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Abstract The mode III crack problem in a medium possessing coupled electro-magneto-elastic is considered.
Two asymmetrical edge cracks emanate from an elliptical hole. Combined stress, electric and magnetic loads
are considered. The elliptical hole and cracks are assumed to be either magneto-electrically impermeable or
permeable. The closed-form solution for stress, electric and magnetic intensity factors are derived explicitly.
Also the solution for energy release rate is given in closed form. The solution is based on the complex variable
method combined with the method of conformal mapping. Numerical computations are given to illustrate the
effect of variable geometrical and material parameters on stress, electric and magnetic intensity factors and
energy release rate.

Keywords Magneto-electro-elastic solid · Complex variable methods · Conformal mapping methods ·
Stress, electric and magnetic intensity factors · Energy release rate · Exact solution · New shape of crack

1 Introduction

Material possessing magneto-electro-elastic coupling effects have found increasing applications in engi-
neering structures, particularly in “smart” materials and “intelligent” structures. The effects of magneto-
electromechanical coupling have been observed in single-phase materials in which simultaneous magnetic
and electric ordering coexists and in two-phase composites where the participating phases are piezoelectric
and piezomagnetic. These “smart” materials are extensively used as electric packaging, sensors and actuators,
magnetic field probes, acoustic and ultrasonic devices, hydrophones and transducers with the responsibility of
electro-magneto-mechanical energy conversion. When subjected to mechanical, electrical and magnetic loads
in service, these magneto-electro-elastic composites can fail prematurely due to some defects, namely cracks,
holes and others, arising during their manufacturing process. Therefore, it is of great importance to study the
magneto-electro-elastic interaction and fracture behaviours of magneto-electro-elastic materials.

On the other hand, composites possess some new properties of magneto-electricity with the secondary
pyroelectric effects which are not found in single-phase piezoelectric or piezomagnetic materials. In some
cases, the magneto-electric effects of piezoelectric/piezomagnetic composites can be obtained by a hundred
times larger than that of a single-phase magneto-electric material.

For piezoelectromagnetic ceramics, anti-plane shear cracks are a class of simple crack problems. However,
for an anti-plane shear cracks terminating from the edge of elliptical hole in piezo-electro-magneto-elastic
ceramics, related studies are absent to the best of the author’s knowledge. It is worth noting that for purely
elastic media and piezoelectric media with an anti-plane shear crack terminating from the edge of circular
hole, these situations have been analysed by many researchers. Wang and Gao [18] studied the mode III frac-
ture problem of edge cracks originating from a circular hole in an infinite piezoelectric solid based on the
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complex variable method combined with the method of conformal mapping. Explicit and exact expressions
for the complex potentials, field intensity factors and energy release rate were presented under the assump-
tion that the surface of the cracks and hole is electrically impermeable. An elliptical cavity in a magneto-
electro-elastic solid under an in-plane electromagnetic and/or anti-plane mechanical loading was investigated
by [2]. By reducing the cavity to a crack, the extreme cases for an impermeable and a permeable crack were
obtained. The crack problems in brittle piezoelectric materials under anti-plane shear loading have attracted
much attention in recent years, for example, [3,6,14,15,19,21–23].

Here it is specially noted that the fracture mechanics of magneto-electro-elastic layered or functionally
graded materials have attracted much attention and many research papers have been published (see, e.g.
[4,5,7,9,16,24] among others).

In this article, the mode III stress, electric and magnetic intensity factors and singularities analysis for
edge cracks emanating from an elliptical hole in a piezo-electro-magneto-elastic material is presented. The
results presented here contain the previous known solutions as special cases of elastic, piezoelectric, piezo-
magnetic materials for example. Moreover, new results for magneto-electro-elastic material with cracks are
obtained, such as two nonsymmetric or symmetric cracks and a single crack emanating from an elliptical fole,
cross-shaped crack, T-shaped crack, and so on. In order to gain better understanding for the theoretical results,
numerical computations are given to illustrate the effect of variable geometrical and material parameters on
stress, electric and magnetic intensity factors and energy release rate.

2 Basic equations

For a linearly magneto-electro-elastic medium under anti-plane shear coupled with in-plane electrical and
magnetical fields, there are only the non-trivial anti-plane displacement w, strain components γxz and γyz ,
stress components τxz and τyz , in-plane electric and magnetic potentials ϕ and ψ , electric field components
Ex and Ey , electric displacement components Dx and Dy , magnetic field components Hx and Hy , magnetic
induction components Bx and By with all field quantities being only the functions of coordinates x and y.

The generalized strain–displacement relations have the form

γαz = w,α, Eα = −ϕ,α, Hα = −ψ,α (1)

where α = x, y and w,α = ∂w/∂α.
For linearly magneto-electro-elastic medium, the coupled constitutive relation can be written in the form

[ταz, Dα, Bα]T = C[γαz,−Eα,−Hα]T (2)

where the superscript T denotes the transpose of a matrix and

C =
⎡
⎣

c44 e15 q15
e15 −ε11 −d11
q15 −d11 −μ11

⎤
⎦ (3)

where c44 is the shear modulus along the z-direction which is perpendicular to the isotropic plane (x, y), ε11
and μ11 are dielectric permittivity and magnetic permeability coefficients, respectively, e15, q15 and d11 are
piezoelectric, piezomagnetic and magneto-electric coefficients, respectively. The medium is poled along the
z-direction.

The equilibrium equation, the charge and current conservation equations, in the absence of the body force,
electric and magnetic charge densities, can be written as

τzα,α = 0; Dα,α = 0; Bα,α = 0, α = x, y (4)

where Dα,α = ∂Dx/∂x + ∂Dy/∂y.
In view of Eqs. (1), (2), Eq. (4) can be reduced to

C
[∇2w,∇2ϕ,∇2ψ

]T = 0 (5)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplace’s operator.
Since |C| �= 0 one can decouple the system of governing equations (5)

∇2w = 0; ∇2ϕ = 0; ∇2ψ = 0 (6)
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3 Analysis

Consider an infinite magneto-electro-elastic medium containing an elliptical hole and boundary cracks ema-
nating from it boundary. The hole and cracks are infinity extended in the direction of z- axis, which is the axis
of polling. The x0y-plane is an isotropic plane. The medium subject to remote anti-plane stress τ∞, in-plane
electric displacement and magnetic induction D∞ and B∞ or electric field and magnetic field E∞ and H∞,
as shown in Fig. 1 (two cases of electric and magnetic loads).

In order to formulate the boundary conditions, it is convenient to use a complex representation for w, ϕ
and ψ which are grouped as a vector

Re U(z) = [w, ϕ,ψ]T (7)

where z = x + iy, i is the imaginary unit, Re denotes the real part of a complex vector function U(z) and T
denotes a transpose of a matrix.

The constitutive equations in complex form are expressed as follows:
⎧⎨
⎩
τxz − iτyz
Dx − iDy
Bx − iBy

⎫⎬
⎭ =

⎡
⎣

c44 e15 q15
e15 −ε11 −d11
q15 −d11 −μ11

⎤
⎦
⎡
⎣
γxz − iγyz
−Ex + iEy
−Hx + iHy

⎤
⎦ = CU′(z) (8)

where prime denotes the derivative with respect to z.
Since the stress, electric displacement and magnetic induction are divergence free in the absence of body force,
electric and magnetic space charge densities, there exists the potential function �(x, y), such that

[τxz, Dx , Bx ]T = −�,y, [τyz, Dy, By]T = �,x (9)

where �(z) = [φ1(z), φ2(z), φ3(z)]T and comma denotes the differentiation with respect to x or y.
From Eqs. (8) and (9) we conclude that the complex potential functions �(z) and U(z) are dependent

as follows:

�(z) = iCU(z) (10)

If we take the integration of the traction t and normal electric displacement Dn and magnetic induction
Bn as

⎧⎨
⎩

Tτ
TD
TB

⎫⎬
⎭ =

∫ ⎧⎨
⎩

t
Dn
Bn

⎫⎬
⎭ ds = −

∫ ⎧⎨
⎩
τyzdx − τxzdy
Dydx − Dx dy
Bydx − Bx dy

⎫⎬
⎭ = −Re

∫
d� = −Re � = Im[CU(z)] (11)

Fig. 1 Magneto-electro-elastic material with the elliptical hole and boundary cracks emanating from it boundary
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then the mechanical, electric and magnetic boundary conditions along the surfaces of cracks and the elliptical
hole can be formulated for vector function �.

The potential vector has the form

U(z) = U∞z + U0(z) (12)

where U∞ is a complex constant related to the loading condition at infinity and U0(z) is an unknown complex
function such that U0(∞) = 0.

The complex constant U∞ is defined as follows:

U∞ = C−1

⎧⎪⎨
⎪⎩

τ∞
xz − iτ∞

yz

D∞
x − iD∞

y

B∞
x − iB∞

y

⎫⎪⎬
⎪⎭

(13)

for Case I boundary conditions (the superscript “−1” denotes the inverse of a matrix) and

U∞ =

⎧⎪⎨
⎪⎩

γ∞
xz − iγ∞

yz

−E∞
x + iE∞

y

−H∞
x + iH∞

y

⎫⎪⎬
⎪⎭

(14)

for Case II boundary conditions.
The strains at infinity are

c44γ
∞
xz = τ∞

xz + e15 E∞
x + q15 H∞

x , c44γ
∞
yz = τ∞

yz + e15 E∞
y + q15 H∞

y (15)

In this study, two kinds of magneto-electric crack surface conditions are examined, i.e., magneto-electrically
impermeable and permeable. For simplicity, they are identically expressed as

τyz = 0, Dy = d0, By = b0 for elliptic hole and cracks. (16)

For the magneto-electrically impermeable case, both d0 and b0 vanish, whereas for the corresponding perme-
able case both d0 and b0 are unknown to be determined from the conditions

ϕ = 0, ψ = 0 or U2 = 0, U3 = 0 on surfaces of elliptic hole and cracks. (17)

On the plane y = 0 outside of the cracks the condition of anti-symmetry requires

Re U(z) = 0 (18)

Impermeable boundary conditions occur when the dielectric permittivity and magnetic permeability of the
void space inside the crack and hole (air or vacuum) are much smaller than those of the piezoelectromagnetic
body.

Thus

Re � = 0 or iCU(z)+ iCU(z) = 0 in the void space. (19)

Using the potential vector (12) we have

iCU0(z)+ iCU0(z) = −
(

iCU∞ + iCU∞
)

in the void space. (20)
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3.1 Conforming mapping

Consider of conformal mapping function

z = ω(ς) = aμ(ς)+ b
√
μ2(ς)− 16ς2

4ς
(21)

where

μ(ς) = ε1(1 + ς)2 + ε2(1 − ς)2 (22)

These equations provide a conformal mapping from domain of material, which occupies the outside region
of the elliptical hole and cracks in the z-plane, to the interior of a unit circle in the ς -plane (Fig. 2).

The parameters ε1 and ε2 are obtained from equations

(−1)i−1(a + li ) = ω[(−1)i−1], i.e., a + li = aεi + b
√
ε2

i − 1, i = 1, 2 (23)

and are

εi =
[

a(li + a)− b
√

l2
i + 2ali + b2

]
/
(
a2 − b2) (24)

In the special cases εi are obtained as follows:

(i) εi = 1
2

(
1 + λi + 1

1+λi

)
, for circular hole and two edge cracks, λi = li/a

(ii) εi = 1 + λi , for line crack (b → 0) of length 2a + l1 + l2 = a(ε1 + ε2)

(iii) bεi =
√

l2
i + b2, for the cross-shaped crack (a → 0)

In the ς -plane Eq. (19) can be rewritten as

iCU0(σ )+ iCU0(σ ) = −
(

iCU∞ω(σ)+ iCU
∞
ω(σ)

)
(25)

in which σ is the point on the unit circle and U0(σ ) = U0[ω(σ)] is defined. It is clarified thatω(σ) = ω(σ)
as show Eq. (21).

Therefore Eq. (25) becomes

iCU0(σ )+ iCU0(σ ) = −�∞
,x ω(σ) (26)

where Eqs. (10) and (12) are used
Taking Cauchy integral

1

2π i

∫

γ

( )

σ − ς
dσ (27)

Fig. 2 The conformal mapping from z-plane to ς -plane
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at the two sides of Eq. (25) gives

iCU0(ς) = −�∞
,x

1

2π i

∫

γ

ω (σ )

σ − ς
dσ, |ς | < 1 (28)

In this calculation the condition that iCU0(ς) is analytic in the interior of a unit circle γ is used.
Since ω(σ) is the boundary value of the analytic function ω(ς) inside the unit circle γ except to the point

ς = 0, we obtain from Eq. (28) [7]

iCU0(ς) = −�∞
,x ωs(ς) (29)

where ωs(ς) is the singular part of ω(ς) at the point ς = 0. It is

ωs(ς) = (a + b)(ε1 + ε2)

4ς
(30)

Thus

iCU0(ς) = −�∞
,x
(a + b)(ε1 + ε2)

4ς
(31)

Differentiating this equation with respect to ς and using that U0(ς) = U0[ω(ς)], we obtain

ω′(ς)�,x (ς) = �∞
,x
(a + b)(ε1 + ε2)

4ς2 (32)

where

ω′(ς) = −
(
1 − ς2

)
(ε1 + ε2)

4ς2

(
a + b

μ(ς)√
μ2(ς)− 16ς2

)
(33)

Thus
⎧⎪⎨
⎪⎩

τyz

Dy

By

⎫⎪⎬
⎪⎭

=

⎧⎪⎨
⎪⎩

τ∞
yz

D∗
y

B∗
y

⎫⎪⎬
⎪⎭
(a + b)(ε1 + ε2)

4ς2ω′(ς)
(34)

where

D∗
y =

⎧⎨
⎩

D∞
y , Case I

e15
c44
τ∞

yz +
(
ε11 + e2

15
c44

)
E∞

y +
(

d11 + q15e15
c44

)
H∞

y , Case II

B∗
y =

⎧⎨
⎩

B∞
y , Case I

q15
c44
τ∞

yz +
(

d11 + e15q15
c44

)
E∞

y +
(
μ11 + q2

15
c44

)
H∞

y , Case II

(35)

The field intensity factors in the ς -plane are defined as follows:
⎧⎨
⎩

kτ i
kDi
kBi

⎫⎬
⎭ = lim

ς→±1

√
2π |ω(ς)− ω(±1)|

⎧⎨
⎩
τyz
Dy
By

⎫⎬
⎭ (36)

we obtain
⎧⎪⎨
⎪⎩

kτ i

kDi

kBi

⎫⎪⎬
⎪⎭

=

⎧⎪⎨
⎪⎩

τ∞
yz

D∗
y

B∗
y

⎫⎪⎬
⎪⎭

√
π

2
(a + b)(ε1 + ε2) lim

ς→±1

√|ω(ς)− ω(±1)|
ω′(ς)

(37)
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Since ω′(±1) = 0 we use the l’Hospital rule to obtain

lim
ς→±1

√
|ω(ς)− ω(±1)|

[ω′(ς)]2 = 1√
2|ω′′(±1)| (38)

where

ω′′(ς) = ε1 + ε2

2ς3

(
a + b

μ(ς)√
μ2(ς)− 16ς2

)
− 4

(
1 − ς2

)2
(ε1 + ε2)

2b

ς

1(
μ2(ς)− 16ς2

)3/2

ω′′ ((−1)i−1
)

= (−1)i−1 ε1 + ε2

2

⎛
⎝a + b

εi√
ε2

1 − 1

⎞
⎠ ; i = 1, 2

(39)

The stress, electric displacement and magnetic induction intensity factors are obtained as follows:

⎧⎪⎨
⎪⎩

SIFs

EDIFs

MIIFs

⎫⎪⎬
⎪⎭

imp.

:

⎧⎪⎨
⎪⎩

kτ i

kDi

kBi

⎫⎪⎬
⎪⎭

=
√
π

2
(l1 + l2)

⎧⎪⎨
⎪⎩

τ∞
yz

D∗
y

B∗
y

⎫⎪⎬
⎪⎭

Ki (40)

where Ki is the coefficient of field intensity factors defined by equation

Ki = 1 + λ√
λ1 + λ2

√√√√ ε1 + ε2

1 + λεi/

√
ε2

i − 1
, i = 1, 2; λ = b/a (41)

In the special cases Ki approaches the values:

(i)

Ki =
√

λi

1 + λi

(
1 + 1

1 + λi

)(
1 + 2

λ1 + λ2

)(
1 + 1

(1 + λ1) (1 + λ2)

)
, λi = li

a
(42)

for circular hole and two asymmetrical edge cracks
(ii)

Ki =
√

1 + 2

λ1 + λ2
(43)

for line crack of length 2a + l1 + l2, λ ≡ 0
(iii)

Ki =

√√√√√√
λi

λ1 + λ2

√
λ2

1 + 1 +
√
λ2

2 + 1
√
λ2

i + 1
(44)

for the asymmetrical cross-shaped crack, λi = li/b, a → 0

The classical result, for Ki ≡ 1, is obtained in three cases, namely, for line crack of length l1 + l2, the symmet-
rical cross-shaped crack and edge crack. In all of these cases the stress τxz is zero on the plane x = 0, since it
is the plane of symmetry in these cases.

When the left crack length l2 tends to zero (ε2 = 1) K1 is

Ki = 1 + λ√
λ1

√√√√ 1 + ε1

1 + λε1/

√
ε2

1 − 1
(45)
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This is the solution for a single crack emanating from an elliptical hole. This result coincides with the one
obtained by [12,20] in the framework of linear theory of elasticity.

When the piezoelectric, piezomagnetic and magneto-electric constants are ignored, the above results can
be reduced to these presented by [11]. When the piezomagnetic and magneto-electric effect are omitted, the
results obtained here are reduced to presented by [3].

From Eq. (40) it is easy known that the SIFs, the EDIFs and the MIIFs are independent and that they are
only related to the corresponding mechanical, electrical and magnetical loading for fully impermeable crack
boundary conditions.

So that it should be notched that for magneto-electro-elastically impermeable cracks as electrical and/or
magnetical load are applied, the SIFs cannot perfectly describe the fracture characteristics as in the purely
elastic case.

Therefore, the energy release rates (ERRs) are introduced by calculating the work done in closing the crack
tip over an infinitesimal distance. The energy release rate is derived in the following in a similar manner to
proposed by [10] and also utilized by [1,17].The energy release rate G at the crack-tip is obtained from the
following integral:

G = 1

2
lim
δ→0

1

δ

δ∫

0

{
τyz(r + a, 0)�w(r + a − δ)+ Dy(r + a, 0)�ϕ(r + a − δ)

+By(r + a, 0)�ψ(r + a − δ)
}

dr (46)

where�w,�ϕ and�ψ are the jumps of displacement, electric potential and magnetic potential. These jumps
define the displacement, electric potential and magnetic potential field intensity factors k̃w, k̃ϕ and k̃ψ as the
respective limits for δ → 0.

Then, the energy release rate, defined by (46), may be written as

G = 1

2

(
kτ k̃w + kDk̃ϕ + kBk̃ψ

)
(47)

The field intensity factors k̃w, k̃ϕ and k̃ψ may be calculated from constitutive equations which, in matrix
form and explicit form, may be written as follows:

[
k̃w, k̃ϕ, k̃ψ

]T = C−1 [kτ , kD, kB]T

k̃w = ε11μ11 − d2
11

�
kτ + e15μ11 − q15d11

�
kD + q15ε11 − e15d11

�
kB

k̃ϕ = e15μ11 − q15d11

�
kτ − c44μ11 + q2

15

�
kD + c44d11 + e15q15

�
kB

k̃ψ = q15ε11 − e15d11

�
kτ + c44d11 + e15q15

�
kD − c44ε11 + e2

15

�
kB

(48)

The ERR, G, is obtained, in matrix notation and explicit formula, as follows:

G = 1

2
[kτ , kD, kB]C−1[kτ , kD, kB]T

Gi = π

4
(l1 + l2)K

2
i

(
ε11μ11 − d2

11

�
τ∞2

yz − c44μ11 + q2
15

�
D∗2

y − c44ε11 + e2
15

�
B∗2

y

+2
e15μ11 − q15d11

�
τ∞

yz D∗
y + 2

q15ε11 − e15d11

�
τ∞

yz B∗
y + 2

c44d11 + e15q15

�
D∗

y B∗
y

)
(49)

where

� = c44ε11μ11 − c44d2
11 + e2

15μ11 − 2e15q15d11 + q2
15ε11 (50)

The ERRs of special cases of crack can be calculated by using Eq. (49) and by substituting the coefficient
of fields intensity factors Ki from Eqs. (42)–(44).
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3.2 Magneto-electrically permeable cracks

From boundary conditions (17) we obtain

d0 =
⎧⎨
⎩

D∞
y − e15

c44
τ∞

yz , Case I(
ε11 + e2

15
c44

)
E∞

y +
(

d11 + q15e15
c44

)
H∞

y , Case II

b0 =
⎧⎨
⎩

B∞
y − q15

c44
τ∞

yz , Case I(
d11 + e15q15

c44

)
E∞

y +
(
μ11 + q2

15
c44

)
H∞

y , Case II

(51)

Then, using Eq. (35), we obtain

D∗
y − d0 = e15

c44
τ∞

yz

B∗
y − b0 = q15

c44
τ∞

yz

(52)

in both cases of loading conditions.
The mode III stress/electric/magnetic intensity factors (the singularities are proportional to τ∞

yz , D∗
y − d0

and B∗
y − b0, respectively) are obtained as follows:

kτ i =
√
π

2
(l1 + l2)τ

∞
yz Ki

kDi = e15

c44
kτ i (53)

kBi = q15

c44
kτ i

The energy release rate is

Gi = π

4
(l1 + l2)

(
τ∞

yz

)2

c44
K 2

i (54)

and is obtained from formulae (47)–(49) by substitution the solution (53) for permeable case.
Equation (53) indicates that the three field intensity factors stress, electric displacement and magnetic

induction are dependent on each other through material constants.
In addition, kτ i depends only on τ∞

yz and both d0 and b0 have no effects on these field intensity factors.

4 Numerical results and discussions

In order to have better understanding for the theoretical results above, numerical computations are given to
illustrate the effect of variable geometrical and material parameters on stress, electric and magnetic intensity
factors and energy release rate.

Computations for the energy release rate have been caried out to illustrate the magneto-electro-elastic
coupled behaviour of a BaTiO3 − CoFe2O4 composite material with a volume fraction V f = 0.5. Material
constants are listed in Table 1 [13].

The investigation of the ERRs, Gi , defined by Eq. (49) gives some conclusions, which are shown in Fig. 3.
Figures 4 and 5 show the variation of the coefficient of field intensity factors K1. The field intensity factors

for a single crack are smaller than those of two cracks originating from a circular (Fig. 4) or an elliptical hole,
since ki is given by Eq. (40). Although, the Ki increases as λ2 decreases, but the multiplier of Ki in Eq. (40)
depends on

√
l1 + l2 and increases with l2.

Figure 6 shows the variation of ERRs for impermeable crack versus τ∞
yz for circular hole and two equal

edge cracks with l/a = 0.5; 1.0; 2.0. The ERRs increases with increasing of l/a.
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Table 1 Material properties of single-phase materials and composite

BaTiO3 piezoelectric CoFe2O4 piezoelectric BaTiO3 − CoFe2O4 (composite, V f = 0.5)

c44(GPa) 43 45 44
e15(C/m2) 11.6 0 5.8
q15(N/Am) 0 550 275
ε11(nC/Vm) 11.2 0.08 5.64
d11(nC/Am) 10 0.8 5.4
μ11(μN/A2) 5 589 297
n, nano = 10−9;μ,mikro = 10−6; G, giga = 109

Fig. 3 Effects of applied electric load D∗
y (a) and magnetic load B∗

y (b) on the energy release rate Gi at a given mechanical load

τ∞
yz ,
(

D∗
y1, D∗

y0, D∗
y2

)
≡ (−2, 492; 1, 311; 5, 114) · 10−10τ∞

yz ,Gi max = 2.260 · 10−11(π/4)(l1 + l2)K 2
i (τyz)

2,Gi (0)= 0.881

Gi max and
(

B∗
y1, B∗

y0, B∗
y2

)
≡ (−7,179; 0,550; 8,280)·10−10τ∞

yz ,Gi max = 2.001·10−11(π/4)(l1 + l2)K 2
i (τyz)

2,Gi (0)= 0.995

Gi max

Fig. 4 Variation of K1 with a ratio λ1

Figures 7 and 8 present result of ERRs [Eqs. (49) with (35) for impermeable crack and Eq. (54) for per-
meable crack] with respect to 10τ∞

yz τ
−1(τ = 10 MPa), τ∞

yz varying from 0.02τ to 0.2τ, 0.2 ≤ τ∞
yz ≤ 2.0,

for D = 0.001 C/m2, B = 0.1 N/Am in Case I and for E = 1 kV/cm, H = 1 kA/m in Case II of boundary
conditions.

The variations of the electric displacement d0 and magnetic induction b0 inside the crack on the applied
mechanical loads are drawn in Fig. 9 under applied electrical displacements D∞

y = 0.1D or 0.12D and
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Fig. 5 Variation of K1 with a ratio λ

Fig. 6 ERRs versus τ∞
yz for D∗

y = 0 = B∗
y (impermeable crack)

magnetic inductions B∞
y = 0.1B or 0.12B, where D = 0.001 C/m2 and B = 0.1 N/Am. The values of d0 and

b0 decrease from positive to negative values with increasing the mechanical loading (Fig. 9).
The variations of d0 and b0 inside the crack on the applied mechanical loads are drawn in Fig. 10 under

applied electrical field E∞
y = 0.1E or 0.12E and magnetic field H∞

y = 0.1H or 0.12H , where E = 1 kV/cm
and H = 1 kA/m.

It is seen from Fig. 10 that the values of d0 and b0 are independent of mechanical loads and are higher for
larger electrical and magnetic field.

5 Conclusions

From the analytical or numerical results, several conclusions can be obtained:

• For the magneto-electrically impermeable cracks, the SIFs, the EDIFs and MIIFs are related to applied
loads, respectively, mechanical, electrical and magnetical only. The ERRs depend on both applied loads
including mechanical, electrical and magnetical and material parameters. For the magneto-electrically
permeable cracks, both electrical and magnetical loads have no contribution to ERRs and field intensity
factors. Those physical quantities depend on the level of the applied mechanical load and on the material
parameters. The value of ERRs for magneto-electrically permeable crack is higher than that impermeable
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Fig. 7 The variation of ERRs (N/m) obtained with respect to 10 τ∞
yz τ

−1(τ = 10 MPa), D = 0.001 C/m2, B = 0.1 N/Am in

impermeable and permeable crack boundary conditions
[
Gi/

π
4 (l1 + l2)K 2

i

]

Fig. 8 The variation of ERRs (N/m) obtained with respect to 10 τ∞
yz τ

−1(τ = 10 MPa), E = 1 kV/cm, H = 1 kA/m in imperme-

able and permeable crack boundary conditions
[
Gi/

π
4 (l1 + l2)K 2

i

]

case under only mechanical loading. The effect of magnetic permeability of air (or vacuum) inside the
crack is more significant than the electric permittivity. Therefore, neglecting the magnetic permeability of
the medium inside the crack will have more significant consequence on ERRs than neglecting the electric
permeability.

• For given mechanical load, the negative electric or/and magnetic field(s), usually retard(s) crack growth
while the positive electrical or/and magnetic field(s) can either promote(s) or retard(s) crack propaga-
tion, which is depended on both strengths of the applied electric or/and magnetic field(s) and the level of
the mechanical load. The directions of separately applied D∗

y and B∗
y do not affect the value of maximum

ERRs while the directions of simultaneously applied D∗
y and B∗

y do. Negative values of ERRs are physically

impossible. This observation implies that a pure electromagnetic loading
(

D∗
y, B∗

y

)
would be expected to

retard the propagation of the crack in PEMO-elastic material. For a given mechanical loading there is a
pair of D∗

y or/and B∗
y which makes the Gi to maximum.
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Fig. 9 The variation of d0 and b0 on 10 τ∞
yz τ

−1(τ = 10 MPa) with D = 0.001 C/m2, B = 0.1 N/Am for D∞
y = 0.1D, B∞

y =
0.1B and D∞

y = 0.12D, B∞
y = 0.12B, respectively.

Fig. 10 The variation of d0 and b0 on 10 τ∞
yz τ

−1(τ = 10 MPa) with E = 1 kV/cm, H = 1 kA/m for E∞
y = 0.1E, H∞

y = 0.1H
and E∞

y = 0.12E, H∞
y = 0.12H , respectively.

The next observation is that, even in the case of pure mechanical load, the energy release rates for the fully
permeable crack and the fully impermeable crack are different and the Gi for permeable crack is about 14%
higher than that for impermeable case.

The above conclusions could have applications in the failure of piezo-electro-magneto-elastic devices and
in smart materials/intelligent structures.
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