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Abstract We present a partition of unity-enriched element-free Galerkin method for thermoelastic two-
dimensional crack problems. Therefore, the displacement field is enriched by the step enrichment. In the
vicinity of the crack tip, the asymptotic branch enrichment functions commonly used in linear elastic frac-
ture mechanics are employed. The same enrichment strategy is employed for the temperature field. Level
set functions are used in order to model the crack surface. The accuracy of the method is demonstrated for
three examples, one involves the crack propagation due to temperature and mixed traction-temperature loading
conditions with complex curved crack paths.

Keywords Fracture · Meshfree · SPH · EFG · MPM

1 Introduction

Meshfree methods have become a powerful alternative to finite element methods. One typical application
where meshfree methods still have advantages over finite elements are problems involving fracture. The main
advantages of meshfree methods for these problems are their higher-order continuous approximations, ease
of adaptive refinement, and the absence of the mesh allowing arbitrary crack growths without re-meshing [5–
7,10,20,22,23,34,40,47]. The two former advantages promise high accuracy in comparison to finite element
methods, since due to the low-order continuity, the field variables that commonly govern the crack growth are
inaccurate around the crack tip.

There are different methods to represent the crack topology in meshfree methods. The first approach was
presented by [6], who introduced the so-called visibility criterion. The main idea is to consider the crack as
opaque surface and to exclude those nodes from the meshfree approximation which are located on the opposite
side of the crack surface. Though the visibility method introduces artificial discontinuities at the crack tip, it
remains the most frequently applied method. The diffraction and transparency method [2,3,27] removes the
artificial discontinuities of the visibility method but on cost of higher computational effort. These methods are
difficult to extend in a three-dimensional setting and often require only approximate calculation of the deriva-
tives of the shape functions. With the development of partition of unity (PU) method [24], meshfree methods
were enriched with information of the analytical solution. For example, [13] introduced three opportunities to
incorporate the near crack tip solution into the element-free Galerkin (EFG) [6] method:

• Intrinsic PU enrichment
• Extrinsic PU enrichment
• Extrinsic MLS enrichment
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The first two schemes belong to the class of PU enrichments while the last scheme introduces the near crack tip
solution directly into the MLS scheme that is the basis of the EFG method. The extrinsic PU enrichment turned
out to be particularly efficient since only a few nodes are affected by the enrichment while for the intrinsic PU
enrichment, specific (computational cumbersome) techniques are required in order to maintain computational
efficiency.

Ventura et al. [47] was the first who took advantage of level set functions [45] for crack representation
in the EFG method based on extrinsic PU enrichment. Therefore, the level set function was discretized, and
geometric properties such as distance to the crack tip were expressed in terms of discretized level set func-
tions. This implicit representation of the crack is superior to explicit representation of cracks, particularly for
complicated crack patterns including curved cracks. Meshfree methods seem superior in this aspect over finite
element methods due to their higher-order continuity that avoid kinks which occur at element boundaries in
finite element methods. [42] extended the EFG method of [47] to non-linear material behavior, cohesive cracks
in dynamics in two- and three-dimensions [37]. They proposed methods with crack front enrichment [42] and
without crack front enrichment [49]. In this article, we extend these PU-enriched methods to thermomechan-
ical problems by introducing the temperature as independent field. Thermomechanical fracture analysis is
important in many areas e.g. in the automative industry or in aerospace engineering, e.g. to analysis fatigue
cracks in engines. We focus our extension to linear elastic fracture mechanics (LEFM) in two-dimensional
setting. Therefore, we first summarize briefly the EFG method. Then, we describe the discretization of the
displacement and temperature field for two-dimensional crack problems. Afterward, we state the governing
equations and derive the weak form. We present some examples that are compared to analytical solutions
before we conclude our paper with some remarks and future research perspectives. Our main objective is to
provide a more efficient and accurate method for thermomechanical two-dimensional crack problems in linear
elastic fracture mechanics.

2 EFG method

The element-free Galerkin method (EFGM) was developed by [6] for applications in computational solid
mechanics. EFGM takes advantage of the moving least square (MLS) approximation given by

ui (x) =
∑

I∈W
pI (x) aI (x) = pT a (1)

where pI (x) denotes polynomial basis functions, aI (x) are unknown coefficients and W is the total set of
nodes, ui (x) is the displacement field. In order to guarantee first-order completeness, we use linear functions
for pI (x):

p(x) = [1, x, y] (2)

Minimizing a discrete weighted L2 norm I:

I =
∑

I∈W

(
pT (xI ) a(xI ) − uI

)2
w(x − xI , h) (3)

with respect to the unknown coefficients leads to the well-known EFG approximation

ui (x) =
∑

I∈W
NI (x)ui I (t) = NT u (4)

with

NI (x) = pT (x) A−1(x) DI (x) (5)

and

DI (x) = w(x − xI , h)pT (xI )

AI (x) =
∑

I∈W
w(x − xI , h) p(xI ) pT (xI )

(6)
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with the kernel function w(x − xI , h) where h denotes the dilation parameter.
The discretization of the temperature field T , necessary for the thermomechanical formulation described

later, is obtained in the same manner yielding the final EFG approximation:

T (x) =
∑

I∈W
NI (x)TI (t) (7)

with the shape functions NI (x) given in Eq. (5). Note that in general, different shape functions can be used
for the discretization of the thermal and mechanical variables, but we opt to choose the same shape func-
tions for both fields. Nevertheless, we will distinguish them later for clarity by using subscripts M and T for
’mechanical’ and ’thermal’, respectively.

3 Governing equations and weak form

Consider a domain � with temperature boundary �T , flux boundary �q , displacement boundary �u , traction
boundary �t , and crack boundary �c such that �T

⋂
�q = 0, � = �u

⋃
�t

⋃
�c = �T

⋃
�q and �u

⋂
�t =

0, �c
⋂

�t = 0, �u
⋂

�c = 0. Let us consider adiabatic (traction-free) cracks, i.e. �c ⊂ �q; q̄ = 0 on �c, in
thermoelasticity under the assumption of small strains. The governing equations are the equilibrium equation
and heat equation, respectively, given by

σi j, j + bi = 0i ∀x ∈ �

qi,i + Q = 0 ∀x ∈ �
(8)

where σi j is the stress tensor, bi are the body forces, qi is the heat flux, and Q denotes the heat source. The
compatibility conditions and the constitutive equations in thermoelasticity are given by

σi j = Ci jklεkl

εi j = 1

2

(
ui, j + u j,i

)

︸ ︷︷ ︸
εmech

i j

− αT �T Ii j︸ ︷︷ ︸
εtherm

i j

(9)

qi + kT,i = 0i

where Ci jkl denotes the first-order elasticity tensor, εi j is the strain tensor where the superscript mech and
therm denote the mechanical strain and thermal strain, respectively, αT is the expansion coefficient, k the
diffusivity, �T denotes the change in temperature, i.e. �T = T − T0 with room temperature T0 and Ii j is the
second-order identity matrix. These equations are complemented by boundary conditions

ui = ūi on �u

ti = σi j n j = t̄i on �t

T = T̄ on �T

qi ni = q̄ on �q

(10)

with traction free boundary conditions at the crack surface and where the superimposed bar denotes imposed
boundary conditions. The weak form is derived by the method of weighted residuals. Therefore, we multiply
the strong form, eq. (8), with a set of admissible test functions δT ∈ T0 and δui ∈ U0 and integrate over control
volume �. Integration by parts and using Gauss’ divergence theorem leads the final weak form. For adiabatic
cracks, we obtain

∫

�

δεmech
i j σi j d� −

∫

�

δui bi d� −
∫

�t

δui t̄i d� = 0

∫

�

δqi kqi d� +
∫

�

δT Q d� −
∫

�q

δT q̄ d� = 0
(11)
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with the following solution spaces of the test functions δT and δui and trial functions T ∈ T and ui ∈ U

U = {
ui |ui ∈ H1, ui = ūi on �u, ui discontinuous on �c

}

U0 = {
δui |δui ∈ H1, δui = 0i on �u, δui discontinuous on �c

}

T = {
T |T ∈ H1, T = T̄i on �T , T discontinuous on �T

}

T0 = {
δT |δT ∈ H1, δT = 0 on �T , δT discontinuous on �T

}
(12)

where H denotes the first Hilbert space.
Since the EFG method is not interpolatory, essential boundary conditions cannot be imposed in strong sense

as in finite element methods and special techniques are required. Commonly used methods to enforce essen-
tial boundary conditions are Lagrange multiplier method [3], coupling to finite element method [9,16,41]
or boundary collocation techniques [12]. In this manuscript, we use the boundary collocation technique as
described in [15] due to its simplicity and robustness. Details can be found in the given reference. A good
overview can be found in [26].

4 Discretization

The basic idea of partition of unity-enriched EFG method is to enrich the test functions and trial functions with
information of the analytical solution. Therefore, we decompose the field into a standard part, see Sect. 2, and
enriched part:

uh
i (x) = ust

i (x) + uen
i (x)

δuh
i (x) = δust

i (x) + δuen
i (x)

T h(x) = T st (x) + T en(x)

δT h(x) = δT st (x) + δT en(x)

(13)

The standard part is the EFG approximation as given in Sect. 2 and results in a continuous field away from
the crack while the enriched part governs the discontinuous (and singular—at the crack tip) fields:

uenr
i (x) =

∑

I∈Sc

NI (x) S( f (xI ))ai I +
∑

I∈St

NI (x)

4∑

K=1

BK bi K I

δuenr
i (x) =

∑

I∈Sc

NI (x) S( f (xI ))δai I +
∑

I∈St

NI (x)

4∑

K=1

BK δbi K I

T enr (x) =
∑

I∈Sc

NI (x) S( f (xI ))T̃I +
∑

I∈St

NI (x)BT̂i I

δT enr (x) =
∑

I∈Sc

NI (x) S( f (xI ))δT̃I +
∑

I∈St

NI (x)BδT̂i I

(14)

where ai , bi , T̃ and T̂ are additional unknowns that needs to be solved for, Sc are nodes which domain of
influence is completely crossed by the crack, Fig. 1, and St are nodes which domain of influence is partially
cut by the crack, Fig. 1. All the first terms on the RHS of eq. (14) refer to step function enrichment while all
the second terms on the RHS refer to crack tip enrichment. Accordingly, the enrichment functions S, B and
B are choosen; S is the step function that is −1 on one side of the crack and +1 on the other side of the crack,
Fig. 1, f (xI ) is the level set function employed to locate the crack:

f (xI ) =
{

sign (n · [xI − x]) min‖x − xI ‖ ∀xI ∈ Sc
n · (xti p − xI

) ∀xI ∈ St
(15)

where n is the normal to the crack surface and xti p is the position of the crack tip.
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Equation (14) can also be given in vector and matrix form:

uh
i (x) = Nu

M U + Na
M A + Nb

M B︸ ︷︷ ︸
uenr

i (x)

δuh
i (x) = Nu

MδU + Na
MδA + Nb

MδB︸ ︷︷ ︸
δuenr

i (x)

T h(x) = Nu
T Tu + Na

T Ta + Nb
T Tb︸ ︷︷ ︸

T enr (x)

T h(x) = Nu
T δTu + Na

T δTa + Nb
T δTb︸ ︷︷ ︸

δT enr (x)

(16)

where we have now also included the ‘usual’ EFG approximation as described in Sect. 2, i.e. the first term on
the RHS; the subscripts and superscripts M, T, u, a, b refer to ‘mechanical’ quantities, ‘thermal’ quantities,
’usual’ degrees of freedom (DOF), step-enriched DOF and tip-enriched DOF, respecitvely. The vectors U, A,
and B contain the DOF of the mechanical quantities for the usual part, step-enriched part and tip-enriched part
while the vectors Tu, Ta and Tb contain the DOF for the thermal quantities. For n nodes with m step-enriched
nodes and l tip-enriched nodes, we will have 2n (U) plus 2m (A) plus 4l (B) plus n (Tu) plus m (Ta) plus l
(Tb) DOF in the entire discretization. Note that m, l << n. The vectors U, A, B, Tu, Ta , and Tb are stored
in one vector D.

For the displacement field, we incorporate the Westergaard solution [48] via the enrichment function

B = [√
rsinθ/2,

√
rcosθ/2,

√
rsinθ/2 sinθ,

√
rcosθ/2 sinθ

]T
(17)

while we use only the first term in order to enrich the temperature field

B = √
rsinθ/2 (18)

since the heat flux components behave singular like:

qi = Kth√
2
a

(
sinθ/2

−cosθ/2

)
(19)

where Kth is the thermal intensity factor; r and θ are explained in Fig. 1.
Inserting the test functions and trial functions into the weak form leads to the final fully coupled thermo-

mechanical system of equations that are solved simultaneously with respect to the mechanical and thermal
degrees of freedom:

K D = F (20)

Fig. 1 Modeling crack in meshfree method
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with

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kuu
M M Kua

M M Kub
M M Kuu

MT Kua
MT Kub

MT

Kau
M M Kaa

M M Kab
M M Kau

MT Kaa
MT Kab

MT

Kbu
M M Kba

M M Kbb
M M Kbu

MT Kba
MT Kbb

MT

Kuu
MT Kua

MT Kub
MT Kuu

T T Kua
T T Kub

T T

Kau
MT Kaa

MT Kab
MT Kau

T T Kaa
T T Kab

T T

Kbu
MT Kba

MT Kbb
MT Kbu

T T Kba
T T Kbb

T T

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

and the vectors D = [U, A, B, Tu, Ta, Tb]T and F = [
Fu

M , Fa
M , Fb

M , Fu
T , Fa

T , Fb
T

]T
where U, A and B are

the vectors contains the displacement degrees of freedom u, a and b, respectively, where the indices M and
T refer to mechanical and thermal quantities, the indices u, a and b to the degrees of freedom and N and B
contain the shape functions and their derivatives; C is the first-order elasticity tensor and the tensor D contains
the diffusity k. Note that we use the same shape functions for the mechanical and temperature fields, i.e.
NT = NM ; see also for example Eq. (14). The force vectors Fi

M , i = u, a, b refer to mechanical loading, see
the last two terms on the LHS in the first line of Eq. (8) while the force vectors Fi

T , i = u, a, b refer to thermal
loading, the last two terms on the LHS in the second line of Eq. (8). These vectors are stored in the vector F.
The submatrices of K and F are given for sake of completeness in the appendix, Sect. 7.

5 Examples

We present three examples. The first two examples are verification of the method by comparing results of our
method to other analytical results. The last problems show the ability of our method to handle crack propagation
problems. The main advantage of the proposed method is that it can handle crack growth with ease.

5.1 Rectangular plate with a center crack

Consider a rectangular plate with a center crack. The dimensions are illustrated in Fig. 2a and we have chosen
L = W . Only thermal boundary conditions are applied as illustrated in the figure with T̄ = 10o Celsius. This
problem was solved previously by [25,28]. Results are shown for different ratios a/W . [28] used a compu-
tationally expensive boundary element method to solve this problem while handbook solutions are given in
[25]. In this study, we adopt the presentation of the results from [25,28] and give the results in the table form.

We tested unstructured particle arrangements and different refinements and present results starting from
approximately 500 nodes up to 4,000 nodes. For finer discretizations of 2,000 nodes and above, the spac-
ing between the particles is similar (almost equi-spaced) in the unstructured discretization as illustrated in

Fig. 2 Rectangular plate with crack
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Fig. 3 Discretization of the plate with a crack problem for different discretizations and different crack lengths

Fig. 3a,b for different crack lengths. The size of the domain of influence is coupled to the nodal spacing and
is approximately 1.8 times the average nodal spacing d = √

dx2 + dy2 where dx and dy are the distances
between neighboring nodes in x and y direction. The step-enriched degrees of freedom are illustrated in green
color while tip-enriched degrees of freedom are shown in red color. A small domain of influence is chosen
according to [30,32] though the accuracy can be improved by increasing the support size, see e.g. [36]. It is also
noted that structured arrangements lead to an improved accuracy in meshfree methods [31,33], but we have
used unstructured arrangements since they are commonly used for modeling complex geometries. Note that
for the very coarse discretization of only 500 nodes, equi-spaced node arrangements were only achieved for
a/W > 0.4. Otherwise, the nodal density is higher in the vicinity of the crack as illustrated for approximately
500 nodes and an a/W = 0.1 in Fig. 3c,d. A refinement around the crack tip is needed since crack tip enrich-
ments influencing each other will result in deterioration of accuracy as noted e.g. by [37,43]. As can be seen in
Fig. 3c,d, the two tip-enriched nodes do not influence each other in the given discretization. Tip-enriched nodes
are illustrated again in green color while step-enriched nodes are shown in red. The procedure of computing
the size of the domain of influence is described in detail in the meshfree literature, e.g. the excellent books of
[1,21].

The results are summarized in Table 1 in accordance with the published results by [25,28]. They agree
well with these results. Moreover, even for only 500 nodes, we were able to obtain results independent of the
refinement. Note the key advantage of our method is that crack propagation can be modeled with ease since
no re-meshing is needed; a crack propagation problem will be shown in the last example. Another advantage
of our method is the increased accuracy obtained through including information of the analytical solution into
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Table 1 Comparison of the stress intensity factor K I I of our method for three different refinements (500 nodes–4,000 nodes)
compared to the results in [25,28]

a/W 500 Nodes 2,000 Nodes 4, 000 Nodes [28] [25]

0.1 0.019 0.020 0.020 0.018 0.021
0.2 0.053 0.054 0.054 0.054 0.053
0.3 0.094 0.095 0.095 0.095 0.094
0.4 0.141 0.141 0.141 0.141 0.141
0.5 0.188 0.189 0.189 0.190 0.188
0.6 0.244 0.245 0.245 0.243 0.247

Fig. 4 Temperature field for problem: rectangular plate with crack

the approximation. Even with extremely coarse meshes, high accuracy is achieved. We do not give a detailed
comparison since in our opinion, it is difficult to compare the accuracy over the computation time since the
efficiency is greatly affected by the implementation. The temperature field is illustrated in Fig. 4a.

5.2 Rectangular plate with a slant crack

In this example, the dimensions of the problem remain the same as for the previous problem, but the crack is
now inclined against the global x-axis resulting in mixed-mode fracture. We used the same particle arrange-
ments and show the stress intensity factors K I and K I I for different ratios a/W exemplary for discretization
with 2,000 nodes. The results of the coarser and finer discretizations are very similar. The summary of results
is shown in Table 2 and 3, and the agreement with results from other authors is very close. The temperature
field for one inclination is shown in Fig. 4b.

5.3 Crack growth in rectangular plate

Finally, we study a crack propagation problem. Therefore, consider the rectangular plate with a central crack of
length a (Fig. 5). Experimental results [29] of this problem are available for different loads. The load conditions

Table 2 Comparison of the stress intensity factor K I and K I I of our method compared to the results in [25,28] for a/W = 0.3
and varying α

α Our method K I K I [28] K I [25] Our method K I I K I I [28] K I I [25]

0◦ 0.000 0.000 0.000 0.054 0.054 0.054
15◦ 0.0036 0.0036 0.0038 0.054 0.054 0.054
30◦ 0.0066 0.0064 0.0071 0.048 0.048 0.048
45◦ 0.0073 0.0071 0.0077 0.041 0.041 0.042
60◦ 0.0050 0.0049 0.0053 0.032 0.032 0.032
75◦ 0.0014 0.0010 0.0023 0.018 0.018 0.018
90◦ 0.0001 0.0003 0.000 0.000 0.000 0.000
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are summarized in Table 4. The main feature of these experiments with different boundary conditions are as
follows: while the crack propagates almost perpendicular to the load direction when a traction load is applied
(case 2–4), the crack propagation upwards and turns toward the right-hand side when only temperature load
is applied at the upper and lower boundary.

We tested all cases but present only result of case (1) and (3) since they present the key features of the crack
path. We used discretizations from 850 up to 4,000 nodes and show results for 4,000 nodes since the results
even for 850 nodes look almost identical to the results obtained with the fine discretization. The direction of
the crack is determined by the maximum hoop stress criterion, see e.g. [46,50]. The crack length is controlled
in all our simulations and set to 0.5 a; a illustrated in Fig. 5. Details on the level set update are given elsewhere
[42,47].

In Fig. 6, one can see the temperature field and the almost straight crack path for case (3) when a traction
load is applied at the top boundary in addition to temperature boundary conditions. The von Mises-stresses and

Table 3 Comparison of the stress intensity factor K I and K I I of our method compared to the results in [25,28] for α = 30o and
varying a/W

a/W Our method K I I K I I [28] K I I [25] Our method K I K I [28] K I [25]

0.2 0.030 0.030 0.030 0.002 0.002 0.002
0.3 0.048 0.048 0.048 0.007 0.006 0.008
0.4 0.065 0.064 0.064 0.014 0.014 0.015
0.5 0.076 0.076 0.076 0.026 0.026 0.027
0.6 0.087 0.087 0.086 0.040 0.040 0.041

BA

C

D

EF

G

H

Traction

a

L

L

Fig. 5 Rectangular plate with a central crack

Table 4 Load conditions for the problem shown in Fig. 5 as presented by [29]

Load Temperature [◦C] Traction [Pa]

AB EF AB

Case (1) 10 −10 0
Case (2) 0 0 10
Case (3) 10 −10 10
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Fig. 6 Crack path and temperature field for different load cases for problem shown in Fig. 5

Fig. 7 Stress distribution for case (3) for the problem in Fig. 5

the normal stress in load direction σy are illustrated in Fig. 7. Figure 6a shows the results for case (1) where
only temperature is applied. The key features, i.e. the correct crack pattern is captured by our simulation very
nicely.

6 Conclusion and research perspectives

We have presented an enriched meshfree method for thermoelastic two-dimensional crack problems. Therefore,
enrichment functions are introduced in the discretization that accurately represent features of the analytical
solution; we note that the analytical solution does not need to be known exactly. It is sufficient to know basic
features of the analytical solution. The thermal as well as the displacement field is locally, i.e. in the vicinity of
the crack, enhanced with enrichment functions that capture the discontinuity in the thermal and displacement
field as well as the singularity in both fields at the crack tip. The local character of the enrichment guarantees
an optimum between accuracy and efficiency of the method.

The crack is represented by level set functions that are discretized with the same meshfree shape functions
as for the thermal and displacement variables. Therefore, the existing discretization can be exploited in order
to describe the topology of the crack without explicit representation. The key feature of the method is its
ability to handle complex and curved crack path with ease. The crack can propagate arbitrarily through a given
discretization. The higher-order continuity of the meshfree method has clear advantages over a discretization
with finite elements since the smoothness and higher-order continuity guarantees the propagation of curved
cracks even for very coarse discretizations.

We applied the method to three problems where analytical and experimental data are available. The first two
numerical examples dealt with problems without crack propagation. We showed that even with a very coarse
discretization, we were able to achieve high accuracy. This is attributed mainly to the enrichment strategy.
We have also shown that complicated and curved crack paths can be obtained with our method that agrees
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well with published data from experiments [29]. That was shown for pure temperature loading and mixed
traction/temperature loading.

In the future, this concept can be extended to other interesting phenomena such as shear bands where tem-
perature effects govern the motion of the shear band [18,19,38,39,44]. The method is particularly attractive
for extensions to 3D since crack propagation in meshfree methods can be easier implemented as compared in
finite element and extended finite element methods [4,8,11,14,17,35,37,43].

7 Appendix: submatrices

Kuu
M M =

∫

�

BMuCBT
Mu d�, Kua

M M =
∫

�

BMuCBT
Ma d�

Kub
M M =

∫

�

BMuCBT
Mb d�, Kaa

M M =
∫

�

BMaCBT
Ma d�

Kab
M M =

∫

�

BMaCBT
Mb d�, Kbb

M M =
∫

�

BMbCBT
Mb d�

Kuu
MT =

∫

�

BMuCαT NT
T u d�, Kua

MT =
∫

�

BMuCαT NT
T a d�

Kub
MT =

∫

�

BMuCαT NT
T b d�, Kau

MT =
∫

�

BMaCαT NT
T u d�

Kaa
MT =

∫

�

BMaCαT NT
T a d�, Kab

MT =
∫

�

BMaCαT NT
T b d�

Kbu
MT =

∫

�

BMbCαT NT
T u d�, Kba

MT =
∫

�

BMbCαT NT
T a d�

Kbb
MT =

∫

�

BMbCαT NT
T b d�, Kuu

T T =
∫

�

BT uDBT
T u d�

Kua
T T =

∫

�

BT uDBT
T a d�, Kub

T T =
∫

�

BT uDBT
T b d�

Kaa
T T =

∫

�

BT aDBT
T a d�, Kab

T T =
∫

�

BT aDBT
T b d�

Kbb
T T =

∫

�

BT bDBT
T b d� (22)

Fu
M =

∫

�

NMub d� +
∫

�t

NMu t̄ d�

Fa
M =

∫

�

NMab d� +
∫

�t

NMa t̄ d�, Fb
M =

∫

�

NMbb d� +
∫

�t

NMb t̄ d�

Fu
T =

∫

�

NT uQ d� +
∫

�q

NT u q̄ d�, Fa
T =

∫

�

NT aQ d� +
∫

�q

NT a q̄ d�

Fb
T =

∫

�

NT bQ d� +
∫

�q

NT bq̄ d� (23)
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