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Abstract For the direct incorporation of micromechanical information into macroscopic boundary value
problems, the FE2-method provides a suitable numerical framework. Here, an additional microscopic bound-
ary value problem, based on evaluations of representative volume elements (RVEs), is attached to each Gauss
point of the discretized macrostructure. However, for real random heterogeneous microstructures the choice
of a “large” RVE with a huge number of inclusions is much too time-consuming for the simulation of complex
macroscopic boundary value problems, especially when history-dependent constitutive laws are adapted for
the description of individual phases of the mircostructure. Therefore, we propose a method for the construction
of statistically similar RVEs (SSRVEs), which have much less complexity but reflect the essential morpholog-
ical attributes of the microscale. If this procedure is prosperous, we arrive at the conclusion that the SSRVEs
can be discretized with significantly less degrees of freedom than the original microstructure. The basic idea
for the design of such SSRVEs is to minimize a least-square functional taking into account suitable statistical
measures, which characterize the inclusion morphology. It turns out that the combination of the volume fraction
and the spectral density seems not to be sufficient. Therefore, a hybrid reconstruction method, which takes into
account the lineal-path function additionally, is proposed that yields promising realizations of the SSRVEs. In
order to demonstrate the performance of the proposed procedure, we analyze several representative numerical
examples.

Keywords Numerical homogenization · Random microstructure · Statistically similar RVE ·
Lineal-path function · Spectral-density · Finite plasticity

1 Introduction

Many modern engineering applications make use of advanced high-strength steels due to their high ductility
and strength. In automotive construction, for instance, the reduction of weight in addition to an enhanced crash
safety can be achieved by deploying these steels. The advantageous macroscopic material behavior is mainly
governed by a complex interplay between the individual constituents at the microscale. However, the interac-
tions of the individual phases of the micro-heterogeneous composites could lead to complicated macroscopic
hardening effects. Furthermore, macroscopic failure analysis becomes sophisticated because failure initiation
at the microscale usually appears already before a macroscopic failure may be observed.
For the computer simulation of structural problems, where such random heterogeneous materials are used at
the microscale, two-scale modeling approaches are suitable algorithmic tools in order to capture the essential
microscopic phenomena. In general, a sufficiently large section of the microscale, which acts here per defini-
tion as a representative volume element (RVE), is used for the approximation of the random microstructure.
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This RVE is attached to each point of the macroscale. The numerical treatment of this approach is known
as the direct micro-macro-transition procedure, the multilevel finite-element method or the FE2-method, see
e.g. Smit et al. [27], Brekelmans et al. [4], Miehe et al. [15–17], Schröder [22] and Geers et al. [7]. In this
framework, a microscopic boundary value problem, where the geometry is characterized by RVEs, is solved
at each integration point of the discretized macroscopic boundary value problem. Basic ideas for the direct
micro-macro-transition approach with the application to DP-steels taking into account eigenstress distributions
are given in Schröder et al. [23]. The main drawbacks of direct micro-macro approaches are the high compu-
tation time and the large amount of memory needed, when we deal with complex RVEs. Unfortunately, this
is usually the case for micro-heterogeneous steels as e.g. DP-steels, when a substructure of a real micrograph
serves as the RVE. In order to circumvent these drawbacks, the construction of statistically similar representa-
tive volume elements (SSRVEs), which are characterized by a much less complexity than a usual RVE, seems
to be promissing.

Povirk [21] proposed a method for the construction of simplified RVEs as an approximation for a compos-
ite consisting of a matrix and randomly distributed equal circular inclusions. Here, a least-square functional
has to be minimized, which compares the spectral densities of the original microstructure with the one of the
simplified RVE. It should be noted that the spectral density is strongly correlated with the two-point probability
function, cf. Zeman [33]. Further statistical measures are various scalar-valued parameters, n-point probability
functions, lineal-path functions, and others, see Torquato [29].

Basic ideas for the procedure proposed here are to use spline approximations for the inclusion geometries
and to consider a series of statistical measures in order to construct suitable SSRVEs. These SSRVEs should be
able to approximate random inclusion-matrix microstructures in the sense that they yield similar macroscopic
stress–strain curves compared with the ones obtained by the usage of large RVEs. The SSRVEs are obtained by
minimizing least-square functionals, which compare the statistical measures of a given random microstructure
with the ones of the SSRVE, cf. Balzani et al. [2]. A minimization algorithm for the resulting non-smooth opti-
mization problem is proposed in Balzani et al. [1]. There, also the influence of the volume fraction, the specific
internal surface density and the specific integral of mean curvature is compared with the impact of the spectral
density. Obviously, it turns out that the simple scalar-valued measures are not sufficient for the description of
the inclusion phase morphology. Although the spectral density captures directional-dependent information, it
does not lead to satisfying results. Therefore, in this contribution, we improve the SSRVE construction method
by restraining the parameterization process and by including further statistical information. It is shown that
the additional incorporation of the lineal-path function provides significant improvements with respect to the
mechanical representability of the SSRVEs.

The paper is organized as follows. First, the direct micro-macro modeling approach is shortly recapitulated
and aspects for efficient computations of the macroscopic effective tangent moduli are explained. Section 3
provides a detailed description for the statistical measures related with the analysis performed here and explains
how the numerical calculation of the measures can be improved. In Sect. 4, the method for the construction
of SSRVEs is described, where also technical details for the construction of periodic unitcell type SSRVEs
are given. Section 5 analyzes the influence of the spectral density and the lineal-path function with respect
to the mechanical response of the resulting SSRVEs and provides a comparative analysis with respect to
the mechanical response for macroscopic boundary value problems, whereas the last section concludes the
paper.

2 Direct micro-macro modeling

In the computational two-scale homogenization procedure, we attach at each Gauss point of the discretized
macroscopic boundary value problem a RVE, representing the underlying microstructure. Thus, we need no
explicit constitutive equations for the description of the material behavior at the macroscale. This is given
by volume averages of the first Piola-Kirchhoff stresses performed with respect to the RVE. Furthermore,
the deformation of the RVE is driven by some energetically consistent boundary conditions, derived from
the well-known Hill condition. In order to achieve a quadratic convergence within a Newton-Raphson iter-
ation scheme for the macroscopic boundary value problem, a consistent linearization of the macroscopic
first Piola-Kirchhoff stresses have to be performed, taking into account the discretized fluctuations on the
RVE.



Approximation of random microstructures by periodic statistical 977

2.1 Deformation gradients and stresses at different scales

Let B ⊂ R
3 denote the body of interest at the microscale in its reference configuration at time t = t0, param-

eterized in X , wherein R
3 is the Euclidian three-dimensional space. The actual configuration is denoted by

S ⊂ R
3, parameterized in x at a fixed time t ∈ R+. Concentrating on the Boltzman continuum theory, the

deformation of the body can be interpreted as the translational motion of material points. The non-linear,
continuous, and one-to-one transformation ϕ(X, t) : B → S at time t ∈ R+ maps points X ∈ B of the micro-
scopic reference configuration onto points x ∈ S of the actual microscopic configuration. For the description
of deformations, we define the microscopic deformation gradient

F(X) := Grad[ϕt (X)], (1)

with J (X) = det[F(X)] > 0. The associated work-conjugated stress measure is the first Piola-Kirchhoff stress
tensor P , from which the microscopic Cauchy stresses and second Piola-Kirchhoff stresses can be computed
by

σ = 1

J
P FT and S = F−1 P, (2)

respectively. At the macroscale, we use analogous notations and use overlined characters to identify macro-
scopic quantities, then we consider the transformation map ϕ(X, t) : B → S with the macroscopic physical
bodies B and S in the reference and in the actual configuration, respectively. The macroscopic deformation
gradient is defined by

F(X) := Grad[ϕt (X)], (3)

with J (X) = det[F(X)] > 0. Furthermore, the macroscopic Cauchy- and second Piola-Kirchhoff stresses are
computed by

σ = 1

J
P F

T
and S = F

−1
P . (4)

2.2 Modeling of the individual phases at the microscale

For solving the boundary value problem on the microscale, constitutive equations for the individual phases on
the microscale are required. During the deformation process, the composite exhibits large plastic deformations.
Due to the lack of experiments, we apply an isotropic material behavior for both phases, the metallic matrix
and the metallic inclusion. It seems to be reasonable to use an isotropic finite elastoplasticity formulation based
on the multiplicative decomposition of the deformation gradient F = Fe F p in elastic Fe and plastic F p

parts, see Kröner [10], Lee [12]. For details of the thermodynamical formulation as well as for the numerical
treatment we refer to Simo [24,25], Simo and Miehe [26], Peric et al. [20], Miehe and Stein [18], and Miehe
[14]. In the sequel, we provide a brief summary of the used framework. The basic kinematical quantities are

b = F FT = Fe bp FeT , bp = F p F pT , and be = Fe FeT, (5)

with the spectral decomposition of the elastic finger tensor be = ∑3
A=1(λ

e
A)

2nA ⊗ nA. Herein, nA denotes
the eigenvectors and λe

A the eigenvalues of be. The stored energy function is assumed to be of the form
ψ = ψe(be)+ ψ p(α). Following Simo [25], we use a quadratic free energy function

ψe = λ

2

[
εe

1 + εe
2 + εe

3

]2 + μ
[
(εe

1)
2 + (εe

2)
2 + (εe

3)
2] (6)

in terms of the logarithmic elastic strains εe
A = log(λe

A); λ and μ are the Lamé constants. In order to model the
individual phases with an exponential-type hardening, as in Voce [31], superimposed with a linear hardening,
we apply the well-known function

ψ p = y∞α − 1

η
(y0 − y∞) exp(−ηα)+ 1

2
h α2 (7)
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with the equivalent plastic strains α. However, the conjugated stress-like variable, defined as β := ∂αψ
p, is

β = y∞ + (y0 − y∞) exp(−ηα)+ h α. (8)

This hardening function fits appropriately the experimental yield curves of purely ferritic and purely mar-
tensitic steels that have been used in the analysis here. Herein, y0 is the initial yield strength, y∞ and η describe
an exponential hardening behavior and h is the slope of a superimposed linear hardening. The yield criterion
reads

φ = ||devτ || −
√

2

3
β ≤ 0 with τ =

3∑

A=1

τA nA ⊗ nA and τA = ∂ψe

∂εe
. (9)

The flow rule for the plastic quantity is integrated using an implicit exponential update algorithm, which
preserves plastic incompressibility (Weber and Anand [32]; Simo [25]; Miehe and Stein [18]). The first Piola-
Kirchhoff stresses on the microscale are computed by P = τ F−T , cf. (2). For the numerical implementation,
we follow the algorithmic formulation in a material setting as proposed in Klinkel [9].

2.3 Direct micro-macro homogenization scheme

On the microscale, we consider a RVE, parametrized in X ∈ B, where the microscopic field quantities have to
be determined. The governing field equation is the balance of linear momentum for the quasi-static case, i.e.
Div[P] = 0, where we have neglected the body forces on this scale.

For the direct (algorithmic) micro-macro transition, we must define relations between the deformation
gradient and the first Piola-Kirchhoff stresses at the micro- and macroscale. In general, the macroscopic
deformation gradient F and the macroscopic first Piola-Kirchhoff stresses P are defined by suitable surface
integrals

F = 1

vol(RVE)

∫

∂B
x ⊗ N dA and P = 1

vol(RVE)

∫

∂B
t0 ⊗ X dA, (10)

with the outward unit normal N and the traction vector t0 on the boundary ∂B of the RVE. Taking advantage
of some suitable technical assumptions for our applications, the macroscopic quantities can also be computed
by simple volumetric averages, i.e. F = ∫

B F dV /vol(RVE) and P = ∫
B P dV /vol(RVE).

The boundary conditions of the boundary value problem at the microscale are derived from the macro-
homogeneity condition, also referred to as Hill–condition, see Hill [8]. It postulates that the macroscopic
power is equal to the volumetric average of the microscopic power, i.e.

P · Ḟ = 1

vol(RVE)

∫

B
P · Ḟ dV . (11)

Possible boundary conditions are (i) the stress boundary condition, (ii) the linear boundary displacements, and
(iii) periodic boundary conditions:

(i) t0 = P N on ∂B, (ii) x = FX on ∂B (12)

and

(iii) x = FX + w̃, w̃+ = w̃−, t+0 = −t−0 on ∂B. (13)

Note that w̃ denotes fluctuations of the displacement field and that (•)+, (•)− means quantities at period-
ically associated points of the RVE-boundary, for further details we refer to Miehe et al. [17], Schröder [22]
and the references therein. The basic idea of the FE2-method is that a microscopic boundary value problem is
solved at each Gauss point of a macroscopic boundary value problem. Focussing on linear boundary displace-
ments (ii) and periodic boundary conditions (iii), we additively split the microscopic deformation gradient in
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the constant macroscopic part and a solely fluctuating part, i.e. F = F + F̃, with F̃ = Grad[w̃(X)]. At the
microscale, we consider the weak form and its linear increment for a typical finite element Be:

Ge(F̃, δ F̃) =
∫

Be

δ F̃ · P dV and �Ge(F̃, δ F̃,�F̃) =
∫

Be

δ F̃ · (A : �F̃) dV, (14)

with the microscopic nominal moduli A := ∂F P . The fluctuation parts of the actual, virtual, and incremental
deformation gradient F̃, δ F̃, and�F̃, respectively, can be approximated by using standard ansatz functions
for the fluctuations. Thus, we get the approximations F̃ = B d̃, δ F̃ = B δ d̃,�F̃ = B�d̃, with the standard
B-matrix B and the discrete nodal fluctuations for the displacements d̃, virtual displacements δ d̃, and incre-
mental displacements �d̃. After the standard assembling procedure, we obtain the discrete representation of
the linearized problem

δ D̃T {K� D̃ + R} = 0, (15)

with the global vectors of incremental fluctuations D̃, residual forces R, and the global microscopic stiffness
matrix K . In each iteration, the actual increments of displacement fluctuations are computed from (15) and
updated, i.e. D̃ ⇐ D̃+� D̃, until |R| < tol, where tol represents the algorithmic tolerance. When a converged
solution of the microscopic BVP is obtained, the volume average of the resulting microscopic stresses P is
transferred to the macroscale. Now, we have to solve the BVP on the macroscale, which is quite standard
and therefore not reflected here. Nevertheless, one crucial point has to be solved during this homogenization
step in order to achieve a quadratic convergence for the solution procedure of the discrete macroscopic BVP
within a classical Newton-Raphson iteration scheme. We have to compute the algorithmic consistent macro-
scopic (overall) incremental response of the material nominal moduli A := ∂F P , which enters the incremental
relation �P = A : �F. The overall moduli are computed by

A = 〈A〉 − 1

vol(RVE)
LT K−1 L (16)

with

〈A〉 = 1

vol(RVE)

∫

B
A dV and L =

nele

A
e = 1

∫

Be

BT
A dV, (17)

where the first term denotes the classical Voigt bound and the second term acts as a softening term. For details
on deriving the consistent macroscopic moduli, see Miehe et al. [15] and Schröder [22], in this context see
also Miehe et al. [17], Temizer and Wriggers [28].

3 Statistical measures for microstructure characterization

Considering micro-heterogeneous materials, the continuum mechanical properties at the macroscale are char-
acterized by the morphology and by the properties of the particular constituents at the microscale. In this
contribution, microstructures are considered which consist of an inclusion phase embedded in a matrix phase.
The material behavior of the individual constituents is assumed to be known and obtained by experiments on
homogeneous specimens made of single-phase materials. Then, the description of the microstructure is based
on statistical considerations, see the basic literature in e.g. Beran [3] and Kröner [11]. Due to the fact that we
focus on two-phase microstructures, we concentrate on measures characterizing the inclusion phase, if it is not
specified otherwise, since the measures computed for the matrix will be dependent in general.

3.1 Basic parameters

For the description of microstructure morphology, there exist four basic parameters, see e.g. Ohser and
Mücklich [19]. In the general three-dimensional case, the first two parameters are defined by

P(i)
V := V(i)

V
and P(i)

S := S(i)
V
, (18)
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with the volume V(i) of the phase i and the interface area S(i) separating phase i from the residue of the
microstructure. In order to obtain specific quantities, the division by the total volume of the considered mate-
rial segment V is taken into account. These two parameters basically represent the volume fraction (or phase
fraction) and the specific internal surface density. It is emphasized that the volume fraction is an essential prop-
erty which should be matched by all considered RVEs, whereas the specific internal surface density provides
information with respect how fine an inclusion phase is distributed. The third parameter, the specific integral
of mean curvature

PM := 1

2V

∫

S

(

min
β

[κ] + max
β

[κ]
)

ds, (19)

is defined by the integral over the surface S between the individual phases, κ := κ(β) denotes the curvature
and β the direction in the tangential plane. The fourth parameter

PK := 1

V

∫

S

min
β

[κ] max
β

[κ] ds (20)

is the specific integral of total curvature. The latter two parameters provide in some sense statistical information
concerning the degree of curvature of the inclusion phase. Although these four parameters are widely used
for the description of microstructures, they are obviously not able to cover direction-dependent information
since they are scalar valued. This is required for the representation of oriented inclusions leading to an overall
anisotropy. It is shown in Balzani et al. [1] that the basic parameters alone are not sufficient for the construction
of statistically similar RVEs. Therefore, statistical measures of higher order are required.

3.2 n-point probability functions

Originally, n-point probability functions have been used for the determination of effective dielectric constants
in two-phase random media. These functions have been introduced by Brown [6], and important applications
with respect to effective elastic moduli are given in e.g. Beran [3].
Let D(i)(α) denote the domain occupied by the considered phase i in the particular sample α, then the indicator
function reads

χ(i)(x, α) =
{

1, if x ∈ D(i)(α),
0, otherwise,

(21)

with the general property for n phases
∑n

i=1 χ
(i)(x, α) = 1, for every point x. The general n-point probability

function, which is also referred to as n-point correlation function, is defined by the ensemble average

S(1,...n)n (x1, . . . xn) = χ(1)(x1, α)χ(2)(x2, α) . . . χ(n)(xn, α), (22)

which represents the probability that the points x1, . . . xn are located in the phases D(1), . . . D(n). With respect
to two-phase microstructures, the main interest concerns the description of the inclusion phase, then one
considers the representation

S I
n (x1, . . . xn) = χ I (x1, α)χ I (x2, α) . . . χ I (xn, α), (23)

characterizing the probability that all n points x1, . . . xn are located in the inclusion phase. In general, it is
possible, to compute the n-point probability function for one phase in terms of the other one, cf. Torquato
& Stell [30]. Generally, a microstructure can be completely described if the set of all probability functions
S(1,...n)1 ,S(1,...n)2 , . . .S(1,...n)n for n → ∞ is taken into account. This is of course impossible to be computed
practically since it represents an infinite number of measures calculated for an infinite number of multiple posi-
tions. Therefore, we focus on some “lower”-order probability functions in order to obtain sufficient information
for the microstructure characterization.

The probability function of first order (one-point probability function) is given by

S(i)1 (x) = χ(i)(x, α), (24)
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a b c

Fig. 1 a Multi-phase microstructure and illustration of the b one-point probability function, and c of the two-point probability
function

representing the probability that a point x is placed in phase i . The one-point probability function coincides with
the first basic parameter, the phase fraction. For an illustration of the calculation of the one-point probability
function for a multi-phase material see Fig. 1b.

If the binary image of N = Nx × Ny pixels of one representative sample of an ergodic inclusion-matrix
microstructure is analyzed, then the one-point probability function for the inclusion phase is computed by

PV = S I
1 = 1

Nx Ny

Nx −1∑

p=0

Ny−1∑

q=0

χ I (p, q) (25)

wherein p and q represent the pixel positions in the binary image. Of course, the evaluation of this summation
leads to the exact value of first-order probability since all possible positions are evaluated. However, in most
cases it is more efficient to only evaluate Eq. (25) at a sufficient number Nr < N of random positions and
then the equation

S I
1 = lim

Nr →N

⎡

⎣ 1

Nr

Nr
∑

j=0

χ I (p j , q j )

⎤

⎦ (26)

holds. Herein, the pixel positions for each random generation j are denoted by p j and q j .
The second-order function (two-point probability or autocorrelation function) is generally given by the

ensemble average

S(1,2)2 (x1, x2) = χ(1)(x1, α)χ(2)(x2, α) (27)

over all samples α. This characterizes the probability that a point x1 is located in phase 1 and point x2 in phase
2. With respect to statistically homogeneous two-phase materials, where the position itself of two points is
not important, but rather the relative position of one point to another, it is more reasonable to compute the
alternative form

S I
2 ( y) = χ I (x(α), α)χ I (x(α)+ y, α). (28)

as the ensemble average over all samples α. This form does not depend on the global position of two points but
rather on the relative position. It describes the probability that the points x(α), which is allowed to vary from
sample to sample, and x(α)+ y are located in the inclusion phase, cf. Fig. 1c. When evaluating the two-point
probability function for the inclusion phase in a binary image of an ergodic two-phase microstructure with a
number of N = Nx × Ny pixels, the discrete representation

S I
2 (m, k) = 1

(pM − pm)(qK − qk)

pM−1∑

p=pm

qK −1∑

q=qk

χ I (p, q)χ I (p + m, q + k) (29)

with the summation limits

pm = max[0,−m], pM = min[Nx , Nx − m]
qk = max[0,−k], qK = min[Ny, Ny − k] (30)
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can be applied. Again, a more efficient method for the computation of the second-order probability function
with a tolerable deviation is to evaluate only a suitable number of Nr < N random points. For periodic
microstructures, it is sufficient to consider only the periodic unitcell, then the two-point probability function
is computed by

S I
2 (m, k) = 1

Nx Ny

Nx∑

p=1

Ny∑

q=1

χ I (p, q)χ I (p + m, q + k). (31)

For statistically homogeneous and isotropic microstructures, the n-point probability function is invariant
with respect to the orientation of y, and only the magnitudes play a role. Then, the second-order probability
function reduces to S I

2 (y), wherein y is the length of the translational vector y. Then, if the two-point proba-
bility function is computed for one representative sample of an ergodic microstructure by evaluating random
pairs of points in a discrete sense, we consider the representation

S I
2 (xmk) = 1

Nr

Nr
∑

j=1

χ I (p j , q j )χ
I (p j + m j , q j + k j ), (32)

with a reasonably defined difference magnitude xmk := xmk(m j , k j ) for vectors with integer coordinates and
a number of random evaluations Nr .

3.3 Spectral density

An alternative approach for the characterization of microstructures, which is strongly correlated with the two-
point probability function, is to compute the (discrete) spectral density for the inclusion phase of a binary
image. For the calculation of the spectral density, we consider the indicator function defined in Eq. (21) and
compute the (discrete) Fourier transform

F I (m, k) =
Nx∑

p=1

Ny∑

q=1

exp

(
2 i π m p

Nx

)

exp

(
2 i π k q

Ny

)

χ I (p, q). (33)

The maximal numbers of pixels in horizontal and vertical direction in the considered binary image are
again given by Nx and Ny . Then, the discrete spectral density is computed by the multiplication of the discrete
Fourier transform with its conjugate complex

PSD(m, k) := 1

2π Nx Ny
|F(m, k)|2. (34)

It is remarked that a strong correlation with the two-point probability function exists, since it can also be
computed from the Fourier transform

S I
2 (m, k) = 1

Nx Ny
(F I )−1[F I [χ I (m, k)]F I [χ I (m, k, α)]], (35)

cf. Zeman [33]. Herein, F I and (F I )−1 denote the discrete- and the inverse discrete Fourier transform fol-
lowing Eq. (33). This means that the spectral density covers in some sense information associated with the
two-point probability function. However, direct information concerning the periodicity of a given microstruc-
ture is provided by the spectral density; thus, this measure may be of particular interest when the challenge
is to simplify a (in general non-periodic) real microstructure by a periodic one. A main advantage of using
the spectral density compared to the two-point probability function is that there exist a variety of efficient
algorithms for the computation of the discrete Fourier transform as for instance the “FFTW” library, which
stands for “Fastest Fourier Transform in the West”, developed at the Massachusetts Institute of Technology by
M. Frigo and S.G. Johnson.
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3.4 Lineal-path function

Another statistical measure of higher order for the characterization of microstructure is the lineal-path function
(also referred to as linear-path function), see Lu and Torquato [13]. This measure describes the probability
that a complete line segment −−→x1x2 is located in the same phase. This is a rather practicable measure since its
computation can be performed in an efficient way. For its mathematical description, we consider the modified
indicator function

χ(i)(
−−→x1x2, α) =

{
1, if −−→x1x2 ∈ D(i)(α),
0, otherwise,

(36)

simply checking if a whole line segment is located in the domain D(i) of phase i . Then, the general definition
of a lineal-path function demands the computation of the ensemble average, and we get the definition

P(i)
L P(

−−→x1x2) = χ(i)(
−−→x1x2, α), (37)

compare the illustration shown in Fig. 2a,b.
For statistically homogeneous microstructures, the origin of the line segment vanishes, and the only depen-

dency is on the orientation and length of the line segment. In this case, we are able to reformulate the alternative
definition

P(i)
LP( y) = χ(i)(

−−−−−−−−−→
x(α)x(α)+ y, α), (38)

wherein y denotes a vector representing the line segment −−→x1x2 independent on its point of application. If the
microstructure to be analyzed is statistically homogeneous and statistically isotropic the definition reduces
again to P(i)

LP(y), wherein y is the length of the line segment vector y. An important extreme value of P(i)
LP(y) is

lim
y→0

P(i)
LP(y)=PV , showing that the lineal-path function becomes the phase fraction for vanishing magnitudes y.

For the calculation of lineal-path functions in two-dimensional discrete representations (binary images) of
statistically homogeneous and ergodic inclusion-matrix microstructures, we analyze only one representative
sample α and consider the modified definition for the indicator function

χ I ( y) =
{

1, if
−−−−−→
x(x + y) ∈ DI ,

0, otherwise,
(39)

which is strongly associated with the form given in Eq. (38). For the discrete case, the lineal-path function is
defined by

P I
LP(m, k) = 1

(pM − pm)(qK − qk)

pM−1∑

p=pm

qK −1∑

q=qk

χ I ( ỹ) (40)

with the difference vector ỹ = [p + m, q + k]T and the summation limits

pm = max[0,−m], pM = min[Nx , Nx − m]
qk = max[0,−k], qK = min[Ny, Ny − k]. (41)

a b c

Fig. 2 a Multi-phase microstructure, b illustration of some representative lineal-path elements and c a typical template for the
analyzed line directions βL = 0◦, 45◦, 90◦, 135◦
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For periodic unitcells, the lineal-path function is computed by

P I
LP(m, k) = 1

Nx Ny

Nx∑

p=1

Ny∑

q=1

χ I ( ỹ). (42)

Efficient procedures for the calculation of the lineal-path function can be obtained by defining suitable
templates, cf. Zeman [33]. Such a template consists of Tx × Ty pixels, wherein each pixel characterized by the
coordinate pair (m, k) has either the value one or zero. The value one means that the associated line segment
defined by the difference vector which ends in this coordinate pair (m, k) is part of the analysis. One example
for a template is shown in Fig. 2c, where only the line segments in the horizontal -, vertical - and diagonal
directions are analyzed. Then, each line segment defined by the template is compared with the original image
for each admissible position (p, q). For the case under investigation here, the lineal-path function is invariant
with respect to reflections of line segments. Hence, the lower half of the template shown in Fig. 2c is unneces-
sary. For binary images, each line segment to be analyzed has to be defined in an integer manner, which means
that by given difference vector y a unique discrete line segment has to be constructed in the template. For this
purpose, the classical Bresenham algorithm (Bresenham [5]) can be used.
If the complete lineal-path function has to be computed, the template needs to have the double size of the
original binary image, e.g.

Tx = 2 Nx − 1, Ty = Ny, (43)

and each pixel in the template needs to have the value one. Then, all possible line segments are analyzed.
For the example shown in Fig. 2c, the original binary image has to have a minimal size of 11 × 11 pixels.
Of course, in most cases it is not necessary to compute a complete lineal-path function. The first possibility
to improve the efficiency of the algorithm is to reduce the size of the template according to a characteristic
maximal inclusion size. A second possibility is to reduce the number of analyzed line segments; in most cases
it will be sufficient to analyze only a certain set of line orientations. As a third possibility, it can be remarked
that it may not be necessary to evaluate the indicator function for all positions in the original image. It may
be sufficient to place the line segments defined in the template at a random position and repeat this process a
number of Nr times, then the discrete form of the lineal-path function reads

P I
LP(m, k) = 1

Nr

Nr
∑

j=1

χ I ( ỹ j ) (44)

with the difference vector ỹ j = [p j + m, q j + k]T . The random positions represented by the coordinates
(p j , q j ) have to fulfill

max[0,−m] ≤ p j ≤ min[Nx , Nx − m] − 1
max[0,−k] ≤ q j ≤ min[Ny, Ny − k] − 1 (45)

for random microstructures and

1 ≤ p j ≤ Nx and 1 ≤ q j ≤ Ny (46)

for periodic unitcells. The sufficient number of random points Nr that have to be evaluated can be computed
from standard statistics.

4 Construction of statistically similar RVEs

In most cases, a usual RVE for a random inclusion/matrix-microstructure is determined by the smallest possible
sub-domain which is still able to represent the macroscopic material behavior in the context of direct micro-
macro approaches. Although these RVEs are the smallest possible sub-structures, they could be too complex
for efficient calculations. Therefore, the construction of statistically similar RVEs, which are characterized by
a lower complexity than the smallest possible random sub-structures, is proposed here for the reduction of
computational costs. The basic idea in this context is to replace a RVE with an arbitrary complex inclusion
morphology by a periodic one composed of optimal periodically arranged unitcells, see Fig. 3. Then, the main
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a b

Fig. 3 Schematic illustration of the basic concept: a complex (non-periodic) RVE for a two-phase microstructure with arbitrary
inclusion morphology and b simplified periodic microstructure with SSRVE

effort is that in FE2 calculations only the periodic unitcell needs to be considered as a RVE provided that
periodic boundary conditions are applied.

A method for the construction of such periodic structures is proposed for the special case of randomly
distributed circular inclusions with constant equal diameters in Povirk [21]. The underlying idea there is to find
the positions of circular inclusions with given diameter such that a least-square functional taking into account
the side condition that the spectral density of the periodic RVE should be similar to one of the non-periodic
microstructure is minimized. Motivated by this approach, we consider the objective function

L(γ ) =
nsm∑

L=1

ωi L(L)SM(γ ) → min, (47)

cf. Balzani et al. [2], which has to be minimized. A number of nsm different statistical measures describing the
inclusion morphology are taken into account by incorporating suitable least-square functionals. These func-
tionals take into account the squares of differences in the individual statistical measures Preal

(L) and PSSRVE
(L) (γ )

computed for a real (complex) microstructure and for the SSRVE. The weighting factor ω levels the influence
of the individual measures. Due to the discrete character of the statistical measures entering the minimization
problem (47), the energy surface is not smooth and therefore, no gradient-based optimization method can be
applied. Therefore, the moving-frame algorithm proposed in Balzani et al. [1] is used. For the description of
a general inclusion phase morphology in the SSRVE, we assume a suitable two-dimensional parameterization
controlled by the vector γ . In this work, splines are used for the parameterization; thus, the coordinates of the
sampling points enter the general vector γ

γ := [x̂1 , ŷ1 , x̂2 , ŷ2, . . . , x̂nsp, ŷnsp]T (48)

with the number of sampling points nsp. Due to the fact that periodic boundary conditions have to be applied,
the inclusions have to be constructed appropriately. For this purpose, the construction procedure is as follows:
first, the number of inclusions and the number of sampling points are defined. Then, random positions of the
sampling points are computed in a specified space ((Nx + 2 f Nx )× (Ny + 2 f Ny)) where a certain spatial
overlap factor f with respect to the SSRVE space of interest (Nx × Ny) is taken into account. This means that
the sampling point coordinates have to match

xi ∈ [− f Nx , Nx + f Nx ] , yi ∈ [− f Ny, Ny + f Ny] for i = 1 . . . nsp. (49)

Here, we set the overlap factor to f = 0.1 and consider a SSRVE resolution of Nx × Ny = 60 × 60
pixels. The resulting splines are shown exemplarily in Fig. 4a as dark splines. Then, the SSRVE is periodically
expanded by inserting the generated splines at the periodic positions, cf. the lighter splines in Fig. 4a. In order to
preclude inclusions that intersect with themselves or with others, this construction procedure is repeated until
a permitted unitcell is obtained and a resulting binary image of the SSRVE as shown in Fig. 4b is constructed.

If intersections of splines with themselves are not excluded, an unreasonable inclusion morphology leading
to degenerated finite-element discretizations is generated if one spline consists of more than three sampling
points. Convex inclusions are obtained if a spline has less than four sampling points.

As we have seen in preceding investigations (Balzani et al. [1,2]), the spectral density seems to be a suitable
measure covering information concerning periodicity as well as macroscopic anisotropy, and it is relatively
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a b

Fig. 4 Periodic unitcell construction based on splines: a required splines with the sampling points and b resulting binary SSRVE
image (center) with the periodic expansion (brightend)

efficient to be computed compared to the complete two-point probability function. There, it has also been
observed that simple basic parameters as the specific internal surface density and the specific integral of mean
curvature are not suitable for the characterization of a complex microstructure. However, the phase fraction
plays a key role and hence, we choose this statistical measures as well as the spectral density to be included in
the objective function.

As already mentioned in Sect. 3, for an exact description of the microstructure one would need to take into
account all n-point probability functions for n = 1, . . .∞. But even if “only” a three-point probability function
is considered as an additional measure, then the procedure will likewise be very expensive to be computed
since the three-point probability function has a much higher dimension of solution space than the two-point
probability function. Therefore, the lineal-path function may be a further reasonable statistical measure since
it has the same solution space as the two-point probability function, and it covers further information with
respect to the type of connectivity of points and therefore the connectedness of inclusions. This information
is rather not covered by the spectral density. Conversely, information regarding relative distances between the
inclusions cannot be represented by the lineal-path function but is one of the main features of the spectral
density. In total, three different statistical measures are considered in this paper leading to the three individual
least-square functionals:

LV (γ ) :=
(

1 − PSSRVE
V (γ )

P real
V

)2

,

LSD(γ ) := 1
Nx Ny

Nx∑

m=1

Ny∑

k=1

(P real
SD (m, k)− PSSRVE

SD (m, k, γ )
)2
,

LLP(γ ) := 1
Nx Ny

Nx∑

m=1

Ny∑

k=1

(P real
LP (m, k)− PSSRVE

L P (m, k, γ )
)2
.

(50)

It is remarked that for the computation of the statistical measures PSD and PLP periodic expansions of the
SSRVE are considered by putting as much SSRVEs as needed against each other periodically, cf. the brightened
areas in Fig. 4b.

5 Comparative analysis

In order to check the performance of the proposed method and to analyze the influence of the individual
statistical measures, SSRVEs are constructed in this section approximating a virtually generated target micro-
structure. Then, the mechanical response of the SSRVEs is compared in simple virtual experiments with
the response of the target structure. To provide quantitative estimations for the accuracy of the individual
considered least-square functionals, a mechanical error analysis is performed.

Limitations: In the following boundary value problems, we enforce plain stress conditions at each point of
the microstructure. Furthermore, we assume that the individual phases can be described within the framework
of the isotropic J2-plasticity theory. Both assumptions are only approximations of the real material behav-
ior. In a variety of micro-heterogeneous problems, the three-dimensional nature of the inclusion morphology
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must be taken into account in order to capture the realistic macroscopic material behavior. However, from our
experience with the analysis of thin steel plates the crucial plain stress assumption leads often to appropriate
results when comparing with experimental data. Due to the fact that only uniaxial tension tests of the individual
ferritic and martensitic steels have been available, the purely isotropic J2-plasticity model was used.

5.1 Setup of virtual experiment

The virtual target microstructure is obtained by the Boolean method, where a certain two-dimensional space
of interest is first completely filled with the inclusion phase. Then, ellipsoids with the semi-axis rx and ry of
predefined aspect ratios, here rx/ry = 14.3, and random semi-axis rx ∈ [3, 6]µm are randomly placed in the
space of interest. This process is stopped if a certain phase fraction of PV = 0.1872 is reached. The resulting
binary image is shown in Fig. 5a. Subsequently, the boundaries of the inclusion phase are smoothened, and a
finite-element discretization is automatically generated, see Fig. 5b.

Here, 14982 triangular finite elements with quadratic ansatz functions for the displacements are taken into
account. One main goal is to construct suitable SSRVEs that are characterized by a much less complexity than
the target structure and that lead to a very similar mechanical response. For the construction of the SSRVEs,
five different types are considered: Type I takes into account one inclusion with three sampling points, Type
II one inclusion with four sampling points, Type III two inclusions with three sampling points each, Type IV
two inclusions with four sampling points each, and Type V three inclusions with three sampling points each,
cf. Fig. 6. Please note that splines with three sampling points lead to convex inclusion morphologies.

For the mechanical error analysis, three different simple macroscopic virtual experiments are considered:
horizontal tension, vertical tension, and simple shear, cf. Fig. 7. FE2-simulations taking into account the target
structure at the microscale are compared with FE2-calculations focussing on the constructed SSRVEs. For
this purpose, microscopic boundary value problems where a discretization by triangular finite elements with
quadratic ansatz functions for the displacements are considered. Furthermore, plain stress conditions and peri-
odic boundary conditions are applied. The individual constituents at the microscale are modeled by the simple
J2-plasticity model using a von Mises type hardening law, which is described above. The material parameters
as given in Table 1 are used.

a b

Fig. 5 Steps for the generation of the target structure: a result of the Boolean method and b smoothened inclusion phase boundaries
with a section of the FE-discretization

Fig. 6 Illustration of the five considered SSRVE types. The dots mark the sampling points of the splines
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Fig. 7 Virtual macroscopic experiments of the pure matrix (ferrite) and inclusion material (martensite); at the microscale periodic
boundary conditions are used

Table 1 Material parameters of the single phases

Phase λ [MPa] μ [MPa] y0 [MPa] y∞ [MPa] η [–] h [–]

Matrix 118, 846.2 79, 230.77 260.0 580.0 9.0 70.0
Inclusion 118, 846.2 79, 230.77 1000.0 2750.0 35.0 10.0

This leads to a much higher initial yield stress in the inclusions compared with the matrix, see Fig. 7 for
the response of both constituents for the three virtual experiments. A similar behavior is usually observed for
e.g. advanced high-strength steels.

As comparative mechanical measures, we consider the relative errors rx , ry and rxy defined as the deviation
of the resulting macroscopic SSRVE stress response from the target structure response at each evaluation point
i for the three virtual experiments:

r (i)x = σ real
x,i − σ SSRVE

x,i

σ real
x,i

, r (i)y = σ real
y,i − σ SSRVE

y,i

σ real
y,i

, r (i)xy = σ real
xy,i − σ SSRVE

xy,i

σ real
xy,i

, (51)

where only values with non-vanishing denominator are taken into account. In addition to that, the average
errors for each experiment

r̃x,y,xy =
√
√
√
√ 1

nep

nep∑

i=1

[r (i)x,y,xy]2 with r (i)x,y,xy := r

(
i

n
�lmax/ l0

)

(52)

and the overall comparative measure

r̃∅ = 1

3

(
r̃x + r̃y + r̃xy

)
(53)

are taken into account for quantitative statements with respect to the performance of the individual SSRVEs.
The total number of evaluation points i is denoted by nep.
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Fig. 8 Target structure and discretization of the SSRVEs with corresponding relevant area of the spectral density (right hand
side) resulting from the minimization of L1

5.2 SSRVEs based on the volume fraction and the spectral density

As a first analysis, the spectral density is considered as the statistical measure describing the inclusion morphol-
ogy, because it provides information regarding periodicity and the relative distances between the individual
inclusions. Since also the phase fraction of the inclusions should reflect the one of the target structure, the
associated least-square functional is additionally taken into account. This leads to the overall objective function

L1(γ ) = ωV LV (γ )+ ωSD LSD(γ ) with ωV = ωSD = 1, (54)

wherein the individual least-square functionals are given by Eq. (50)1,2. The weighting factorsωV andωSD are
set to one. In order to end up in a more efficient optimization procedure, a relevant area of the spectral density
is defined. For this purpose, the complete spectral density of the target structure is computed and normalized
before optimization. Since the target structure consists of 200 × 200 pixels, the number of entries in the com-
plete spectral density is 200 × 200. Then, the spectral density is rebinned to the size 20 × 20, which seems to
be reasonable because the important characteristics of the spectral density are maintained by rebinning. For
a further enhancement of the numerical procedure, the minimal rectangular sub-area of the rebinned spectral
density is identified, where no entry higher than a predefined threshold value of 0.02 is placed outside of the
relevant area. Then only this rebinned relevant area of the spectral density with the size 4 × 12 enters the
least-square functional. Finally, the objective function (54) is minimized with respect to the sampling point
coordinates of the splines, which are assembled in γ , by using the moving-frame algorithm proposed in Balzani
et al. [1]. The resulting SSRVEs are automatically discretized in terms of the finite-element method and the
realizations shown in Fig. 8 are obtained.

It can be observed that the number of finite elements nele, that is required for a suitable discretization,
increases with increasing complexity of the SSRVE. Therefore, it seems that the number of required finite
elements serves as some kind of estimation for the complexity of the inclusion morphology. In addition to
that, the value of the computed minimum of the objective function is decreasing from L1 = 22.51 · 10−3 for
Type I to L1 = 0.84 · 10−3 for Type V. This is kind of obvious since an increasing complexity of the inclusion
morphology coincides more or less with an increase of the number of sampling points, which liberates the
optimization problem given in Eq. (47). For the visual comparison, the rebinned relevant areas of the spectral
density are provided on the right-hand side of the microstructure images. The spectral density of Type V
obviously matches the spectral density of the target structure more accurately than Type I. For the mechanical
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comparison of the SSRVEs with the target structure, the three virtual homogeneous experiments are calculated
using the FE2-scheme, and the stress–strain response shown in Fig. 8 is obtained. There, also the distribution
of the relative mechanical error versus the strain is given.

For a better quantitative comparative analysis, the average errors, together with their standard deviation,
and the overall mechanical comparative measures are computed and given in Table 2.

Table 2 Values of the objective function L1 and the errors r̃ using the SSRVEs shown in Fig. 8, ndof denotes the number of
global degrees of freedom of the finite-element discretization

SSRVE L1[10−3] LV [10−6] LSD[10−3] ndof r̃x [%] r̃y [%] r̃xy [%] r̃∅ [%]

I 22.51 0.80 22.50 2,254 8.44 ± 1.96 0.66 ± 0.22 0.95 ± 0.22 3.35
II 5.87 27.16 5.84 2,914 2.56 ± 1.29 0.54 ± 0.26 9.12 ± 3.40 4.07
III 2.98 0.30 2.98 2,962 2.43 ± 0.86 1.72 ± 0.40 5.06 ± 2.07 3.07
IV 1.17 0.80 1.17 3,402 1.14 ± 0.39 0.97 ± 0.44 4.38 ± 1.85 2.17
V 0.84 39.76 0.80 3,290 0.14 ± 0.15 0.09 ± 0.06 3.08 ± 1.24 1.10

Fig. 9 Results of the virtual experiments using the discretizations of the SSRVEs (Fig. 8) based on L1. On the left hand side the
Cauchy stresses are plotted versus strains, the right hand side shows the relative mechanical error
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First, it is observed that the order of magnitude of the least-square function regarding the phase fraction
LV is twice to four times lower than the one regarding the spectral density LSD. Since we are interested in
SSRVEs where the phase fraction matches very well with the phase fraction of the target structure, the choice
ofωV = ωSD = 1 seems to be reasonable. Second, it can be observed that with increasing complexity (SSRVE
Type I to Type V) the overall comparative error decreases in general, and Type V turns out to yield the best
mechanical correspondence to the response of the target structure. However, when analyzing the individual
average errors for the three virtual experiments a relatively high value of r̃xy = 3.08 is obtained for the simple
shear test. Although the other two experiments of SSRVE Type V fit rather well the response of the target
structure, the simple shear test is only partly represented accurately. This is also shown by the significantly
deviating stress–strain curve shown in Fig. 9. In turn, the rather simple SSRVE Type I provides the best repre-
sentation of the simple shear test, but the other experiments are reflected less accurately such that the overall
comparative measure is r̃∅ = 3.35.

We conclude that possibly not enough statistical information is covered by the statistical measures con-
sidered in L1. Therefore, the subsequent section focusses on the additional incorporation of the lineal-path
function.

5.3 Additional incorporation of the lineal-path function

Above, statistical measures have been taken into account that cover information regarding the phase fraction
and the frequency of two points. The type of connectivity between two points is not captured yet. For this pur-
pose, the lineal-path function is additionally considered in order to incorporate statistical measures of higher
order. This leads to the objective function

L2(γ ) = ωV LV (γ )+ ωSD LSD(γ )+ ωLP LLP(γ ) with ωV = ωSD = 1, ωLP = 10, (55)

Fig. 10 Target structure and discretization of SSRVEs with corresponding relevant area of the spectral density (right hand side)
and the lineal-path function (beneath the microstructure images) resulting from the minimization of L2; nele denotes the number
of finite elements
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wherein the weighting factors are set such that the order of magnitude of the individual least-square func-
tion values is in a reasonable range. The individual least-square functionals LV ,LSD and LLP are given by
in Eq. (50). To end up in a more efficient optimization procedure again the definition of a relevant area as
described above is taken into account when comparing the spectral density in LSD.

Due to the fact that computing the lineal-path function demands even more operations than computing the
spectral density, an improved calculation method is required in this respect, too. Therefore, only a number
of 40 line orientations distributed uniformly between the horizontal and the vertical direction are taken into
account by an appropriate definition of the template. Furthermore, the size of the template which is considered
for the computation of the lineal-path function of the SSRVEs can be significantly reduced by considering the
typical length of inclusions in the target structure. For this purpose, the complete lineal-path function taking
into account a template size Tx × Ty = 399 × 200 is computed for the target structure before optimization.
Then, all values that are lower than a specified threshold value of 0.1 are set to zero. This defines the relevant
template analogous to the way the relevant spectral density is identified. This leads to the fact that the size of
the lineal-path function and the template size coincide, and the specific size Tx × Ty = 63 × 9 is considered.

Fig. 11 Results of the virtual experiments using the discretizations of the SSRVEs (Fig. 10) based on L2. On the left hand side
the Cauchy stresses are plotted versus strains, the right hand side shows the relative mechanical error
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Table 3 Values of the objective function L2 and the errors r̃ using the SSRVEs shown in Fig. 10, ndof denotes the number of
global degrees of freedom of the FE-discretization

SSRVE L2 [10−3] LV [10−5] LSD [10−4] LLP [10−5] ndof r̃x [%] r̃y [%] r̃xy[%] r̃∅ [%]

I 34.56 158.11 189.21 140.54 3,054 4.11 ± 1.28 1.05 ± 0.30 0.49 ± 0.30 1.88
II 7.76 9.08 44.70 31.98 3,238 7.74 ± 1.92 0.73 ± 0.32 6.39 ± 2.81 4.95
III 5.04 6.55 28.12 21.61 3,042 1.87 ± 0.67 0.89 ± 0.20 3.03 ± 1.29 1.93
IV 1.97 0.54 9.01 10.53 3,814 3.20 ± 0.78 0.86 ± 0.35 3.78 ± 1.58 2.61
V 1.65 6.55 7.04 8.85 3,082 0.32 ± 0.21 0.49 ± 0.13 1.47 ± 0.70 0.76

By using this improved procedure, the objective function (55) is minimized with respect to γ , and the SSRVEs
as illustrated in Fig. 10 are obtained. Again, a similar behavior of the objective function is observed. For
increasing complexity of the SSRVE type, the value of the computed objective function minimum decreases
from L2 = 34.56 · 10−3 for Type I to L2 = 1.65 · 10−3 for Type V. Obviously, the absolute values of the
minimized objective functions for the individual SSRVE types are now slightly higher than for L1, because an
additional least-square functional is taken into account. However, the comparison of the mechanical response
remains to be analyzed. Let us first investigate the stress–strain response which is shown in Fig. 11.

There the distribution of the relative mechanical errors rx , ry and rxy shows that SSRVE Type V seems to
be the best SSRVE since the curve is below the curve of the other SSRVEs. In addition to that, the stresses
obtained from SSRVE Type V are similar to the ones of the target structure for all three virtual experiments,
also for the simple shear test, which is in contrast to the results obtained from minimizing L2. Hence, it seems
that incorporating the lineal-path function additionally into the optimization problem leads to an improved
overall mechanical representation of the target structure by the SSRVE. For a more detailed analysis, the
average mechanical errors as well as the overall comparative measures are given in Table 3.
The most suitable SSRVE with the lowest overall comparative error is Type V. Although Type I leads also to a
rather low value of r̃∅, the average error for the horizontal tension test is rather high with r̃x = 4.11. In turn,
SSRVE Type V yields low average errors for all three virtual experiments and yields the best approximation of
the overall mechanical behavior of the target structure. Compared to the results obtained from minimizing L1,
we can conclude that the incorporation of statistical measures of higher order seems to be promissing, since
the additional incorporation of the lineal-path function yields significantly improved SSRVEs.

5.4 Inhomogeneous example

In this section, we compare the mechanical response of two macroscopically inhomogeneous FE2-simulations,
where the target structure and the most suitable SSRVE constructed in the previous section are considered at
the microscale.

Figure 12 depicts the macroscopic boundary value problem of a radially expanded circular disk with a
hole, the outer radius is r0 = 3.0 cm, and the inner radius is ri = 0.5 cm. We discretize the disk with

cba

Fig. 12 a Macroscopic bvp: radially expanded circular disk with a hole (ri = 0.5cm, r0 = 3.0cm) discretized with 84 quadratic
triangular elements under plain strain conditions; discretization of the b target structure with a reduced number of nele = 5, 452
finite elements and c of the SSRVE Type V based on L2 (with its periodic expansion)
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Fig. 13 Macroscopic stress distribution for a σ 11, b σ 22 and c) σ 33 of the FE2-simulations based on the target structure (first
row) and the SSRVE (second row), and the relative deviations a rσ11 , b rσ22 and c rσ33 comparing these two results (third row)

84 triangular elements with quadratic ansatz functions and consider plain strain conditions. During the sim-
ulation, the outer radius is driven by a radially orientated displacement condition from u(t = 0) = 0 mm up
to u(t = tmax) = 1.6mm. At the microscale, periodic boundary conditions are applied and at first the target
structure is considered where a discretization with 5452 quadratic triangular elements (21930 degrees of free-
dom) is taken into account, see Fig. 12b. Second, the SSRVE Type V constructed by minimizing the objective
function L2 is considered at the microscale, where a discretization with 738 quadratic triangular elements
(3082 degrees of freedom) is addressed. In Fig. 12c, the finite element mesh of the considered SSRVE (regular
colors) with its periodic expansion (brightened colors) of comparable size is shown. It is emphasized that for
the FE2-simulation only the SSRVE (regular colors) is taken into account since periodic boundary conditions
are used.

Let us first investigate the macroscopic response of both simulations. Therefore, Fig. 13 shows the stress
distributions σ 11, σ 22 and σ 33 in the radially expanded disk at the final load step. When comparing the response
of the second simulation, where the SSRVE is considered at the microscale (second row), with the first one
based on the target structure (first row), a qualitatively and quantitatively similar stress response is observed
at the macroscale. To get a quantitative estimation of the accordance, the relative deviation

rσi i (x) =

∣
∣
∣
∣
∣
∣
∣

σ
target
i i (x)− σ SSRVE

i i (x)

max
x

[
σ

target
i i (x)

]

∣
∣
∣
∣
∣
∣
∣

with i = 1 . . . 3 (56)

is defined as a function of the position x in the disk. This relative error describes the difference in the mac-
roscopic stresses between both simulations relative to the maximal stress of the target structure at each mac-
roscopic point. From the corresponding plots in the third row of Fig. 13, a relative deviation lower than 5%
for all three stress components is observed. However, the maximum values of the relative deviation are rather
localized; thus, a similar behavior of the macroscopic stress response can be concluded when comparing the
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Fig. 14 Results of the FE2-simulations based on the a the target structure and b the SSRVE with the von Mises stress distributions
in the deformed microstructures for three selected positions. The symbols in the upper right corner of the images for the micro-
scopic response represent the link to the macroscopic position; the gray area behind the microstructure indicates the undeformed
configuration

response obtained for the SSRVE with the one based on the target structure. It is worthwhile mentioning that
the macroscopic stress response shows a relatively low anisotropic character, although the virtual experiments
in the last section show a significantly different behavior for the horizontal- and the vertical tension test. In
Fig. 13c, the contour plot of σ 33 is quite close to a rotational-symmetric distribution. A more pronounced
anisotropic response can be expected for larger expansions.

Nevertheless, when comparing the microscopic stress distributions at different positions in the disk, a rather
strong anisotropic character may be observed. To show this, Fig. 14 provides the von Mises stress distribution
at the final load step in the disk (σ vM ) as well as in the microstructures (σvM ) at different macroscopic posi-
tions. For this multiscale comparison, three different macroscopic points are considered, which are located at
the same distance from the inner boundary close to the inner radius of the disk. The maximum stress levels
at the analyzed microstructures differ at the individual macroscopic points significantly from approximately
1,200 to 1,800 MPa due to the anisotropy of the RVEs. This represents a rather anisotropic character at the
microscale although the macroscopic von Mises stress distribution is close to a rotational-symmetric one. In
addition to that, the maximal stress levels at the microscales are significantly larger than at the macroscale. The
latter two issues may play an important role with respect to failure initialization analysis, since the microscop-
ically observable orders of magnitude and positions of maximum stress levels cannot be observed in purely
macroscopic simulations.

If we compare the microscopic results related to the same macroscopic point of the simulation based on
the SSRVE with the one based on the target structure, again similar stress levels are observed. Furthermore,
the qualitative response at the microscale is similar, too. This accentuates the performance of the SSRVE and
shows that it seems to be possible to approximate the response of random microstructures by much simpler
SSRVEs. Finally, the profit with respect to the costs of data storage of the history variables is enormous when
using SSRVEs compared with the chosen target structure. In the proposed approach, the needed data storage
capacity is approximately reduced about 95 %, for the considered coupled micro-macro boundary value prob-
lem. Furthermore, the computation time is also significantly reduced. These are of course only rough estimates
based on the considered discretizations.
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6 Conclusion

In this contribution, a method is proposed for the construction of statistically similar RVEs (SSRVEs), which
are characterized by a significantly less complexity than usual RVEs. These SSRVEs were based on the min-
imization of an objective function considering the difference of statistical measures computed for a random
microstructure and for the SSRVE. The parameterization of the inclusion phase within the SSRVEs was per-
formed by splines such that a periodification of the microstructure was realizable, and no intersections of the
splines were allowed.

In a comparative analysis, different statistical measures, the volume fraction, the spectral density, and the
lineal-path function, were investigated with respect to their applicability for the construction of SSRVEs.
First, the resulting SSRVEs were tested in the virtual experiments, homogeneous tension in horizontal-/ver-
tical direction and simple shear, and the mechanical response of the resulting SSRVEs were compared to the
response of a target random microstructure. It turned out that by incorporating different statistical measures of
higher order suitable SSRVEs can be constructed. This is reasonable since the spectral density covers periodic
information, whereas the lineal-path function provides information regarding the type of connectivity of two
points.

A further analysis was performed in order to study the applicability of the “best” SSRVE to represent the
mechanical response of the target structure in a macroscopically inhomogeneous boundary value problem.
The comparison of a FE2-simulation, based on SSRVE and target structure simulations, showed that a similar
macroscopic and microscopic response can be obtained. Hereby, it was shown that a SSRVE can be constructed
based on the proposed method which captures the main attributes of a random microstructure. The fundamental
advantage of the SSRVEs was that a much lower number of finite elements was required for the discretization
at the microscale, which increases the computational efficiency enormously.
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