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Abstract Thermoelastic buckling behavior of thick rectangular plate made of functionally graded materials
is investigated in this article. The material properties of the plate are assumed to vary continuously through
the thickness of the plate according to a power-law distribution. Three types of thermal loading as uniform
temperature raise, nonlinear and linear temperature distribution through the thickness of plate are considered.
The coupled governing stability equations are derived based on the Reddy’s higher-order shear deformation
plate theory using the energy method. The resulted stability equations are decoupled and solved analytically
for the functionally graded rectangular plates with two opposite edges simply supported subjected to different
types of thermal loading. A comparison of the present results with those available in the literature is carried out
to establish the accuracy of the presented analytical method. The influences of power of functionally graded
material, plate thickness, aspect ratio, thermal loading conditions and boundary conditions on the critical buck-
ling temperature of aluminum/alumina functionally graded rectangular plates are investigated and discussed in
detail. The critical buckling temperatures of thick functionally graded rectangular plates with various boundary
conditions are reported for the first time and can be served as benchmark results for researchers to validate
their numerical and analytical methods in the future.

Keywords Thermoelastic buckling · Functionally graded · Thick rectangular plate · Higher-order shear
deformation theory · Analytical solution

List of symbols
a, b Length and width of plate, respectively
h Plate thickness
x, y, z Rectangular Cartesian coordinates
P(z), Pc, Pm Material properties of the functionally graded material (FGM), ceramic and metal
E(z), Ec, Em Young’s modulus of the FGM, ceramic and metal
K (z), Kc, Km Coefficient of thermal conductivity of the FGM, ceramic and metal
α(z), αc, αm Coefficient of thermal expansion of the FGM, ceramic and metal
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n Power of FGM
ν Poisson’s ratio
U1,U2,U3 Components of displacement field
u, v, w Displacements of mid-plane of the plate in the x, y and z

directions, respectively
ψx , ψy Rotation functions
εxx , εyy Normal strains
γxy, γxz, γyz Shear strains
σxx , σyy Normal stresses
σxy, σxz, σyz Shear stresses
Q11, Q22, Q12 Elements of the reduced stiffness matrix
Ni ,Mi , Pi , Q j , R j Stress resultants
N T ,MT , PT Thermal stress resultants
T (x, y, z) Temperature distribution
Tc, Tm Temperatures of full-ceramic and full-metallic surfaces of

the plate
Ai j , Bi j ,Ci j , Di j , Fi j , Hi j Plate stiffness coefficients
u0, v0, w0, ψ0

x , ψ
0
y Displacement components related to equilibrium state

u1, v1, w1, ψ1
x , ψ

1
y Incremental displacement components

N 0
i ,M0

i , P0
i , Q0

j , R0
j Stress resultants related to equilibrium state

N 1
i ,M1

i , P1
i , Q1

j , R1
j Incremental stress resultants

B1, B2, B̂,C1,C2, Ĉ,C, H1, Ĥ , A2, Â, F̂ Constant material coefficients
D Equivalent flexural rigidity of the FG plate
ϕ4 Boundary layer function
m Number of half-waves in the x direction

1 Introduction

In recent years, a new class of composite materials known as functionally graded materials (FGMs) has gained
considerable attention in engineering community, especially in high temperature applications such as nuclear
reactors, aerospace and power generation industries. The functionally graded materials are microscopically
heterogeneous materials in which the mechanical properties vary smoothly and continuously along certain
dimension (usually in the thickness direction). This is achieved by gradually changing the volume fraction
of the constituent materials. One of the main advantages of FGMs is that they mitigate cracks and remove
the large interlaminar stresses at intersections between interfaces, which usually occur in the conventional
laminated composite materials because of their abrupt variations in material compositions and properties.
FGMs are typically made from a mixture of ceramic and metal in which the ceramic component provides
high temperature resistance due to its low thermal conductivity, while the ductile metal component prevents
fracture due to its greater toughness.

The functionally graded (FG) plates are commonly used in thermal environments; they can buckle under
thermal and mechanical loads. Thus, the buckling analysis of such plates is essential to ensure an efficient
and reliable design. The classical plate theory (CPT) is usually used to carry out stability analysis of thin FG
plates [1]. This theory ignores the transverse shear deformation and assumes that the normal to the middle
plane before deformation remains straight and normal to the middle surface after deformation. As a result,
the classical plate theory overestimates the buckling load except for truly thin plates. The first-order shear
deformation theory (FSDT), including the effects of transverse shear deformation, was employed by some
researches to analyze buckling behavior of moderately thick FG plates [2,3]. The FSDT assumes a constant
value of transverse shear strain through the thickness of the plate and requires shear correction factor to cor-
rect for the discrepancy between the actual transverse shear strain and the constant one. The shear correction
factor, which is crucial to an accurate analysis, depends on geometric parameters, loadings, material and
boundary conditions of the plate. Also in the FSDT, the cross-sectional warping is neglected as it is assumed
that the plane sections remain plane. According to the viewpoint of some research groups, the first-order shear
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deformation theory is not a proper model for analyzing thick plate structures [4–9]. To overcome the drawbacks
of these theories (i.e., CPT and FSDT), various higher-order plate theories have been proposed by assuming
higher-order displacement fields. Among these theories, the higher-order shear deformation theory (HSDT) of
Reddy [4] has been extensively used for analysis of thick plates. The HSDT assumes third-order polynomials in
the expansion of the displacement components through the thickness and accommodates a parabolic variation
of the transverse shear strains and stresses through the thickness and the vanishing of transverse shear stresses
on the top and bottom surfaces of the plate. Unlike the FSDT, the HSDT requires no shear correction factor
and also the cross-sections of plate are allowed to warp.

Since the functionally graded plates do not have symmetry about the middle plane of the plate, their
bending and stretching equations based on the higher-order shear deformation theory are highly coupled so
that acquiring of an analytical solution becomes more complicated. Therefore, the analytical solutions for
analyzing FG plate structures based on HSDT were limited to some simple cases like axisymmetric circular
or simply supported rectangular plates due to the mathematical and computational complexities. Reddy [5]
developed Navier solutions and finite element models for bending analysis of simply supported functionally
graded rectangular plates based on the third-order shear deformation theory. Javaheri and Eslami [6] studied
thermal buckling of simply supported FG plates subjected to various types of thermal loadings based on the
higher-order shear deformation theory. They presented the buckling temperatures in closed-form solutions
using Navier’s method. Ma and Wang [7] employed the third-order shear deformation plate theory to solve
the axisymmetric bending and buckling problems of functionally graded circular plates. They derived the
relationships between the solutions of axisymmetric bending and buckling of FG plates based on the HSDT,
and the solutions of the homogeneous plates obtained through the CPT. For special case of axisymmetric
solid circular plate, buckling analysis of thick FG circular plates under uniform radial compression and ther-
mal loading with clamped boundary conditions at circular edge was investigated by Najafizadeh and Heydari
[8,9]. They presented closed-form solutions for the critical buckling load and temperature based on the HSDT.
A finite element formulation for thermoelastic analysis of functionally graded plates and shells was developed
by Naghdabadi and Hosseini Kordkheili [10]. Samsam Shariat and Eslami [11] presented the mechanical and
thermal buckling analysis of thick functionally graded rectangular plates. They used the third-order shear
deformation plate theory and Navier’s method to obtain the closed-form solutions for the critical buckling
load and temperature of a simply supported rectangular plate whose material properties vary linearly with
respect to the thickness coordinate. Axisymmetric bending and buckling of functionally graded circular plates
were investigated by Saidi et al. [12] based on the unconstrained third-order shear deformation plate theory.
Recently, Bodaghi and Saidi [13] investigated mechanical buckling of thin functionally graded rectangular
plates under nonlinearly varying in-plane loading resting on elastic foundation using classical plate theory.

Reformulation of coupled governing equations of plate by using the boundary layer function is an efficient
method for solving plate problems based on shear deformation theories. There are some published articles
in the literature that used this method for solving plate problems. Nosier and Reddy [14] showed that three
bending equations of several refined linear theories of symmetric laminated plates, with transversely isotropic
layers, can be uncoupled in two equations, one in terms of the transverse displacement and the other one in
terms of the boundary layer function. Saidi and Jomehzadeh [15] presented an analytical solution for bending-
stretching of FG rectangular plates with two opposite edges simply supported based on the first-order shear
deformation theory using the boundary layer function. Mohammadi et al. [16] studied the buckling analysis
of moderately thick FG rectangular plate based on the first-order plate theory.

To the best of authors’ knowledge, there are no research works for thermal buckling analysis of functionally
graded rectangular plates based on shear deformation plate theories in the open literature except for the simple
special case of four edges simply supported plates. To investigate thermal buckling behavior of functionally
graded rectangular plates in thermal environment with different boundary conditions, in this article a novel ana-
lytical method for thermal buckling analysis of thick functionally graded rectangular plates with two opposite
edges simply supported and various boundary conditions along the other edges (Levy boundary conditions) has
been developed. The derivation of the equations is based on the Reddy’s higher-order shear deformation plate
theory using the von Karman nonlinear kinematic relations. Introducing an analytical approach, the governing
stability equations of functionally graded plates are decoupled and solved for a FG rectangular plate with
two opposite edges simply supported under different thermal loads. By imposing different classical boundary
conditions along two other opposite edges, the critical buckling temperatures are obtained for FG rectangular
plates. The obtained results are compared with existing data in the literature. Moreover, the effect of power
of FGM, thermal loading conditions, boundary conditions and geometric parameters of plate on the critical
buckling temperature of Al/Al2 O3 FG rectangular plate is comprehensively investigated.
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2 Material properties of FG rectangular plate

Consider a functionally graded rectangular plate, which is made of ceramic and metal, and its properties
vary through the thickness direction. The property variation is assumed to be in terms of a simple power-law
distribution as [17]

P(z) = Pcm

(
1

2
+ z

h

)n

+ Pm

Pcm = Pc − Pm

(1)

where the variable z is the thickness coordinate (−h/2 ≤ z ≤ h/2), h is the thickness of the plate and n denotes
the power of FGM, which takes values greater than or equal to zero, also, Pm and Pc are the corresponding
properties of the metal and ceramic, respectively. The variation of the composition of ceramic and metal is
linear for n = 1. Also, the power of FGM equal to zero and infinity represents a fully ceramic and metallic
plate, respectively. In this study, Eq. (1) will be used as a model for the coefficient of thermal conductivity K ,
coefficient of thermal expansion α and Young’s modulus E of FG plates. The variation of Poisson’s ratio ν is
generally small, and it is assumed to be a constant [5–13].

3 Mathematical formulations

3.1 Equilibrium and stability equations based on the HSDT

Based on the higher-order shear deformation plate theory of Reddy, the displacement components of a material
point within the plate domain in Cartesian coordinates system may be expressed as follows [4]

U1(x, y, z) = u(x, y)+ zψx (x, y)− ηz3[ψx (x, y)+ w,x ]
U2(x, y, z) = v(x, y)+ zψy(x, y)− ηz3[ψy(x, y)+ w,y] (2)

U3(x, y, z) = w(x, y)

where u, v and w denote the displacements of a point on the mid-plane of the plate along x, y, and z coor-
dinates, respectively, ψx and ψy are rotation functions of the middle surface and η = 4

3h2 . Also, a comma
denotes partial differentiation with respect to the Cartesian coordinates.

Upon substitution of Eq. (2) into the nonlinear strain–displacement relations in von Karman sense [18],
the kinematic relations are obtained as follows

⎛
⎝ εxx
εyy
γxy

⎞
⎠ =

⎛
⎜⎝
ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

⎞
⎟⎠ + z

⎛
⎜⎝
ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

⎞
⎟⎠ + z3

⎛
⎜⎝
ε
(3)
xx

ε
(3)
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γ
(3)
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⎞
⎟⎠

(
γxz

γyz

)
=
(
γ
(0)
xz

γ
(0)
yz

)
+ z2

(
γ
(2)
xz

γ
(2)
yz

) (3)

where

⎛
⎜⎜⎝
ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

⎞
⎟⎟⎠ =

⎛
⎜⎝

u,x +(w,x )2/2
v,y +(w,y)2/2

u,y +v,x + w,xw,y

⎞
⎟⎠;

⎛
⎜⎜⎝
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ε
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γ
(1)
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⎞
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⎛
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;
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xz

γ
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ψy + w,y

)
; β = 3η = 4/h2 (4)
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Based on relations (3) and using the principle of minimum total potential energy [19], the equilibrium equations
are obtained as

δu : Nxx,x + Nxy,y = 0

δv : Nxy,x + Nyy,y = 0

δψx : Mxx,x + Mxy,y − Qx − η(Pxx,x + Pxy,y)+ βRx = 0

δψy : Mxy,x + Myy,y − Qy − η(Pxy,x + Pyy,y)+ βRy = 0

δw : Qx,x + Qy,y + η(Pxx,xx + 2Pxy,xy + Pyy,yy)− β(Rx,x + Ry,y)

+ Nxxw,xx + 2Nxyw,xy + Nyyw,yy = 0

(5)

where δ represents the variational symbol; Ni ,Mi , Pi , (i = xx, yy, xy) are the resultant forces, moments, and
higher-order moments, respectively, and Q j , R j , ( j = x, y) are, respectively, the shear forces and higher-order
shear forces which are all defined by the following expressions

(Ni ,Mi , Pi ) =
h/2∫

−h/2

(1, z, z3)σi dz, (i = xx, yy, xy) (6a)

(Q j , R j ) =
h/2∫

−h/2

(1, z2)σ j zdz, ( j = x, y) (6b)

The plane-stress reduced constitutive relations of the plate, taking into account the thermal effects are given
by [20]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σxx
σyy
σxy
σxz
σyz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎣

Q11 Q12 0 0 0
Q12 Q11 0 0 0

0 0 Q22 0 0
0 0 0 Q22 0
0 0 0 0 Q22

⎤
⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εxx
εyy
γxy
γxz
γyz

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1
0
0
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
αT

⎞
⎟⎟⎟⎠ (7)

where

Q11 = E

(1 − ν2)
; Q12 = νQ11; Q22 = E

2(1 + ν)
(8)

where T = T (x, y, z) is the temperature difference with respect to the reference temperature at which there
are no thermal strains. Also, E and α are, respectively, the Young modulus and the coefficient of thermal
expansion, which have been assumed to vary according to the power law Eq. (1).

Upon substitution of Eq. (3) into Eq. (7) and the subsequent results into Eq. (6), the stress resultants are
obtained in the matrix form as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nxx
Nyy
Nxy
Mxx
Myy
Mxy
Pxx
Pyy
Pxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 B11 B12 0 −ηD11 −ηD12 0
A12 A11 0 B12 B11 0 −ηD12 −ηD11 0
0 0 A22 0 0 B22 0 0 −ηD22

B11 B12 0 C11 C12 0 −ηF11 −ηF12 0
B12 B11 0 C12 C11 0 −ηF12 −ηF11 0
0 0 B22 0 0 C22 0 0 −ηF22

D11 D12 0 F11 F12 0 −ηH11 −ηH12 0
D12 D11 0 F12 F11 0 −ηH12 −ηH11 0
0 0 D22 0 0 F22 0 0 −ηH22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u,x + (w,x )
2/2

v,y + (w,y)
2/2

u,y + v,x + w,xw,y
ψx,x
ψy,y

ψx,y + ψy,x
ψx,x + w,xx
ψy,y + w,yy

ψx,y + ψy,x + 2w,xy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N T

N T

0
MT

MT

0
PT

PT

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎨
⎪⎩

Qx
Qy
Rx
Ry

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

A22 − βC22 0
0 A22 − βC22

C22 − βF22 0
0 C22 − βF22

⎤
⎥⎦
{
ψx + w,x
ψy + w,y

}
(9)
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where (Ai j , Bi j , Ci j , Di j , Fi j , Hi j ) are the plate stiffness coefficients, and N T ,MT and PT are the thermal
force, moment and higher-order moment resultants due to the applied temperature field on the plate. These
parameters are defined by the following expressions

(Ai j , Bi j ,Ci j , Di j , Fi j , Hi j ) =
h/2∫

−h/2

(1, z, z2, z3, z4, z6)Qi j dz, i, j = 1, 2 (10a)

(N T ,MT , PT ) =
h/2∫

−h/2

(1, z, z3)(Q11 + Q12)αT dz (10b)

Focusing on relations (8) and (10a), it can be concluded that

(A12, B12,C12, D12, F12, H12) = (A11, B11,C11, D11, F11, H11)− 2(A22, B22,C22, D22, F22, H22) (11)

In order to derive the stability equations and study the thermal buckling behavior of the FG plate, the adjacent
equilibrium criterion is used [18]. Assume that the equilibrium state of a plate under thermal loads is defined
in terms of the displacement components u0, v0, w0, ψ0

x and ψ0
y . Consider an infinitesimally small increment

from the stable configuration whose displacement components differ by u1, v1, w1, ψ1
x and ψ1

y with respect
to the equilibrium position. Thus, the total displacement and rotation functions of a neighboring configuration
of the stable state can be expressed as follows

u = u0 + u1; v = v0 + v1; w = w0 + w1

ψx = ψ0
x + ψ1

x ; ψy = ψ0
y + ψ1

y

(12)

Upon substituting the relations (12) into Eq. (9), the expressions for the stress resultants related to the equilib-
rium and neighboring states are obtained. Equivalently, the stress resultants can be expressed as

{
Ni = N 0

i + N 1
i ; Mi = M0

i + M1
i ; Pi = P0

i + P1
i , i = xx, yy, xy

R j = R0
j + R1

j ; Q j = Q0
j + Q1

j , j = x, y (13)

where the terms with subscripts 0 are corresponding to the equilibrium state and the terms with subscripts 1
are linear parts of the stress resultants increments corresponding to the neighboring state.

It is assumed that the temperature variation occurs in the thickness direction only and the temperature
field is assumed to be constant in the x − y plane of the plate. In such a case, the stability equations may be
obtained by substituting Eqs. (12) and (13) into Eq. (5). Upon substitution, the terms in the resulting equations
with superscript 0 satisfy the equilibrium condition and therefore omitted from the equations. Also, the non-
linear terms with superscript 1 will be ignored because they are small compared to the linear terms [11]. The
remaining terms form the stability equations of functionally graded rectangular plate as

N 1
xx,x + N 1

xy,y = 0

N 1
xy,x + N 1

yy,y = 0

M1
xx,x + M1

xy,y − Q1
x − η

(
P1

xx,x + P1
xy,y

)
+ βR1

x = 0 (14)

M1
xy,x + M1

yy,y − Q1
y − η

(
P1

xy,x + P1
yy,y

)
+ βR1

y = 0

Q1
x,x + Q1

y,y +η
(

P1
xx,xx +2P1

xy,xy +P1
yy,yy

)
− β

(
R1

x,x +R1
y,y

)
+ N 0

xxw
1
,xx + 2N 0

xyw
1
,xy + N 0

yyw
1
,yy = 0
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3.2 The governing stability equations and their decoupled form

Substituting the equivalent neighboring form of Eq. (9) into stability Eq. (14) leads to the following governing
stability equations

A11u1
,xx + A12v

1
,yx + B11ψ

1
x,xx + B12ψ

1
y,yx − ηD11

(
ψ1

x,x + w1
,xx

)
,x − ηD12

(
ψ1

y,y + w1
,yy

)
,x

+A22

(
u1
,y + v1

,x

)
,y

+ B22

(
ψ1

x,y + ψ1
y,x

)
,y

− ηD22

(
ψ1

x,y + ψ1
y,x + 2w1

,xy

)
,y

= 0 (15a)

A11v
1
,yy + A12u1

,xy + B11ψ
1
y,yy + B12ψ

1
x,xy − ηD11

(
ψ1

y,y + w1
,yy

)
,y

− ηD12
(
ψ1

x,x + w1
,xx

)
,y

+A22

(
u1
,y + v1

,x

)
,x

+ B22

(
ψ1

x,y + ψ1
y,x

)
,x

− ηD22

(
ψ1

x,y + ψ1
y,x + 2w1

,xy

)
,x

= 0 (15b)

(B11 − ηD11) u1
,xx + (B12 − ηD12) v

1
,yx + (C11 − ηF11) ψ

1
x,xx + (C12 − ηF12) ψ

1
y,yx

−η (F11 − ηH11)
(
ψ1

x,x + w1
,xx

)
,x − η (F12 − ηH12)

(
ψ1

y,y + w1
,yy

)
,x

+ (B22 − ηD22)
(

u1
,y + v1

,x

)
,y

+ (C22 − ηF22)
(
ψ1

x,y + ψ1
y,x

)
,y

− η (F22 − ηH22)
(
ψ1

x,y + ψ1
y,x + 2w1

,xy

)
,y

− (
A22 − 2βC22 + β2 F22

) (
ψ1

x + w1
,x

) = 0 (15c)

(B11 − ηD11) v
1
,yy + (B12 − ηD12) u1

,xy + (C11 − ηF11) ψ
1
y,yy + (C12 − ηF12) ψ

1
x,xy

−η (F11 − ηH11)
(
ψ1

y,y + w1
,yy

)
,y

− η (F12 − ηH12)
(
ψ1

x,x + w1
,xx

)
,y + (B22 − ηD22)

(
u1
,y + v1

,x

)
,x

+ (C22 − ηF22)
(
ψ1

x,y + ψ1
y,x

)
,x

− η (F22 − ηH22)
(
ψ1

x,y + ψ1
y,x + 2w1

,xy

)
,x

− (
A22 − 2βC22 + β2 F22

) (
ψ1

y + w1
,y

)
= 0 (15d)

η

{
D11

(
u1
,xxx + v1

,yyy

)
+ D12

(
u1
,xyy + v1

,yxx

)
+ F11

(
ψ1

x,xxx + ψ1
y,yyy

)
+ F12

(
ψ1

x,xyy + ψ1
y,yxx

)

−ηH11

[(
ψ1

x,x + w1
,xx

)
,xx +

(
ψ1

y,y + w1
,yy

)
,yy

]
− ηH12

[(
ψ1

y,y + w1
,yy

)
,xx

+ (
ψ1

x,x + w1
,xx

)
,yy

]

+2D22

(
u1
,y + v1

,x

)
,xy

+ 2F22

(
ψ1

x,y + ψ1
y,x

)
,xy

− 2ηH22

(
ψ1

x,y + ψ1
y,x + 2w1

,xy

)
,xy

}

+ (
A22 − 2βC22 + β2 F22

) [(
ψ1

x + w1
,x

)
,x +

(
ψ1

y + w1
,y

)
,y

]
+ N 0

xxw
1
,xx + 2N 0

xyw
1
,xy + N 0

yyw
1
,yy = 0

(15e)

The above equations are five highly coupled partial differential equations in terms of neighboring displacement
components.

In order to facilitate the solutions of these coupled equations, they will be reformulated to decoupled
equations. To this end, four new analytical functions are introduced as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ1

ϕ2

ϕ3

ϕ4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1
,x + v1

,y

u1
,y − v1

,x

ψ1
x,x + ψ1

y,y

ψ1
x,y − ψ1

y,x

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(16)
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By using relation (11) and above analytical functions, the governing stability Eq. (15) abbreviate to simpler
form as

A11ϕ1,x + A22ϕ2,y + B1ϕ3,x + B2ϕ4,y − ηD11∇2w1
,x = 0 (17a)

A11ϕ1,y − A22ϕ2,x + B1ϕ3,y − B2ϕ4,x − ηD11∇2w1
,y = 0 (17b)

B1ϕ1,x + B2ϕ2,y + C1ϕ3,x + C2ϕ4,y − A2

(
ψ1

x + w1
,y

)
− H1∇2w1

,x = 0 (17c)

B1ϕ1,y − B2ϕ2,x + C1ϕ3,y − C2ϕ4,x − A2

(
ψ1

y + w1
,y

)
− H1∇2w1

,y = 0 (17d)

ηD11∇2ϕ1 + H1∇2ϕ3 − η2 H11∇4w1 + A3
(∇2w1 + ϕ3

) + N 0
xxw

1
,xx + 2N 0

xyw
1
,xy + N 0

yyw
1
,yy = 0 (17e)

where ∇2 is two-dimensional Laplacian operator and the constant coefficients in Eq. (17) are defined as

B1 = B11 − ηD11, C1 = C11 − 2ηF11 + η2 H11

B2 = B22 − ηD22, C2 = C22 − 2ηF22 + η2 H22 (18)

H1 = ηF11 − η2 H11, A2 = A22 − 2βC22 + β2 F22

Multiplying Eq. (17a), (17b) by B1/A11 and considering B2 = B1 A22/A11 yields

B1ϕ1,x + B2ϕ2,y = − B2
1

A11
ϕ3,x − B1 B2

A11
ϕ4,y + ηD11 B1

A11
∇2w1

,x (19a)

B1ϕ1,y − B2ϕ2,x = − B2
1

A11
ϕ3,y + B1 B2

A11
ϕ4,x + ηD11 B1

A11
∇2w1

,y (19b)

Also, differentiating Eq. (19a), (19b) with respect to x and y, respectively, and adding the results, the following
relation is found

∇2ϕ1 = − B1

A11
∇2ϕ3 + ηD11

A11
∇4w1 (20)

Moreover, from subtraction of the differentiation of Eq. (19a) with respect to y and Eq. (19b) with respect
to x , it is concluded that

∇2ϕ2 = − B1

A11
∇2ϕ4 (21)

By using Eqs. (19) and (20), the last three equation of (17) can be rewritten as

Ĉϕ3,x + B̂ϕ4,y − Â
(
ψ1

x + w1
,x

) − Ĥ∇2w1
,x = 0 (22a)

Ĉϕ3,y − B̂ϕ4,x − Â
(
ψ1

y + w1
,y

)
− Ĥ∇2w1

,y = 0 (22b)

Ĥ∇2ϕ3 − F̂∇4w1 + Â
(∇2w1 + ϕ3

) + N 0
xxw

1
,xx + 2N 0

xyw
1
,xy + N 0

yyw
1
,yy = 0 (22c)

where

Ĉ = C1 − B2
1

A11
, B̂ = C2 − B1 B2

A11
, Â = A2

Ĥ = H1 − ηD11 B1

A11
, F̂ = η2

(
H11 − D2

11

A11|

) (23)

It can be seen that the in-plane displacements (u and v) do not exist in Eq. (22), and these equations are three
partial differential equation in terms of the rotation functions (ψx andψy) and the transverse displacement (w)
only. In other words, Eq. (22) are the bending equations that are decoupled from the stretching equations.
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Furthermore, using some algebraic calculations, three extensively coupled Eq. (22) can be converted into
two independent equations as

B̂∇2ϕ4 − Âϕ4 = 0 (24a)

C∇6w1 − D∇4w1 = Ĉ

Â
∇2

(
N 0

xxw
1
,xx + 2N 0

xyw
1
,xy + N 0

yyw
1
,yy

)
−
(

N 0
xxw

1
,xx + 2N 0

xyw
1
,xy + N 0

yyw
1
,yy

)

(24b)

where the parameters C, D are defined as

C = F̂Ĉ − Ĥ2

Â
, D = C11 − B2

11

A11
(25)

Equation (24a) is known as the edge-zone (or boundary layer) equation of the plate, and the function ϕ4 is
referred to the boundary layer function [14]. Also, Eq. (24b) is called the interior equation of the plate. These
equations are similar to the equations for isotropic homogenous plates, reported previously by Nosier and
Reddy [14]. But the definitions of parameters C, D, Ĉ, B̂ and Â appeared in Eqs. (25) and (23) are different.
This is due to the fact that the material properties of functionally graded plates vary through the thickness direc-
tion according to a power-law distribution, and, consequently, the plate stiffness coefficients from Eq. (10a) are
differently obtained. This similarity in the stability equations configuration shows that the functionally graded
plates behave like isotropic homogeneous plates [21]. For a homogeneous fully ceramic plate (n = 0), the

parameters C, D, Ĉ, B̂ and Â are simplified as Ech5

5040(1−ν2)(1−ν) ,
Ech3

12(1−ν2)
, 17Ech3

315(1−ν2)
, Ech3

630(1+ν) and 4Ech
15(1+ν) ,

respectively. It should be mentioned that the parameter D denotes the equivalent flexural rigidity of the func-
tionally graded plate.

The rotation functions can be expressed in terms of transverse displacement and boundary layer function
as

ψ1
x =

(
ĈC

Â(Ĉ+ Ĥ)
∇4w1− (Ĉ+ Ĥ)

Â
∇2w1−w1− Ĉ2

Â2(Ĉ+ Ĥ)

(
N 0

xxw
1
,xx +2N 0

xyw
1
,xy +N 0

yyw
1
,yy

))
,x

+ B̂

Â
ϕ4,y

(26a)

ψ1
y =

(
ĈC

Â(Ĉ+ Ĥ)
∇4w1− (Ĉ+ Ĥ)

Â
∇2w1−w1− Ĉ2

Â2(Ĉ+ Ĥ)

(
N 0

xxw
1
,xx +2N 0

xyw
1
,xy +N 0

yyw
1
,yy

))
,y

− B̂

Â
ϕ4,x

(26b)

Details of deriving Eqs. (24) and (26) are given in Appendix A.
Considering the definition of functions ϕi (i = 1, 2, 3, 4) in relations (16), it is easy to show that the

Eqs. (20) and (21) can be satisfied by assuming the in-plane displacements as follows

u1 = − B11

A11
ψ1

x + ηD11

A11

(
ψ1

x + w1
,x

)

v1 = − B11

A11
ψ1

y + ηD11

A11

(
ψ1

y + w1
,y

) (27)

It can be readily shown that relations (27) satisfy not only Eqs. (20) and (21), but also the boundary conditions
of the plate. Note that the parameters Bi j and Di j are zero for homogeneous isotropic plates so in this case,
the in-plane displacements are equal to zero as expected.

3.3 Thermal buckling analysis

Consider a rectangular plate with the length a and width b subjected to thermal loading. It is assumed that
two opposite edges of the plate at x = 0 and x = a are hard type simply supported with movable in-plane
displacements. To find the critical buckling temperature, the prebuckling thermal forces should be found. Thus,
solving the membrane form of the equilibrium equations and using the method developed by Meyers and Hyer
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[22], the prebuckling force resultants of FG plate exposed to the nonuniform temperature distribution across
the thickness are found to be [1,3,6,11]

N 0
xx = −N T , N 0

yy = −N T , N 0
xy = 0. (28)

Substituting relations (28) into Eq. (24b) yields

C∇6w1 −
(

D − Ĉ

Â
N T

)
∇4w1 − N T ∇2w1 = 0. (29)

To analyze thermal buckling behavior of functionally graded rectangular plates, the decoupled stability Eqs. (29)
and (24a) should be solved. Since the plate is simply supported (hard type) along two opposite edges in y
direction, the following series solutions are chosen for the transverse displacement w1 and the function ϕ4

w1(x, y) =
∞∑

m=1

f (y) sin (λm x) (30a)

ϕ4(x, y) =
∞∑

m=1

g(y) cos (λm x) (30b)

whereλm denotes mπ/a and m is the number of half-waves in the x direction. It can be seen that Eq. (30) exactly

satisfy the hard simply supported boundary conditions at x = 0 and x = a
(
w1 = ψ1

y = M1
xx = P1

xx = 0
)

.

Upon substitution of Eq. (30a) into Eq. (29) and simplifying the result, the following ordinary differential
equation can be obtained

f (6)(y)− (
3λ2

m + V
)

f (4)(y)+ (
3λ4

m + 2Vλ2
m − S

)
f (2)(y)− λ2

m

(
λ4

m + λ2
m V − S

)
f (y) = 0 (31)

where

V = D

C
− Ĉ N T

ÂC
; S = N T

C
. (32)

By investigating, it is observed that the general solution of Eq. (31) depends on the sign of V 2/4 + S (positive,
zero or negative). Since the sign of V 2/4 + S depends on the unknown buckling temperature, it is necessary
to investigate all the possible cases. Three general cases can occur as follows:

Case 1 V 2/4 + S > 0

In this case, the general solution of Eq. (31) involves the hyperbolic functions with six unknown constants
of integration as follows

f (y) = c1 cos h (λm y)+ c2 sin h (λm y)+ c3 cos h (θ1 y)+ c4 sin h (θ1 y)

+c5 cos h (μ1 y)+ c6 sin h (μ1 y) (33)

where the parameters θ1 and μ1 are defined as

θ2
1 = λ2

m + V/2 +
√

V 2/4 + S

μ2
1 = λ2

m + V/2 −
√

V 2/4 + S. (34)

Case 2 V 2/4 + S = 0

The general solution of Eq. (31) in this case can be expressed as

f (y) = c1 cos h (λm y)+ c2 sin h (λm y)+ c3 cos h (θ2 y)+ c4 sin h (θ2 y)

+y (c5 cos h (θ2 y)+ c6 sin h (θ2 y)) (35)

where θ2
2 = λ2

m + V/2.
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Case 3 V 2/4 + S < 0

The general solutions of Eq. (31) in this case may be written as

f (y) = c1 cos h (λm y)+ c2 sin h (λm y)+ c3 cos h (θ3 y) cos (μ3 y)

+c4 cos h (θ3 y) sin (μ3 y)+ c5 sin h (θ3 y) cos (μ3 y)+ c6 sin h (θ3 y) sin (μ3 y) (36)

where

θ2
3 = 1

2

(√
λ4

m + Vλ2
m − S + λ2

m + V/2

)

μ2
3 = 1

2

(√
λ4

m + Vλ2
m − S − λ2

m − V/2

) (37)

To solve Eq. (24a), substituting the proposed series solution (30b) into Eq. (24a) yields an ordinary differential
equation, which its general solution is given by

g(y) = c7 sin h(ζ y)+ c8 cos h(ζ y) (38)

where

ζ =
√
λ2

m + Â/B̂ (39)

Upon substitution Eq. (30) into Eq. (26), the general solution for the rotation functions can be obtained.

3.4 Thermal loading conditions

In this section, to investigate the effect of assumption type of temperature distribution through the thickness on
thermal buckling behavior of FG plate, three types of thermal loading as uniform temperature raise, nonlinear
and linear temperature distribution across the plate thickness are considered.

3.4.1 Uniform temperature raise (UTR)

It is assumed that the initial uniform temperature of the FG plate is Ti , and the temperature is uniformly raised
to a final value T f such that the plate buckles. The temperature change is �T = T f − Ti , and the thermal
force resultant can be obtained by using Eq. (10b) as

N T = h�T

(
αm Em + αm Ecm + αcm Em

n + 1
+ αcm Ecm

2n + 1

)
/(1 − ν). (40)

3.4.2 Nonlinear temperature distribution through the thickness (NTD)

The temperature field assumed to be uniform over the plate surface but varying along the thickness direction
due to heat conduction. In such a case, the temperature distribution along the thickness can be obtained by
solving the steady-state heat transfer equation as

d

dz

(
K (z)

dT (z)

dz

)
= 0 (41)

with the boundary conditions T (h/2) = Tc and T (−h/2) = Tm , where Tc and Tm are the temperatures of
full-ceramic and full-metallic surfaces, respectively. The coefficient of thermal conductivity K (z) is assumed
to obey the power-law relation (1). Substituting Eq. (1) into Eq. (41) yields a second-order differential equation
in terms of temperature which can be written as

− d2T

dr2 + nKcmrn−1

Km + Kcmrn

dT

dr
= 0 (42)
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where

r = 1

2
+ z

h
. (43)

The differential Eq. (42) can be easily solved by using the polynomial series. Thus, the temperature distribution
across the plate thickness is obtained as

T (z) = Tm + r�T

∑∞
k=0

(
1

nk+1

(−Kcmrn

Km

)k
)

∑∞
k=0

(
1

nk+1

(−Kcm
Km

)k
) , �T = Tc − Tm (44)

Substitution of Eq. (44) into Eq. (10b) yields the thermal force resultant as

N T =
(

Tmh

(
αm Em + αm Ecm + αcm Em

n + 1
+ αcm Ecm

2n + 1

)
+ h�T

X1

X2

)
/(1 − ν) (45)

where

X1 =
∞∑

k=0

(
1

nk + 1

(−Kcm

Km

)k (
αm Em

nk + 2
+ αm Ecm + αcm Em

n(k + 1)+ 2
+ αcm Ecm

n(k + 2)+ 2

))

X2 =
∞∑

k=0

(
1

nk + 1

(−Kcm

Km

)k
)
.

(46)

3.4.3 Linear temperature distribution through the thickness (LTD)

As an approximation, consider the following linear temperature distribution along the thickness coordinate of
the FG plate as

T (z) = �T

h

(
z + h

2

)
+ Tm, �T = Tc − Tm (47)

where variable z is measured from the middle plane of the plate. It should be noted that for homogeneous
isotropic plates (n = 0), the linear temperature distribution (47) is exactly justified.
The thermal force resultant can be expressed by using Eq. (10b) as

N T =
(

h�T

(
αm Em

2
+ αm Ecm + αcm Em

n + 2
+ αcm Ecm

2n + 2

)

+hTm

(
αm Em +αm Ecm + αcm Em

n + 1
+ αcm Ecm

2n + 1

))
/(1 − ν). (48)

3.5 Critical buckling temperature difference

To investigate thermoelastic buckling behavior of FG plate with definite material properties and geometric
parameters, the boundary conditions at the two other edges of the rectangular plate in x direction (i.e. y = 0
and y = b) should be also specified. The FG plate may be under different combination of classical bound-
ary conditions, including clamped, hard simply supported and free in x direction. It should be noted that the
boundary conditions of the plate are assumed to be movable in the plane of the plate (i.e. u �= 0, v �= 0),
whereas there are no middle-surface force resultants (i.e. N 1

xx = N 1
yy = N 1

xy = 0) [18,23]. These boundary
conditions that are developed from the principle of minimum total potential energy together with application
of the adjacent equilibrium criterion are as follows:

For clamped edges: w1 = w1
,y = ψ1

x = ψ1
y = 0

For simply supported (hard type) edges: w1 = ψ1
x = M1

yy = P1
yy = 0 (49)

For free edges: M1
yy = P1

yy = M1
xy −ηP1

xy =
(

Q1
y −βR1

y

)
+ η

(
2P1

xy,x + P1
yy,y

)
− N Tw1

,y = 0.
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Table 1 Comparison of the critical buckling temperature difference for a simply supported functionally graded plate subjected
to different thermal loads (a/b = 1)

Temperature distribution n b/h = 10 b/h = 20 b/h = 40 b/h = 60 b/h = 80 b/h = 100

UTR 0 Ref. [6] 1617.484 421.516 106.492 47.424 26.693 17.088
Present 1617.4842 421.5163 106.4917 47.4236 26.6929 17.0880

1 Ref. [6] 757.891 196.257 49.500 22.037 12.402 7.939
Present 757.8906 196.2568 49.5003 22.0370 12.4022 7.9391

5 Ref. [6] 678.926 178.528 45.213 20.144 11.340 7.260
Present 678.9260 178.5284 45.2133 20.1436 11.3396 7.2599

10 Ref. [6] 692.519 183.141 46.455 20.703 11.657 7.462
Present 692.5191 183.1407 46.4548 20.7030 11.6566 7.4618

LTD 0 Ref. [6] 3224.968 833.032 202.984 84.848 43.387 24.177
Present 3224.9684 833.0325 202.9844 84.8480 43.3871 24.1773

1 Ref. [6] 1412.023 358.696 83.459 31.952 13.882 5.513
Present 1412.0227 358.6958 83.4590 31.9523 13.8825 5.5133

5 Ref. [6] 1160.024 298.693 69.219 26.067 10.913 3.891
Present 1160.0245 298.693 69.2191 26.0666 10.9126 3.8907

10 Ref. [6] 1218.328 315.677 73.461 27.826 11.797 4.364
Present 1218.3281 315.6770 73.4614 27.8263 11.7969 4.3636

NTD 0 Ref. [6] 3224.968 833.032 202.984 84.848 43.387 24.177
Present 3224.9683 833.0322 202.9841 84.8484 43.3872 24.1770

1 Ref. [6] 1960.018 497.903 115.849 44.352 19.270 7.652
Present 1960.0184 497.9032 115.8492 44.3521 19.2700 7.6518

5 Ref. [6] 1450.769 373.557 86.568 32.600 13.648 4.866
Present 1450.7690 373.5571 86.5684 32.6003 13.6479 4.8656

10 Ref. [6] 1408.132 364.857 84.904 32.162 13.634 5.044
Present 1408.1318 364.8566 84.9038 32.1617 13.6336 5.0439

There are unknown parameters including constant coefficients ci , (i = 1.8), temperature difference (�T )
and the number of half-waves in the x direction (m) in general solutions for transverse displacement and bound-
ary layer function. By imposing the boundary conditions at two edges of the rectangular plate in x direction
(y = 0 and y = b), a set of homogenous algebraic equations is obtained in terms of ci , (i = 1.8) and �T
for each longitudinal half-wave number (m). To obtain a nontrivial solution of the system, the determinant of
the eighth-order coefficient matrix is set equal to zero for �T , which results in the characteristic equation.
Solving this equation, the buckling temperature differences of the FG plate are calculated. The lowest value
among all these �T ’s for each m is known as the critical buckling temperature difference (�Tcr ).

For simplicity and convenience, the letters F, S and C are used to denote a free edge, a simply supported
edge (hard type) and a clamped edge, respectively.

4 Validation of the results

In order to validate the accuracy of the present formulations, a comparison has been carried out with the results
obtained by Javaheri and Eslami [6] based on the HSDT, for all edges simply supported FG plates. The crit-
ical buckling temperature difference has been listed in Table 1 for a square simply supported plate subjected
to different temperature distribution across the thickness and side-thickness ratios. As this table shows, the
present results have an excellent agreement with those reported in Ref. [6].

5 Results and discussion

After verifying the accuracy of the present solution, in order to obtain the following new results, it is assumed
that the functionally graded plate is made of a mixture of aluminum and alumina. The Young modulus,
coefficient of thermal expansion and thermal conductivity for aluminum are Em = 70 GPa, αm = 23 ×
10−6/◦C, Km = 204 W/m◦K and for alumina are Ec = 380 GPa, αc = 7.4 × 10−6/◦C, Kc = 10.4 W/m◦K,
respectively. The temperature in the full-metal surface of the plate is assumed to be 5

◦
C. Also, the Poisson’s

ratio of the plate is assumed to be constant through the thickness and equal to 0.3. In order to study the
temperature distribution along the thickness of the functionally graded plate based on the Eq. (44), the nondi-
mensional temperature change ((T (z)− Tm) /(Tc − Tm)) along the thickness for different values of power of
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Fig. 1 Non-dimensional temperature change across the thickness for different values of power of FGM
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Fig. 2 The critical buckling temperature difference for a FG plate with symmetric boundary conditions versus the power of FGM
(a/b = 1, h/b = 0.1)

FGM is presented in Fig. 1. It can be seen from this figure that the temperature change along the thickness in
a homogeneous plate made of full-metal or full-ceramic is linear, whereas for a functionally graded plate it is
nonlinear, as expected. It can also be seen that the temperature at any internal point through the thickness of
the plate made of an isotropic material is always higher than those of FG plates, which is an important property
of FG plates. In Fig. 2, the critical buckling temperature difference for a FG plate with symmetric boundary
conditions is plotted versus the power of FGM, under nonlinear temperature distribution across the thickness.
This figure shows that the critical buckling temperature difference decreases significantly with increasing the
power of FGM. This is due to the fact that increasing the power of FGM increases the volume fraction of
metal. Also, the variation of critical buckling temperature for the power of FGM more than 2 is small.

In Fig. 3, the critical buckling temperature difference versus the aspect ratio (a/b) is depicted for a SC SC
plate under nonlinear temperature distribution across the thickness. It can be observed that the critical thermal
buckling mode may change as the aspect ratio increases. The effect of the aspect ratio for different kinds of
thermal loads on the critical buckling temperature difference is presented in Fig. 4. The FG plate is assumed to
have clamped edges in x direction. It can be found that the critical buckling temperature difference generally
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Fig. 3 The critical buckling temperature difference a SC SC plate versus the aspect ratio (h/b = 0.1)
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Fig. 4 Effect of the aspect ratio for different kinds of thermal loads on the critical buckling temperature difference of a SC SC
plate (h/b = 0.2, n = 0.5)

decreases by increasing the aspect ratio. Also, the critical buckling temperature difference of the FG plate
under linear temperature distribution across the thickness is greater than the one under uniform temperature
raise and less than the one under nonlinear temperature distribution across the thickness. Moreover, the effect
of the temperature distribution along the thickness on the critical buckling temperature of a SC SF plate with
different power of FGM is investigated in Fig. 5. It can be seen that the critical buckling temperature difference
of the fully ceramic plate (n = 0) under linear and nonlinear temperature distribution across the thickness
is identical, also, for 0 < n ≤ 10, by increasing the power of FGM, the difference between them increases
first, and then reduced. It should be noted that both curves in infinite value of power of FGM joined to each
other.

The critical buckling temperature difference versus the thickness-side ratio (h/b) for a SSSC plate under
nonlinear temperature distribution with different values of power of FGM is demonstrated in Fig. 6. It is
observed that increasing the thickness of the FG plate severely increases the critical buckling temperature
difference. Such behavior is due to the influence of the transverse shear deformation in the plate. Also, it
can be concluded that in a specific thickness-side ratio, the critical buckling temperature of the FG plates is
between those of full-ceramic and full-metallic plates.
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Fig. 5 Effect of the various temperature distributions across the thickness on the critical buckling temperature of a SC SF plate
with different values of power of FGM (a/b = 1, h/b = 0.2)
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Fig. 6 The critical buckling temperature difference versus the thickness-side ratio for a SSSC plate with different values of
power of FGM (a/b = 2)

The critical buckling temperature difference has been tabulated in Table 2 for a plate under the nonlinear
temperature distribution across the thickness. The results are obtained for different boundary conditions, some
powers of FGM and various thickness-side and aspect ratios. From the presented results in this table, it is
observed that the lowest and highest values of�Tcr correspond to SF SF and SC SC cases, respectively. Thus,
more constraints at the edges increase the stiffness of the FG plate, resulting in a higher critical buckling
temperature difference.

6 Conclusions

In this research work, thermal buckling analysis of thick functionally graded rectangular plates in thermal envi-
ronment has been presented. Based on the higher-order shear deformation theory of Reddy, the equilibrium and
stability equations of thick functionally graded rectangular plates have been derived. The governing stability
equations of FG rectangular plates have been decoupled and converted into two independent equations. The
Levy-type solution has been employed for solving the decoupled equations of FG rectangular plates with two
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Table 2 The critical buckling temperature difference for a functionally graded rectangular plate under the nonlinear temperature
distribution across the thickness with different boundary conditions

n a
b

h
b SC SC SC SS SSSS SC SF SSSF SF SF

0 0.5 0.1 8521.3697 7909.7263 7484.4781 5924.6887 5896.7679 5736.4811
0.2 23637.2875 22651.4296 21903.9401 17760.5702 17730.4976 17489.0799

1 0.1 5766.0064 4182.4515 3224.9683 1810.1862 1692.4485 1525.2149
0.2 17286.7105 13631.3760 11156.3660 6419.4427 6097.5808 5633.7000

1.5 0.1 5725.2270 3600.5391 2363.2470 1008.0910 810.7364 678.4565
0.2 17361.4980 12011.1585 8487.4493 3713.7582 3056.2261 2636.6941

1 0.5 0.1 5275.1281 4881.0037 4609.1889 3644.8873 3626.3014 3522.9330
0.2 15258.7942 14559.1299 14035.0852 14608.7787 11296.7094 11121.1978

1 0.1 3545.2805 2554.0664 1960.0184 1096.7728 1023.6397 920.0159
0.2 11020.4147 8569.6136 6941.3597 3966.6834 3758.1784 3457.4089

1.5 0.1 3516.0071 2194.1775 1431.0571 606.4514 485.5827 404.2818
0.2 11053.3181 7520.4816 5241.7242 2276.2676 1865.1082 1600.2321

5 0.5 0.1 3755.8645 3500.2302 3320.5477 2630.6044 2619.4340 2552.5204
0.2 9881.3288 9516.7820 9236.4616 9484.1409 7534.7221 7449.1792

1 0.1 2561.1926 1872.1889 1450.7690 812.0894 760.2201 686.3085
0.2 7340.7476 5891.1043 4885.6172 2835.2156 2701.2897 2509.1185

1.5 0.1 2547.0719 1614.5732 1064.7964 450.8696 362.1954 303.0442
0.2 7382.1869 5217.1595 3752.2650 1653.5220 1366.4599 1185.8967

10 0.5 0.1 3591.4901 3355.5724 3188.6031 2528.4376 2518.4105 2456.7231
0.2 9144.7795 8833.2811 8591.5901 8786.2878 7042.0952 6971.4095

1 0.1 2462.2704 1809.8277 1408.1318 788.6095 739.0705 668.3455
0.2 6858.5318 5563.1042 4651.5438 2716.1921 2592.7752 2416.5217

1.5 0.1 245.1141 1563.1276 1035.4629 438.8055 353.0469 296.0129
0.2 6902.1004 4942.1781 3594.6403 1593.9662 1321.3258 1151.4927

opposite edges simply supported. To certify the accuracy of the present formulations, the results obtained by
the present analysis have been compared with their counterparts in the literature for special case of simply
supported functionally graded plates. Also, parametric studies have been performed to examine the influ-
ences of power of functionally graded material, aspect ratio, thickness-side ratio, thermal loading conditions
and different combinations of boundary conditions on the critical buckling temperature of aluminum/alumina
functionally graded rectangular plates. The presented formulations and results will be a useful benchmark for
researchers to check out their analytical and numerical methods and also for engineering designers deal with
analyzing functionally graded plates in thermal environment in the future.

Finally, some general conclusions can be summarized as follows:

1) The temperature at any internal point through the thickness of the plate made of an isotropic material is
always higher than those of FG plates. This is an important property of functionally graded materials.

2) The critical buckling temperature difference of FG plates generally decreases by increasing the aspect
ratio.

3) In the FG plates, the solution of the steady-state heat transfer equation results in a nonlinear temperature
distribution across the thickness of the plate. As this temperature distribution overestimates the critical
buckling temperature compared to the assumption of linear temperature distribution and uniform temper-
ature raise.

4) The critical buckling temperature difference of FG plates increases when the thickness-side ratio increases.
However, it decreases when the power of FGM increases.

5) For some boundary conditions, by increasing the aspect ratio, the critical thermal buckling mode may be
changed.

6) By increasing the edge constraint (from clamped to simply supported to free), the critical buckling tem-
perature difference increases.

Appendix A

In order to obtain the boundary layer Eqs. (24a), (22a) and (22b) are differentiated with respect to y and x ,
respectively, and finally the obtained results are subtracted. Also, to derive Eq. (24b), differentiating Eq. (22a),
(22b) with respect to x and y, respectively, and then adding the result, the following equation can be obtained

Ĉ∇2ϕ3 − Â
(
ϕ3 + ∇2w1) − Ĥ∇4w1 = 0 (A1)
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Omitting the term ∇2ϕ3 from Eqs. (22c) and (A1) leads to

ϕ3 = F̂Ĉ − Ĥ2

Â
(

Ĉ + Ĥ
)∇4w1 − ∇2w1 − Ĉ

Â
(

Ĉ + Ĥ
) (

N 0
xxw

1
,xx + 2N 0

xyw
1
,xy + N 0

yyw
1
,yy

)
(A2)

By substituting Eq. (A2) into Eq. (22c), the interior Eq. (24b) is achieved.
Furthermore, from Eq. (22a), (22b), the rotation functions can be expressed as

ψ1
x = Ĉ

Â
ϕ3,x + B̂

Â
ϕ4,y − Ĥ

Â
∇2w1

,x − w1
,x (A3)

ψ1
y = Ĉ

Â
ϕ3,y − B̂

Â
ϕ4,x − Ĥ

Â
∇2w1

,y − w1
,y (A4)

Substituting Eq. (A2) into the above equations, Eq. (26) can be obtained.
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