress values in the homogenous material (β = 0).
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Fig. 4 Distribution of normalized radial stress under the loading of pressure

Fig. 5 Distribution of normalized circumferential stress under the loading of pressure

Fig. 6 Distribution of normalized radial temperature under the loading of temperature
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Fig. 7 Distribution of normalized radial displacement under the loading of temperature

Fig. 8 Distribution of normalized radial stress under the loading of temperature

5.2 Temperature only

Now the hollow sphere assumed to be traction free at inner and outer surfaces. Temperature profile, radial dis-
placement, radial stress, and circumferential stress along the radial direction are plotted in Figs. 6, 7, 8, and 9.
Figure 6 shows the temperature distribution across the wall thickness. This figure shows that as β increases,
the temperature decreases. Figure 7 shows the resulting thermoelastic radial displacement due to the given
temperature variations. It is seen that for higher β values, the radial displacement increases. This increase is
greater for outer layers. Figure 8 represents the radial stress along the radial direction satisfying the traction free
boundary conditions. Also, this figure shows that as the power law index increases, the compressive stresses in
the middle layers increase. The circumferential stress versus radial direction is shown in Fig. 9. It is observed
that the circumferential stress distributions are compressive at the inside surface and tensile at the outside
surface. It is observed that at approximate radial distances of r = 1.01 and r = 1.32, the stress values for all
values of β converge toward the stress values in the homogenous material (β = 0). From the figures, it can
be seen that the temperature loading has a greater effect on radial displacement and circumferential stress in
comparison with radial stress.
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Fig. 9 Distribution of normalized circumferential stress under the loading of temperature

Fig. 10 Distribution of normalized radial displacement under the combined loading of pressure and temperature

5.3 Combined loading (pressure + temperature)

Since both pressure and temperature loadings are in the elastic range, the principle of superposition was applied
for the combined loading and the following results were obtained. For different values of β, radial displace-
ment, radial stress, and circumferential stress along the radial direction are shown in Figs. 10, 11, and 12.
Because of the opposite effect of mechanical loading (pressure in inner surface) on radial displacement and
circumferential stress in comparison with thermo-mechanical loading, it can be observed from Figs. 10 and
12 that the rate of increase or decrease in the results decreases due to the effect of combined temperature
and pressure loading. Thus, as shown in Fig. 10, the rate of radial displacement variation is minimum for
β = −2. Also, Figs. 10 and 12 show that as the power law index increases, the rate of radial displacement and
circumferential stress variation decrease, whereas the situation is reversed for radial stress as shown in Fig. 11.

5.4 Validate FEM

The results obtained in FEM study were compared with previously described analytical results. Tables 1 and
2 show the results for β = −1 and β = 1, respectively, for the case of combined loading. It can be seen in the
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Fig. 11 Distribution of normalized radial stress under the combined loading of pressure and temperature

Fig. 12 Distribution of normalized circumferential stress under the combined loading of pressure and temperature

Table 1 Comparison of numerical data from analytical (Eqs. 22, 29 and 30) and FEM calculations along the radial normalized
direction for the power law index (β = −1)

r Type T
Ti

ur ∗ 1,000 σr
p

σφ

p

Value %Err Value %Err Value %Err Value %Err

1 Anal. 1.00000 0 0.66977 0.00572 −1.00000 0.03888 0.67776 0.28864
FEM 1.00000 0.66981 −0.99961 0.67972

1.0875 Anal. 0.81036 0.01902 0.64972 0.00311 −0.73310 0.02460 0.76688 0.02103
FEM 0.81052 0.64970 −0.73328 0.76672

1.1875 Anal. 0.61148 0.02158 0.62312 0.00099 −0.48683 0.03391 0.81198 0.01272
FEM 0.61162 0.62311 −0.48699 0.81187

1.2875 Anal. 0.42870 0.02658 0.59488 0.00024 −0.29169 0.04892 0.82416 0.00791
FEM 0.42881 0.59489 −0.29184 0.82410

1.3875 Anal. 0.25959 0.03682 0.56649 0.00114 −0.13687 0.08734 0.81890 0.00549
FEM 0.25968 0.56650 −0.13699 0.81885

1.5 Anal. 0.08333 0 0.53548 0.00241 0.00000 − 0.80236 0.78734
FEM 0.08333 0.53550 0.00009 0.80867
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Table 2 Comparison of numerical data from analytical (Eqs. 9, 16 and 13) and FEM calculations along the radial normalized
direction for the power law index (β = 1)

r Type T
Ti

ur ∗ 1,000 σr
p

σφ

p

Value %Err Value %Err Value %Err Value %Err

1 Anal. 1 0 0.51872 0.02139 −1 0.00300 0.13829 1.1281
FEM 1 0.51883 −0.99997 0.13673

1.0875 Anal. 0.74516 0.07679 0.51197 0.03757 −0.80773 0.01459 0.34923 0.06286
FEM 0.74574 0.51216 −0.80785 0.34901

1.1875 Anal. 0.52008 0.07952 0.50288 0.03858 −0.60100 0.01497 0.59547 0.01202
FEM 0.52050 0.50307 −0.60109 0.59540

1.2875 Anal. 0.34538 0.08746 0.49172 0.03975 −0.40338 0.01273 0.84718 0.00693
FEM 0.34568 0.49192 −0.40343 0.84724

1.3875 Anal. 0.20707 0.10594 0.47815 0.04110 −0.21159 0.00287 1.10446 0.01601
FEM 0.20729 0.47835 −0.21159 1.10464

1.5 Anal. 0.08333 0 0.45973 0.04140 0 − 1.40083 0.64545
FEM 0.08333 0.45992 0.00006 1.39179

Tables that the % errors are rather small and, in almost all cases, are less than 0.1% except for inner surface
and outer surface in circumferential stress in which the differences increase up to 1.12%. The assumption of
constant modulus of elasticity in each layer leads to this increase of error.

6 Conclusion

This paper presents an analytical and numerical solution to obtain the spherically symmetric thermal and
mechanical stresses in a thick hollow sphere made of functionally graded material under the combined pressure
and temperature loading. The material properties are assumed to be graded along the radial direction accord-
ing to a power law function. It is observed by defining the normalized parameter r = R

a , solution process,
and applying the boundary conditions could be easier. Also, this method would lead to simpler analytical
formulations.

In this paper, heat conduction and Navier equations were solved for β3 = −1 and other values of β3 sep-
arately. Comparison between the results from the analytical findings and the numerical simulations indicates
that the errors are less than 0.1% for FGM specimens.

From above results, it can be concluded that the power law index has a great effect on stresses and radial
displacement distributions in FGM sphere. Thus, the power law index of FGM sphere is a useful parameter from
a design point of view and can be tailored to specific applications to control the stress distributions. Finally,
we can find an optimum value for β such that variation in stresses along the radial direction is minimized.
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