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Abstract In this paper, we analyze an improved suspension system with the incorporated inerter device of
the quarter-car model to obtain optimal design parameters for maximum comfort level for a driver and pas-
sengers. That is achieved by finding the analytical solution for the system of ordinary differential equations,
which enables us to generate an optimization problem whose objective function is based on the international
standards of admissible acceleration levels (ISO 2631-1, Mechanical Vibration and Shock—Evaluation of
Human Exposure to Whole-Body Vibration–Part 1, 1997). The considered approach ensures the highest level
of comfort for the driver and passengers due to a favorable reduction in body vibrations. Numerical examples,
based on actually measured road profiles, are presented at the end of the paper to prove the validity of the
proposed approach and its suitability for the problem at hand.

Keywords Ride comfort · Vehicle suspension · Road profile variation · Multibody systems · Optimization

1 Introduction and literature review

The problem of finding optimal parameters of the vehicle suspension systems has been investigated by many
researchers in the field of automotive engineering, e.g. [1] and [2]. The works presented in [3–8] feature
good examples of efforts devoted to different methodologies of finding optimal parameters of suspensions
with constant harmonic excitations. These papers utilize well-known numerical and finite element methods
to obtain optimal parameters for designed models. On the other hand, [9] presents an outstanding input into
the suspension problem by analyzing and optimizing vibrations of the two-mass quarter-car suspended by
different types of linear elastic elements containing the innovative inerter device. The inerter characteristics
and scheme design are presented in [9]: it is a simple rack-and-gear mechanism with a flywheel to reduce
inertial forces caused by vibrations.

Our literature survey, thus far, suggests that the ISO standards on the evaluation of vibration accelerations
[10] have not been utilized for the optimization procedure despite their great importance to the minimization
of driver fatigue and the associated health hazards. Optimal results based on these standards would attain high
levels of comfort, particularly, for long-term exposure to vertical accelerations. In this paper, we endeavor
to address this current gap by formulating the optimization problem in terms of the ISO stipulated require-
ments. The mathematical nature of these requirements calls for innovative manipulation and builds up of
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the optimization models as will be evident later in the paper. In this work, we use real road profiles for the
optimization procedure that allows us to obtain credible results for the suspension problem.

We chose to employ the quarter-car model due to its being well understood in automotive engineering as
suggested in [3] and [8]. For this model, an analytical closed-form solution will be obtained for the steady-state
vibrations before an objective function is defined based on the ISO formulae. A search will then be conducted
for the global minimum of the function with respect to the spring stiffness and the damping coefficient of the
suspension damper. We then present several numerical examples at the end of the paper to demonstrate the
validity of the approach and its suitability for the optimization of parameters of suspension system.

It is worthy of noting here that the main theme of this paper is the prevention of driver fatigue and associated
health risks rather than a comprehensive dynamical study on the vehicle behavior on the road. In addition to the
effects of lateral and vertical elasticity, such a study may require attention to the particulars of the kinematics
and dynamics of both the suspension and steering linkages. This is beyond the scope of our current paper since
it may divert effort and attention from the major objective.

This paper is structured in such a fashion that initially we introduce the problem and present the main stages
of model development before numerical examples and results are discussed. Conclusions are then offered at
the end of the paper.

2 Formulation of optimization problem

2.1 Quarter-car model based on Kelvin elements

In this paper, we consider a quarter-car model consisting of two Kelvin elements, where the upper mass M2 rep-
resents the body of the vehicle and the lower mass M1 is the unsprung mass of the wheel and other suspension
parts. The principle concept of the quarter-car model is depicted in Fig. 1.

Herein, we construct an analytical solution for the case where a harmonic (vertical) deflection u(t) =
A exp(iωt) is applied to the support of the lower mass M1, where A is the amplitude of harmonic deflection of
the support and ω is the circular frequency at which the deflection is applied. We shall also consider the gravity
forces M1g and M2g of the corresponding masses. In the course of the analysis, we make the assumption that
springs and dashpots used in this model are weightless and have linear time-independent characteristics. The
governing second-order equations for the considered case are{

M1 ẍ1 + C1 ẋ1 + K1x1 + B2 (ẍ1 − ẍ2) + C2 (ẋ1 − ẋ2) + K2 (x1 − x2) = C1u̇(t) + K1u(t) − M1g,
M2 ẍ2 + B2 (ẍ2 − ẍ1) + C2 (ẋ2 − ẋ1) + K2 (x2 − x1) = −M2g (1)

where x1 and x2 are deflections measured from the undisturbed state. In the above equations, C1 and C2 are
the viscous damping coefficients, K1 and K2 are the spring rates, and B2 is the “inertance” coefficient where
all constants are independent of x1, x2, ẋ1, ẋ2, and time t .

The obvious general physical reasons imply

B2 > 0, Mq > 0, Cq ≥ 0, Kq ≥ 0, q = 1, 2. (2)

2.2 Deflection of the support and analytical solutions for quarter-car model

Introducing new variables v1 = ẋ1, v2 = ẋ2 and denoting �X = (x1, x2, v1, v2)
T , we can transform Eqs. (1)

into the following system of four ODEs of the first order:

�̇X = G · �X + �Ph(t) + �Pg(t), (3)

where

G =

⎛
⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

− M2 K1+M2 K2+B2 K1
D

M2 K2
D − M2C1+M2C2+B2C1

D
M2C2

D
M1 K2−B2 K1

D − M1 K2
D

M1C2−B2C1
D − M1C2

D

⎞
⎟⎟⎟⎟⎠
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Fig. 1 Quarter-car model based on Kelvin elements and inerter device

�Ph(t) =

⎛
⎜⎜⎜⎜⎝

0

0
M2+B2

D (C1u̇(t) + K1u(t))
B2
D (C1u̇(t) + K1u(t))

⎞
⎟⎟⎟⎟⎠ ; �Pg(t) =

⎛
⎜⎜⎝

0
0

−g
−g

⎞
⎟⎟⎠ (4)

D = M1 M2 + B2 (M1 + M2)

In (4), G is the system state matrix vector, loading vector �Ph(t) is associated with the harmonic deflection, and
vector �Pg(t) corresponds to constant gravity forces of both masses.

Now, we derive analytical solution of (3). This solution can be expressed in the following form (see for
example [11]):

�X(t) = ( jωI − G)−1 ·
( �Ph(t) + �Pg(t)

)
(5)

where j = √−1.
The solution of Eq. (5) for each of two masses in the case of harmonic and constant gravity deflections is

as follows [11]:{
x1(t) = D

(
K2 − ω2 (M2 + B2) + jωC2

) jωC1+K1
d A exp( jωt) − g M1+M2

K1

x2(t) = D
(
K2 − ω2 B2 + jωC2

) jωC1+K1
d A exp( jωt) − g M1 K2+M2 K2+M2 K1

K1 K2

(6)
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Table 1 Principal frequency weighting coefficients for vertical direction accelerations of the standard ISO 2631 (1997)

Frequency band number Frequency ω (Hz) Principal frequency weightings Wi

−7 0.2 0.121
−6 0.25 0.182
… … …
0 1 0.482
1 1.25 0.484
2 1.6 0.494
… … …
7 5 1.039
8 6.3 1.054
9 8 1.036
… … …
19 80 0.132

where

δ = D
(
ω4 D − jω3 (B2C1 + M1C2 + M2C1 + M2C2)

− ω2 (M2 K1 + M1K2 + B2 K1 + M2 K2 + C1C2) + jω (C1K2 + C2 K1) + K1 K2
)

(7)

In obtained solutions (6), first two expressions on the right-hand side correspond to harmonic deflections and
last term is the constant gravity deflection.

Taking the second derivative of (6), we can find the acceleration, a1(t) and a2(t), of the two systems masses
as follows:

{
a1(t) = −ω2 D

(
K2 − ω2 (M2 + B2) + jωC2

) jωC1+K1
δ

A exp( jωt)
a2(t) = −ω2 D

(
K2 − ω2 B2 + jωC2

) jωC1+K1
δ

A exp( jωt)
. (8)

Formula (8) can be used for evaluation of vertical accelerations at any fixed single frequency ω.

2.3 Vibration-based objective function

According to the ISO 2631 standards [10], vibration evaluation includes measurements of a weighted
root-mean-square (r.m.s.) acceleration which we will denote as E . In general, the vibration spectrum con-
sists of n independent bands with corresponding frequencies ωi , where i = 1, 2, . . . , n. According to the
methodology provided by ISO, a weighting coefficient Wi , i = 1, 2, . . . , n, should be applied to the accel-
eration associated with each frequency ωi . The values of Wi as suggested by the ISO 2631 are given in
Table 1.

The international code ISO 2631 defines the r.m.s. weighted acceleration E by the following formula:

E =
⎛
⎝ 1

T

T∫
0

b2(t)dt

⎞
⎠

1
2

(9)

where T is the duration of measurement and b(t) is the frequency-weighted acceleration which is given as
follows

b(t) =
(

n∑
i=1

(Wi yi (t))
2

) 1
2

(10)

where each steady-state vibration acceleration yi (t) is calculated in m/s2, see [10].
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Herein, our target is to find the spring constants and damper coefficients, which ensure the minimal value
for the r.m.s. weighted acceleration E for the body of the vehicle. This leads to the following optimization
problem

Minimize: F (K1, K2, C1, C2, B2) =
⎛
⎝ n∑

i

W 2
i

1

T

T∫
0

yi (t)
2dt

⎞
⎠

1
2

(11)

Subject to : K1, K2, C1, C2, B2 ∈ � (12)

Herein, � represents the box constraint for the optimization parameters K1, K2, C1, C2, B2.

2.4 Steady-state vibrations

In this paper, our focus is the steady-state part of the acceleration of the vehicle body associated with different
frequencies ωi , i = 1, . . . , n, that is

a2i (t) = −ω2
i D

(
K2 − ω2

i B2 + jωi C2
) jωi C1 + K1

δi
A exp( jωi t).

The steady-state part of a2i (t) can be obtained by considering the real part of the acceleration of the upper
mass and will be denoted by yi (t) = Re (a2i (t)).

Therefore, to calculate r.m.s. weighted acceleration E (9) and the frequency-weighted acceleration b(t)
(10), we need to obtain the corresponding steady-state harmonic acceleration yi (t) of the upper mass associated
with weighting coefficient Wi . So, first we introduce the integral (over some time interval T ) of the squared
real part of acceleration as follows:

Si (T ) = 1

T

T∫
0

y2
i (t)dt = 1

T

T∫
0

(αi Hi + βi Li )
2 dt (13)

where

Hi = Aiω
2
i (C1ωi cos(ωi t) + K1 sin(ωi t))

Li = Aiω
2
i (K1 cos(ωi t) − ωi C1 sin(ωi t))

αi = Riωi C2 − Qi K2 + Qiω
2
i B2

(Qi )
2 + (Ri )

2
(14)

βi = Riω
2
i B2 − Qiωi C2 − Ri K2

(Qi )
2 + (Ri )

2

Qi = ωi
(
C1 K2 + C2 K1 − ω2

i (C1 M2 + C2 M1 + C2 M2 + B2C1)
)

Ri = K1 K2 − ω2
i (C1C2 + K1 M2 + K2 M1 + K2 M2 + B2 K1) + ω4

i D

After some transformations, the integral in (13) can be represented in the following form:

Si (T ) = A2
i ω

4
i

[
Ui

(
1

2
− sin(2ωi T )

4T ωi

)
+ Vi

(− cos(2ωi T )

4T ωi

)
+ Xi

(
1

2
+ sin(2ωi T )

4T ωi

)]
(15)

where

Ui = (αi K1 + βiωi C1)
2

Vi = α2
i ωi K1C1 + αiβi K 2

1 − αiβiω
2
i C2

1 − β2
i ωi K1C (16)

Xi = (αiωi C1 + βi K1)
2
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It can be observed that the terms in Eq. (15) associated with sin(2ωi T )
T and cos(2ωi T )

T will tend to zero when
considering large time periods of driving, i.e. at T → ∞. Taking the time limit in (15) yields

S̃i ≡ lim
T →∞ Si (T ) =

ω4
i A2

i

(
ω2

i C2
1 + K 2

1

) (
ω2

i C2
2 + (

K2 − ω2
i B2

)2
)

2
(
R2

i + Q2
i

) (17)

Thus, for large time periods, the objective function (11) can be approximated by replacing Si (T ) with its
time limit S̃i yielding:

F̃ (K1, K2, C1, C2, B2) =
(

n∑
i

S̃i W
2
i

) 1
2

, (18)

where n is the number of band frequencies present in the vibration spectrum.
Therefore, we obtain the following optimization problem:

Minimize: F̃ (K1, K2, C1, C2, B2) (19)

Subject to : K1, K2, C1, C2, B2 ∈ � (20)

In contrast to (11), (12), problem (19), (20) involves steady-state solutions only and does not depend on
the duration of measurement T . Note that this is very important as it can provide an optimal solution(
K ∗

1 , K ∗
2 , C∗

1 , C∗
2 , B∗

2

)
for the parameters of the car suspension system that does not depend on the mea-

surement time T . On the other hand, problem (19), (20) is an approximation of problem (11), (12) when
T → ∞, that is, this optimal solution can be interpret as an “almost” optimal solution to (11), (12) as well for
large duration periods of measurements.

Problem (19), (20) is a highly nonlinear optimization problem having many local optimal solutions. That
is why, we need to apply global optimization algorithms to find a global optimal solution to (19), (20). In the
numerical experiments below, we will use the Algorithm for Global Optimization Problems (AGOP), intro-
duced in [12]. This global optimization algorithm is designed for solving continuous optimization problems
with defined box constraints. The efficiency of the algorithm has been demonstrated in solving many difficult
practical problems (see [13] and references therein).

3 Numerical examples

Herein, we perform Power Spectral Density calculations of three sections of rural roads for typical speed
limits that range from 60 to 100 km/h. In this paper, we used road profiles of the following roads: Alfred street,
Wendouree Parade street, and Ring Road, Ballarat, Victoria, Australia. Road profiles data were provided by
the School of Science and Engineering, University of Ballarat. (Fig. 2)

Considering vibration spectra of the given road profiles, we used frequencies ωi from the range 0.2–80 Hz,
which are associated with weighting values Wi more than 0.1 as per the ISO 2631, see Table 1. This allowed
us to avoid a number of specific frequencies with minor influence on the ride comfort level. The values of
various quarter-car model parameters are taken in reference to [14]. In many publications, for example [1]
and [15], the tire of the wheel is considered as a structure with no damping properties, i.e. C1 = 0. Particularly,
in [15], it is stated that a typical pressured tire exhibits negligible damping values, and it can be considered
as a component of the wheel with stiffness only. Therefore, in the numerical examples when solving problem
(19), (20), this parameter is fixed by setting C1 = 0 that neglects damping properties of the tire.

Also, we consider several scenarios to evaluate the influence of the mass of the vehicle body on comfort
level. Therefore, fixing M1 = 20 kg we define three mass ratios M2

M1
= [15; 20; 25]. The domains assumed for

the springs constants are given as K1 ∈ [180000, 240000](N/m), K2 ∈ [10000, 25000](N/m), the coefficient
of the damper is given as C2 ∈ [2000, 4000](N sec /m), B2 ∈ [0, 4](kg). The minimum value of the spring
stiffness, K1, corresponds to a low pressure tire (24 psi), and the maximum value corresponds to an over-
inflated tyre (44 psi). The limiting values imposed on the constants of spring K2, damper C2, and inerter B2
are determined from the engineering point of view of suspension deflection using [14] as reference. Thus, we
can represent a constrain box as � = [180000, 240000], [10000, 25000], [2000, 4000], [0, 4].

Performing optimization procedure using AGOP software and finding global solution, we can find optimal
parameters of the tire stiffness K1, suspension spring K2, damper C2, and inerter to achieve minimum values
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Fig. 2 Measured road profiles of Alfred street (top curve), Wendouree Parade street (middle curve), and Ring Road (bottom
curve). Vertical axes show unevenness amplitudes, horizontal axes show number of points in road profile (length of the measured
profiles are equal to 100 m)

Table 2 The optimal parameter values C2, K2 and B2 of suspension and tyre stiffness K1 of the quarter-car model for the
considered sections of roads

Vehicle speed range ( km/h) Optimal values of the parameters Alfred street Wendouree Parade street Ring Road

60–100 K1 (N/m) 180000
K2 (N/m) 10000
C2 (N s/m) 2000

60 B2 (kg) 0.512 0.524 0.395
65 0 0 0
70 0 0 0
75 0 0 0.524
80 0.861 0 0.558
85 0.951 0 0
90 0.425 0 0.145
95 0 0 0.548
100 1.171 0 0.403

of the objective function of the upper mass of the quarter-car model on the considered roads of the city of
Ballarat. Optimal values found of the parameters K1, K2, C2 and B2 for all three mass ratios are given in
Table 2.

In Fig. 3, we listed minimum values of objective function
(
m/s2

)
which correspond to the optimal param-

eters of the inerter B2, damper C2, suspension spring K2, and tire stiffness K1 of the quarter-car model for the
analyzed mass ratios M2

M1
.

According to the code presented in the ISO 2631, the criterion employed to evaluate the intensity of vibra-
tion transmitted to a human is based on the length of time (in hours) over which exposure to vibration results
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Fig. 3 The minimum values of objective function (m/s2) corresponding to optimal parameters of the inerter B2, damper C2,
spring of suspension K2, and tire stiffness K1 of the quarter-car model on Ballarat roads for the considered mass ratios M2

M1

in no health risks (NH), potential health risks (PR) or likely health risks (HR). For better presentation, the ISO
curves which define these three levels of vibration exposure are shown in Fig. 4.

In Table 3, we represent vibration exposure in the NH, PR, and HR criteria for one scenario M2
M1

= 15
(Fig. 3) using ISO chart shown in Fig. 4.
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Fig. 4 Maximum vibration exposure time (hours) that corresponds to No Health Risk condition, Potential Health Risk, and Health
Risk is likely in accordance with ISO2631

Table 3 Health guidance caution zones (B2) of ISO 2631-1: time limits (hours) of vibration exposure with No Health Risk
conditions (NH), Potential Risk conditions (PR), and Health Risk conditions (HR) for the scenario when M2

M1
= 15

Vehicle speed ( km/h) Alfred street Wendouree Parade street Ring Road

NH PR HR NH PR HR NH PR HR

60 6 6–17 17–24 7 7–18 18–24 12 10–24 24
65 6 6–17 17–24 7 7–28 18–24 12 10–24 24
70 6 6–17 17–24 7 7–28 18–24 12 10–24 24
75 5 5–14 14–24 7 7–28 18–24 12 10–24 24
80 5 5–14 14–24 7 7–18 18–24 12 10–24 24
85 4 4–12 12–24 6 6–18 18–24 11 11–24 24
90 4 4–12 12–24 5 5–14 14–24 11 11–24 24
95 3 3–11 11–24 5 5–14 14–24 11 11–24 24
100 3 3–11 11–24 5 5–14 14–24 11 11–24 24

The results in Table 2 reveal some tendencies and suggest some conclusions. For example, to achieve
the best comfort performance in vehicle on rural roads, the tires should have minimal stiffness, as parameter
K1 remains at minimum in all the considered cases. On the other hand, suspension systems require minimal
stiffness of the spring K2 as the damping coefficient C2 remains at the lowest values of the defined box �.
Also, inerter B2 should have values closed to the lowest boundary of the box � to provide minimum values of
the objective function. So, it means that any speed on rural roads requires the softest suspension settings for
improved comfort level.

At the same time, the results presented in Fig. 3 show that heavier body of the vehicle leads to the lower
accelerations and provides higher comfort level. This fact can be easily investigated analytically analyzing
formula (17) and (14).

From an engineering point of view, it is very important to observe the influence of each parameter on
the comfort level. Figure 5 shows the influence of the tire stiffness, suspension spring stiffness, damping
coefficient, and the inerter mass on the comfort level. To evaluate influence of each parameter on comfort
level, we used as a reference Alfred Street road profile at a driving speed of 60 km/h in the case when mass
ratio M2

M1
= 15. In particular, on the top plot, we can see the influence of the tire stiffness, K1, on the com-

fort level, while the parameters K2, C2 and B2 are fixed at minimum values within box �. The second
plot shows the influence of suspension spring stiffness, K2, on the comfort level, when other three param-
eters K1, C2 and B2 remain at the lowest boundaries of the considered box �. The third plot depicts the
influence of the damping coefficient C2 on the comfort level, with parameters K1, K2 and B2 fixed at
their minimum values within the considered boundaries. The bottom plot reflects the influence of the inerter
coefficient B2 on the comfort level, while other parameters K1, K2 and C2 remain at the lowest bound-
aries.

Figure 5 reveals that for any driving speed, on rural roads, the stiffness of the tires, and mass of the inerter
of the suspension system do not affect the comfort level of the vehicle as much as the stiffness of the suspension
springs do. On the other hand, the comfort level is very sensitive to the viscous damping coefficients. These
results generally agree with the concepts suggested in [15].
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Influence of tyre stiffness on comfort level
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Fig. 5 Influence of tyre stiffness, stiffness of the suspension spring, damping factor, and inerter mass on objective function values
(ISO 2631 weighted accelerations)

4 Conclusions

This paper presents a contribution to vibration analysis in automotive engineering by evaluating the vibration
transmitted from road profile variations to a driver or a passenger of a vehicle. A mathematical model is
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constructed and manipulated to calculate the steady-state component of the transmitted vibration. This model
is then optimized, in reference to the standard ISO 2631, to obtain suitable values for the suspension system
parameters. Numerical results reveal information on how different parameters affect the comfort level of a
road vehicle. The considered model is suitable for vibration analysis and optimization of vehicle suspension
system.
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