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Abstract An increase in the stiffness of a solid in compression is known to lead to the steepening of the profiles
of compression waves and, as a consequence, to the formation of strong discontinuities from continuous waves
propagating in the solid. In this paper, the critical distance required for a continuous wave to turn into a shock
wave is calculated from the evolution equation for a weak discontinuity (acceleration wave) propagating into a
quiescent region. Infinite growth of the amplitude of an acceleration wave in a finite time signifies the transition
to a strong discontinuity. Relations between the critical distances for plane, cylindrical and spherical waves are
established. Numerical examples are presented for a particular case of the pressure-dependent stiffness typical
of granular solids such as sand or soil, with emphasis placed on the influence of a small amount of free gas in
the pore fluid.
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1 Introduction

The stiffness of granular solids such as soils or powders depends on the current pressure and, being a tensorial
quantity with rather complicated dependence on the stress state, has a general tendency to increase with
increasing pressure. An increase in the stiffness in compression may also be observed in a fluid-saturated
porous solid if, apart from the properties of the solid skeleton, the pore fluid is not a pure liquid but a liquid
with a small amount of free gas whose compressibility is strongly pressure-dependent. The property of the
stiffness to increase in compression makes the propagation of compression waves in dry or fluid-saturated
granular solids similar to that in gases: a continuous compression wave propagating into a quiescent region
steepens and turns into a shock wave after a finite time of propagation [1]. This so-called critical time deter-
mines the critical distance which a continuous compression front travels before it loses continuity. For a given
medium, the critical time and the corresponding critical distance depend on the rate of the boundary loading
and decrease with increasing rate. An estimation of the critical distance may be required in order to choose
a proper computational strategy allowing for discontinuous solutions if the rate of loading is high enough to
expect that the critical distance may lie within the range of distances considered in the problem under study.

For plane longitudinal waves propagating into a quiescent region in a medium with a nonlinear stress-strain
relation, the solution has the structure of a so-called simple wave [1]. This makes it possible to trace the evolu-
tion of the gradient of the solution at each point of the wave front and thus to derive an explicit formula for the
critical distance for a continuous front of arbitrary shape [2]. In many applications, the knowledge of the critical
distance for plane waves alone does not suffice since the waves often have cylindrical or spherical symmetry
rather than being plane. The aim of the present study is to calculate and compare the critical distances for
plane, cylindrical and spherical longitudinal waves in a medium with pressure-dependent stiffness.
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In the case of cylindrical or spherical fronts the solution is not a simple wave. This fact does not allow us
to derive a tractable equation for the gradients of the solution on the whole wave front as in [2]. To circumvent
this difficulty, in the present paper we adopt a different approach: we consider the propagation of a weak
discontinuity (a jump in the first derivatives of a continuous solution) rather than a smooth wave front.

The evolution of a weak discontinuity (an acceleration wave) depends on the constitutive behaviour of
the medium and on the curvature of the surface of the discontinuity in space [3–5]. The amplitude of a weak
discontinuity may become infinite after a finite time of propagation. Similar to smooth waves, this instant
corresponds to the transition from the continuous solution to a shock wave and determines a critical distance.
The coefficients in the evolution equation for the amplitude of an acceleration wave depend on the state of
the medium in the domain into which the wave propagates. If the solution ahead of a front is known—in
particular, if the discontinuity propagates into a quiescent region—the evolution equation for the amplitude
can be solved directly. Although the acceleration-wave approach allows us to trace the evolution of the gradient
of the solution only at the point of discontinuity, that is, at the leading point of the wave front rather than on
the whole wave profile, an advantage of this method is that plane, cylindrical and spherical problems can be
solved in a uniform way.

Besides deriving explicit formulae for the critical distances, in this paper we will give quantitative estima-
tions of the critical distances assuming a particular form of the pressure dependence of the stiffness typical
of granular solids such as sand or soil. Particular attention will be given to the presence of a small amount of
free gas in the pore fluid, which strongly influences the compressibility of the solid and is therefore expected
to influence the critical distance.

2 Evolution of weak discontinuities

Plane, cylindrical and spherical waves considered below are described by a system of quasilinear equations
generally written in the form

∂ui

∂t
+ Ai j (u1,. . . , uN )

∂u j

∂x
= Bi (u1,. . . , uN , x), i = 1,. . . , N , (1)

where u1,. . . , uN are unknown functions, and the variables x and t stand for a spatial coordinate and time,
respectively. The coefficients of the system, Ai j , and the right-hand sides, Bi , are functions of ui , and Bi may
also depend explicitly on x . The functions Ai j (u1,. . . , uN ), Bi (u1,. . . , uN , x) are assumed to have continuous
first partial derivatives with respect to their arguments u1,. . . , uN and x .

As is known, given continuous initial and boundary data, system (1) may have a continuous solution only
within a finite time [6]. This holds for both smooth data and data with weak discontinuities. The evolution
of the amplitude of a weak discontinuity for system (1) is shown to be described by an ordinary differential
equation of the Bernoulli type [7–12]. The coefficients of this equation can be expressed in different ways. We
will use the evolution equation in the form derived in [11,12]. The only difference between system (1) and the
system considered in [11,12] is that the right-hand sides Bi in [11,12] do not depend explicitly on x . It can be
shown that this dependence does not influence the evolution equation for the amplitude of a weak discontinuity
if, as assumed above, the first partial derivatives of Bi with respect to the argument x are continuous.

If the first derivatives ∂ui/∂x , ∂ui/∂t of a solution to (1) are discontinuous on a curve in the (x, t)-plane,
this curve is necessarily a characteristic of system (1). The speed of propagation of the discontinuity front in
space, c, is a (real) eigenvalue of the matrix Ai j . Let [[ ]] = ( )+ − ( )− denote the jump in a quantity
across the front, with ( )+ and ( )− being the values ahead of and behind the front, respectively. The vector
[[∂ui/∂x]] is shown to be a right eigenvector of the matrix Ai j associated with the eigenvalue c. If the algebraic
multiplicity of the considered eigenvalue c is equal to one, any discontinuity [[∂ui/∂x]] can be represented as

[[
∂ui

∂x

]]
= a Ri , i = 1,. . . , N , (2)

where Ri are the components of a right eigenvector of Ai j associated with the eigenvalue c, and a is a scalar
factor subsequently referred to as the amplitude of the discontinuity.
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Let Li be the components of a left eigenvector of Ai j associated with the same eigenvalue c. Introduce the
following quantities on the characteristic curve along which the weak discontinuity propagates [11,12]:

α1 = Li

Rk Lk

[
Rl
∂Ai j

∂ul

(
∂u j

∂x

)+
+ R j

∂Ai j

∂ul

(
∂ul

∂x

)+
− R j

∂Bi

∂u j
+ dRi

dt

]
, (3)

α2 = − Li R j Rl

Rk Lk

∂Ai j

∂ul
, (4)

where dRi/dt stands for the time derivative of Ri along the characteristic. The amplitude of the discontinuity
satisfies the equation

da

dt
+ α1a + α2a2 = 0. (5)

Note that the right eigenvectors in [12] are assumed to be normalized: Ri Ri = 1. This condition does not
change Eqs. (3), (4) for α1, α2 and is not imposed here. Moreover, the normalization is only possible if all
components Ri have the same physical dimension or if they are made nondimensional.

Equation (5) implies that a, α1, α2 are functions of time. Alternatively, they can be viewed as functions
of the spatial variable x . Replacing the temporal derivative along the characteristic with the spatial one,
d( )/dt = c d( )/dx , Eq. (5) can be written in terms of the variable x :

c
da

dx
+ α1a + α2a2 = 0. (6)

If the discontinuity front propagates into a region where the functions ui are known, the coefficients α1, α2
and c in (6) become known functions of x . Equation (6) with known coefficients is the Bernoulli equation
which can be solved for a(x). The solution is

a(x) =
⎛
⎝ 1

a0
+

x∫
x0

α2ψ

c
dξ

⎞
⎠

−1

ψ(x), (7)

where

ψ(x) = exp

⎛
⎝−

x∫
x0

α1

c
dη

⎞
⎠, (8)

and a0 is the initial amplitude at x = x0.
It is seen from (7) that, if α2 is not identically zero, (6) may possess solutions which become infinite at a

finite x . The critical distance xc is found from the equation

1

a0
+

x0+xc∫
x0

α2ψ

c
dξ = 0. (9)

The condition that α2 must be nonzero for the critical distance to be finite means that some coefficients
Ai j of system (1) must be functions of ui , see (4), and, hence, the system must be nonlinear. A solution xc to
(9) is physically relevant if its sign coincides with the sign of c.

3 Constitutive assumptions

We will study the propagation of weak discontinuities in a porous solid saturated with a fluid. The fluid may be
a pure liquid (for instance, water) or a liquid with a small amount (few volume percent) of free gas. The total
stress is decomposed into the effective stress in the skeleton and an isotropic stress due to the fluid pressure:

σ total = σ − p I, (10)



584 V. A. Osinov

where σ total and σ are, respectively, the total and the effective stress tensors (compressive stresses are negative),
p is the fluid pressure (positive for compression), and I is the unit tensor. The decomposition (10) is justified
if the compressibility of the skeleton is much higher than that of the solid phase [13]. This holds, in particular,
for soils. According to the effective-stress principle, the constitutive equation for the effective stress tensor in
a saturated solid is independent of the pore pressure and is the same as for the dry skeleton.

Let the principal directions of the initial stress tensor coincide with the axes x1, x2, x3 of a rectangular
Cartesian coordinate system. The constitutive behaviour of the skeleton is assumed to be such that, if the
principal directions of the deformation tensor also coincide with the axes x1, x2, x3, the stress components
σ12, σ13, σ23 remain zero. Since only such mode of deformation is considered in this paper, it is sufficient
to write the constitutive equations as relations between the principal stresses σ1, σ2, σ3 and the principal
deformations ε1, ε2, ε3. The constitutive equations are written in rate form and are taken to be incrementally
linear:

σ̇1 = κ11ε̇1 + κ12ε̇2 + κ13ε̇3, (11)

σ̇2 = κ21ε̇1 + κ22ε̇2 + κ23ε̇3, (12)

σ̇3 = κ31ε̇1 + κ32ε̇2 + κ33ε̇3, (13)

where the stiffness coefficients κi j are functions of the current principal stresses σ1, σ2, σ3, and the dot stands
for the time derivative.

The permeability of the skeleton is assumed to be low enough to neglect the relative motion between the
solid and the fluid phases. The constitutive equation for the pore pressure is then written as

ṗ = − K f

n
(ε̇1 + ε̇2 + ε̇3), (14)

where K f is the compression modulus of the fluid, and n is the porosity of the skeleton. The modulus K f
may be a function of the fluid pressure p if, for instance, the fluid is not a pure liquid but a liquid with a small
amount of free gas.

4 Critical distances for longitudinal waves

As mentioned above, the objective of the present study is to calculate the critical distances for plane, cylindrical
and spherical acceleration waves in a solid with pressure-dependent stiffness.

In the plane problem considered in a rectangular Cartesian coordinate system (x1, x2, x3), a longitudinal
wave is assumed to propagate along the x1-axis and to have one nonzero velocity component v1 and three non-
zero stress components σ11, σ22, σ33. In a cylindrical coordinate system (r, ϕ, z), a longitudinal axisymmetric
wave has one nonzero velocity component vr and three nonzero stress components σrr , σϕϕ, σzz . Similarly,
in a spherical coordinate system (r, ϕ, θ), a longitudinal spherical wave has one nonzero velocity component
vr and three nonzero stress components σrr , σϕϕ, σθθ with σϕϕ = σθθ . The velocity component, the stress
components and the pore pressure are functions of the spatial coordinate (x1 or r ) and time.

We write the system of dynamic equations in a form valid simultaneously for all three types of waves by
introducing two parameters, m1 and m2, which assume certain values for a particular type of waves. In this
general system we write v for the velocity component, σ1, σ2, σ3 for the stress components, and x for the
spatial coordinate. The correspondence between these quantities and the quantities in the particular problems
is given in Table 1.

In the absence of mass forces and relative motion between the solid and the fluid constituents, the equation
of motion is

∂v

∂t
− 1

�

∂σ1

∂x
+ 1

�

∂p

∂x
− m1

�x
(σ1 − σ2)− m2

�x
(σ1 − σ3) = 0, (15)

Table 1 Correspondence between the quantities in system (15)–(19) and in the particular problems

m1 m2 x v σ1 σ2 σ3

Plane problem 0 0 x1 v1 σ11 σ22 σ33
Cylindrical problem 1 0 r vr σrr σϕϕ σzz
Spherical problem 1 1 r vr σrr σϕϕ σθθ
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where � = n� f + (1 − n)�s is the mean density of the medium, and � f , �s are the densities of the fluid
and the solid constituents. In the governing equations in this paper, the convective terms in the material time
derivatives are neglected, and the material derivatives are replaced with the partial ones.

Constitutive equations (11)–(13) for the effective stresses and Eq. (14) for the pore pressure are written as

∂σ1

∂t
− κ11

∂v

∂x
− m1κ12

v

x
− m2κ13

v

x
= 0, (16)

∂σ2

∂t
− κ21

∂v

∂x
− m1κ22

v

x
− m2κ23

v

x
= 0, (17)

∂σ3

∂t
− κ31

∂v

∂x
− m1κ32

v

x
− m2κ33

v

x
= 0, (18)

∂p

∂t
+ K f

n

∂v

∂x
+ (m1 + m2)

K f

n

v

x
= 0, (19)

where the stiffness coefficients κi j are functions of the current principal stresses σ1, σ2, σ3, and the compres-
sion modulus K f is a function of the fluid pressure p. Note that, in the case of a spherical wave, in order to
ensure the equality σϕϕ = σθθ , the coefficients κi j in (17), (18) as functions of the principal stresses must
satisfy the conditions

κ21 = κ31, κ22 + κ23 = κ32 + κ33 (20)

whenever σ2 = σ3.
System (15)–(19) is of the form (1) with

u1 = v, u2 = σ1, u3 = σ2, u4 = σ3, u5 = p. (21)

The matrix Ai j of system (15)–(19) has three zero eigenvalues and two eigenvalues ±c with

c =
√

1

�

(
κ11 + K f

n

)
. (22)

The components of the right and the left eigenvectors of the matrix Ai j associated with the eigenvalue c
are

R2 = −κ11

c
R1, R3 = −κ21

c
R1, R4 = −κ31

c
R1, R5 = K f

nc
R1, (23)

L2 = − 1

�c
L1, L3 = 0, L4 = 0, L5 = 1

�c
L1, (24)

where R1, L1 are arbitrary. From (23), (24) it is found that Ri Li = 2R1L1.
We will consider the propagation of a weak discontinuity with the positive speed c into a domain where

v is zero, σ1, σ2, σ3, p do not depend on x and t , and the density and the porosity are homogeneous. In this
case the first two terms on the right-hand side of (3) vanish. Since all quantities ahead of the wave front are
homogeneous and, hence, the components of the matrix Ai j are constant on the front, we can always take the
same right eigenvector and thus have dRi/dt = 0 in (3). The only contribution to α1 is due to the derivatives
∂Bi/∂u j . Calculating the derivatives (with the density and the porosity treated as constants) and taking into
account that v = 0 on the front, we obtain

α1(x) = 1

2�cx

[
(m1 + m2)�c2 + m1(κ12 − κ21)+ m2(κ13 − κ31)

]
. (25)

The calculation of α2 with (4) for system (15)–(19) gives

α2 = R1β

2�c2 , (26)

where

β = κ11
∂κ11

∂σ1
+ κ21

∂κ11

∂σ2
+ κ31

∂κ11

∂σ3
− K f

n2

dK f

d p
. (27)



586 V. A. Osinov

In order to calculate the critical distance with Eq. (9), it is necessary to specify the initial amplitude of the
discontinuity, a0, at the boundary x = x0 at t = 0. We consider a boundary value problem in which the total
stress σ1 − p is prescribed at the boundary:

σ1(x0, t)− p(x0, t) = f (t), t ≥ 0, (28)

where f (t) is a given function, and f (0) is equal to the initial total stress in the domain x ≥ x0.
Let s0 denote the initial rate of f (t) at t = 0:

s0 = d f

dt

∣∣∣∣
t=0
. (29)

At the beginning of the propagation, the incipient profile of the wave is linear. The initial gradient of the
total stress behind the front produced by the rate s0 in the immediate vicinity of x0 is −s0t/x , where
x = ct is the distance travelled by the wave front. This gives

(
∂σ1

∂x

)−
−

(
∂p

∂x

)−
= − s0

c
. (30)

On the other hand, the jumps [[∂σ1/∂x]], [[∂p/∂x]] are proportional to the corresponding components of the
right eigenvector of Ai j , see (2), that is,

[[
∂σ1

∂x

]]
= −

(
∂σ1

∂x

)−
= a0 R2, (31)

[[
∂p

∂x

]]
= −

(
∂p

∂x

)−
= a0 R5. (32)

Substituting (31), (32) into (30) and using (22), (23), we obtain for the initial amplitude:

a0 = − s0

R1�c2 . (33)

With α1(x) given by (25), introduce a constant

β1 = 1 − α1x

c
= const. (34)

The function ψ(x) defined by (8) then becomes

ψ(x) = exp

⎡
⎣(β1 − 1)

x∫
x0

dη

η

⎤
⎦ =

(
x

x0

)β1−1

. (35)

Equation (9) for the critical distance xc can now be solved:

xc =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x0

(
1 + 2�2c5β1

s0x0β

)1/β1

− x0 if β1 �= 0,

x0 exp

(
2�2c5

s0x0β

)
− x0 if β1 = 0.

(36)

For the plane problem, m1 = m2 = 0 and, as follows from (25) and (34), α1 = 0, β1 = 1. Denoting the
critical distance in the plane problem by lP , we obtain from (36):

lP = 2�2c5

s0β
. (37)
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5 Relations between the critical distances

The existence of plane, cylindrical and spherical waves as specific solutions to the dynamic equations is dictated
by the initial state and the constitutive response of the medium at each material point. If the initial state and the
constitutive response are such that both plane and cylindrical longitudinal waves can exist in the same body, a
simple relation can be established between the critical distances for plane and cylindrical weak discontinuity
fronts. Similarly, if both plane and spherical waves can exist, a relation between the corresponding critical
distances can be established as well. These relations may be useful in applications as they allow us to estimate
immediately the critical distances for cylindrical and spherical fronts once the critical distance for a plane front
has been calculated.

In a rectangular Cartesian coordinate system (x1, x2, x3), consider a homogeneous initial state with zero
velocity and zero stress components σ12, σ13, σ23. Assume the constitutive behaviour of the medium at each
point to be the same and such that any deformation with ε12 = ε13 = ε23 = 0 does not induce the stress com-
ponents σ12, σ13, σ23. This ensures that plane longitudinal waves can propagate along the x1-, x2- or x3-axis.
For deformation with ε12 = ε13 = ε23 = 0, the constitutive equations can be written as relations between the
principal stresses σ1, σ2, σ3 and the principal deformations ε1, ε2, ε3 in form (11)–(13).

Introduce a cylindrical coordinate system (r, ϕ, z) in which the z-axis coincides with the x3-axis of the
Cartesian system and suppose that cylindrical wave fronts can propagate in the same medium. Then, as follows
from the static equilibrium condition, the initial stress state must be such that σ1 = σ2. Similarly, spherical
waves require the initial state to be hydrostatic: σ1 = σ2 = σ3. Besides the initial stress state, the existence of
cylindrical or spherical waves imposes certain restrictions on the coefficients κi j of constitutive equations (11)–
(13). These restrictions allow us to find the required relations between the critical distances for the three types
of waves.

Consider first cylindrical waves in comparison with plane waves propagating along the x1- or x2-axis. If the
x1-axis is taken as an r -axis in the cylindrical problem, the evolution of the circumferential stress component
for a cylindrical wave is described by constitutive equation (12). Since the velocity is zero on the discontinuity
front, the rate of the circumferential stress on the front is κ21 (∂vr/∂r)−. If we trace the same cylindrical wave
along the x2-axis, the evolution of the circumferential stress will be governed by Eq. (11). The rate of this
stress on the front will be κ12 (∂vr/∂r)−. Hence, κ12 must be equal to κ21 on the front. Equations (25) and (34)
then give β1 = 1/2 for cylindrical waves.

To avoid misunderstanding, it should be emphasized that the existence of cylindrical waves alone does
not necessarily mean that β1 = 1/2. If the medium has an axisymmetric cylindrical structure which does not
admit plane-wave solutions, β1 may be other than 1/2.

Let lP and lC denote, respectively, the critical distances for a plane and a cylindrical fronts with the same
initial and boundary conditions. Substituting β1 = 1/2 into (36) and using (37), we obtain:

lC = lP

(
1 + lP

4r0

)
, (38)

where r0 is the radius at which the boundary condition is prescribed in the cylindrical problem.
A relation between plane and spherical waves can be established in a similar way. Introduce a spherical

coordinate system with the same origin as in the Cartesian system. If the x1-axis is taken as an r -axis in the
spherical problem, the evolution of the circumferential stress in the spherical problem will be described by
Eqs. (12) and (13). For the rate of this stress on the front these equations give, respectively, κ21 (∂vr/∂r)− and
κ31 (∂vr/∂r)−. If we trace the same spherical wave along the x2-axis, the rate of the circumferential stress
determined by Eqs. (11), (13) will be κ12 (∂vr/∂r)− and κ32 (∂vr/∂r)−. Finally, considering the x3-axis and
applying Eqs. (11), (12), we obtain κ13 (∂vr/∂r)− and κ23 (∂vr/∂r)− for the rate of the circumferential stress.
Hence, all six coefficients κi j , i �= j , must be equal on the front. Equations (25) and (34) then give β1 = 0
for spherical waves. Note that, similar to cylindrical waves, the existence of spherical waves alone does not
necessarily mean that β1 = 0. This equality holds if both plane and spherical waves exist in the same medium.

Let lP and lS denote, respectively, the critical distances for a plane and a spherical fronts with the same
initial and boundary conditions. Equations (36), (37) with β1 = 0 give

lS = r0

[
exp

(
lP

r0

)
− 1

]
, (39)

where r0 is the radius at which the boundary condition is prescribed in the spherical problem.
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Fig. 1 Critical distances for cylindrical and spherical fronts, lC and lS , in comparison with the critical distance for a plane front,
lP , calculated with (38) and (39)

Formulae (38) and (39) allow us to compare the critical distances for the cylindrical and the spherical fronts
with that for the plane front depending on the initial radius r0. In applications, r0 may represent the radius of
a cavity in which the dynamic loading (e.g. caused by an explosion) is generated. Using (38) and (39), it is
reasonable to present the ratios lC/ lP and lS/ lP as functions of lP/r0. These functions are shown in Fig. 1.
The distances lC and lS are always greater than lP . As one would expect, if lP is much smaller than r0, then
both lC and lS are close to lP . It is notable that the growth of lS/ lP with increasing ratio lP/r0 is much faster
than that of lC/ lP .

Below we will calculate the critical distances for particular cases of the pressure dependence of the stiffness
typical of granular solids, with emphasis placed on the influence of a small amount of free gas in the pore
fluid. Before proceeding to the calculation of the critical distances, we address ourselves to the question of the
compressibility of a liquid with a small amount of gas.

6 Compression modulus of the fluid phase

The consideration presented above involves the compression modulus of the pore fluid, K f . We assume that
the pore fluid is water which may contain a small amount of free gas. If the skeleton is fully saturated with
water, the compression modulus of the fluid is equal to the modulus of pure water. However, the presence
of even less than one volume percent of free gas drastically reduces the compression modulus of the fluid as
compared with pure water and, moreover, makes this modulus strongly pressure dependent.

Let Kw, Kg and K f be the compression moduli of pure water, the free gas and the mixture, respectively.
Neglecting the surface tension between the liquid and the gaseous phases and taking the pressure in the liquid
phase to be equal to the pressure in the gas, we have, according to the definition of the compression moduli,

K f = −V
d p

dV
, Kg = −Vg

d p

dVg
, Kw = −Vw

d p

dVw
, (40)

where Vw, Vg, V are the volumes of the water, the gas and the total volume of the fluid. Substituting

V = Vw + Vg, dV = dVw + dVg (41)
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Fig. 2 Compression modulus of the fluid as a function of the gas content

in the first relation in (40), we obtain

K f = (
Vw + Vg

) (
Vw
Kw

+ Vg

Kg

)−1

=
(

Sr

Kw
+ 1 − Sr

Kg

)−1

, (42)

where Sr = Vw/(Vw + Vg) is the degree of saturation.
For an ideal gas, pgV γ

g = conts, where pg is the absolute pressure of the gas (including the atmospheric
pressure), γ = 1 for isothermal processes, and γ = 1.4 for adiabatic processes for air. This gives

Kg = γ pg. (43)

Figure 2 shows the compression modulus of the fluid calculated with (42) as a function of the gas content
near full saturation for various values of Kg with Kw = 2.2 GPa. For the shown range of Kg , the presence, for
instance, of 0.5 volume percent of free gas reduces the compression modulus of the fluid by a factor of 30–55.

The calculation of the critical distance requires, besides K f , the knowledge of dK f /d p, see (27). The
quantities Vw, Vg and Kg in (42) are functions of p. Differentiating (42) with respect to p and using (40), (43),
we obtain after simple computations

dK f

d p
= K 2

f (1 − Sr )
[
Sr (Kw − Kg)

2 + γ K 2
w

]
K 2
wK 2

g
≈ K 2

f (1 − Sr )(Sr + γ )

K 2
g

, (44)

where the last approximate expression is justified if Kg � Kw.

7 Weak discontinuities in a granular medium

In this Section we calculate critical distances for weak discontinuities in a saturated granular medium assuming
particular constitutive behaviour of the skeleton and the fluid. The dependence of the stiffness of the skeleton
on the effective stress is taken in a form typical of granular skeletons. The fluid is assumed to consist of water
with a small amount of free gas. As shown in the previous Section, the compressibility of such a fluid is strongly
pressure dependent and differs substantially from the compressibility of pure water. We consider three cases:
a granular suspension with zero effective stress, a dry granular skeleton and a saturated granular skeleton. The
calculations are performed only for plane fronts. The critical distances for cylindrical or spherical fronts can
be obtained from relations (38), (39) or Fig. 1.

Consider first a granular suspension in which a solid skeleton as such is absent and the effective stresses are
zero. This may be, for example, the case of a fully liquefied loose saturated soil. With the stiffness coefficients
κi j being identically equal to zero, Eq. (37) for the critical distance reduces to

lP = − 2K 3/2
f

s0
√
�n

(
dK f

d p

)−1

. (45)

Formulae (37), (45) show that the critical distance is inversely proportional to the rate of boundary
loading s0. The rates of loading caused, for instance, by an earthquake or an explosion may differ by many
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Fig. 3 Critical distance in a granular suspension as a function of the gas content calculated with (45) for the rate of boundary
loading s0 = −104 MPa/s

Table 2 Parameters used in the numerical calculations

cs0 (m/s) σ0 (kPa) ν m γ Kw (GPa) n �s (kg/m3) � f (kg/m3)

400 −200 0.3 0.5 1.4 2.2 0.38 2650 1000

orders of magnitude, and the same holds for the corresponding critical distances. We present numerical results
for s0 = −104 MPa/s relevant to blast loading.

The critical distance calculated with (45) using (42), (44) is shown in Fig. 3. The values of �s, � f , n
and γ used in the calculations are given in Table 2. As the gas content tends to zero, the compressibility of
the fluid tends to the pressure-independent compressibility of pure water, the constitutive behaviour of the
mixture becomes linear, and the critical distance tends to infinity, as follows from (45) if dK f /d p → 0. The
prescribed negative value of s0 means an increase in the absolute value of stress and therefore corresponds to
a compression front. A positive value of s0 would give a negative critical distance as a formal solution to (9),
which would be physically irrelevant as formulae (37), (45) are derived for c > 0. This is in accordance with
the fact that decompression fronts do not turn into shock fronts.

Consider now a dry granular skeleton. To estimate the critical distances, assume that the initial stress state
is hydrostatic, the constitutive behaviour of the skeleton in the vicinity of the initial state is isotropic, and the
stiffness moduli depend on the mean effective pressure. The stiffness coefficients κ11, κ21, κ31, involved in the
plane problem can then be represented in terms of the Lamé constants λ andµ as κ11 = λ+2µ, κ21 = κ31 = λ.
For granular solids such as sand or soil, the stiffness moduli as functions of the confining pressure obey a power
law [14–16]. Based on this fact, we write

λ(σ) = λ0

(
σ

σ0

)m

, µ(σ ) = µ0

(
σ

σ0

)m

, (46)

where σ = (σ1 + σ2 + σ3)/3 is the mean effective stress, σ1, σ2, σ3 are the principal stresses, λ0, µ0 are
reference values of λ,µ at σ = σ0, and m is an exponent lying typically in the range of 0.5–0.6.

Differentiating λ and µ with respect to σ1, σ2, σ3 and substituting the derivatives into (27), we can write
β as

β = m(1 − n)2�2
s c4

s (1 + ν)

3 σ(1 − ν)
, (47)

where ν is the Poisson ratio and

cs =
√

λ+ 2µ

(1 − n)�s
(48)

is the wave speed in the dry skeleton. With the use of (46), cs can be written in the convenient form

cs(σ ) = cs0

(
σ

σ0

)m/2

, (49)
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Fig. 4 Critical distance in a dry granular body as a function of the confining pressure for s0 = −104 MPa/s

Fig. 5 Critical distance in a saturated granular body as a function of the gas content for s0 = −104 MPa/s. Solid line Kg = 300 kPa,
σ = −200 kPa; dashed line Kg = 400 kPa, σ = −300 kPa

where cs0 is the value of cs at σ = σ0. Thus, for a dry granular medium described by (46), the critical distance
determined by (37) is

lP = 6 csσ(1 − ν)

s0m(1 + ν)
. (50)

Equation (50) alone or in combination with (49) enables us to estimate the critical distance if the speed cs
at a certain stress σ is known or assumed. Although the Poisson ratio ν for granular solids is an indeterminate
quantity which depends on many factors, its influence on the critical distance is insignificant: the variation of
ν, for instance, between 0.1 and 0.4 changes the ratio (1 − ν)/(1 + ν) in (50) at most by a factor of 2. The
critical distance calculated with (50) for s0 = −104 MPa/s is shown in Fig. 4 for the constitutive parameters
of the skeleton given in Table 2.

If a granular skeleton is saturated with a fluid and the parameters of the constitutive behaviour of the skeleton
in Eq. (46) are fixed, the critical distance depends on the effective confining stress σ , the pore pressure (which
determines Kg) and the degree of saturation. Figure 5 shows the critical distance in a saturated solid for two
combinations of Kg and σ with the same constitutive parameters of the skeleton as in Fig. 4.

As a result of the interplay between the properties of the skeleton and the fluid, the critical distances for
the wide range of the gas content from 10−1 down to 10−4 lie in the narrow range of 4–10 cm. This property
is favourable for the theoretical prediction of the critical distance as it does not require the exact knowledge of
the degree of saturation within these specific limits. At the same time, the limiting value of the critical distance
for full saturation is reached only at a gas content of 10−8 and turns out to be by three orders of magnitude
greater than at a gas content of 10−4. Besides the fact that the gas content in the second range—between 10−4

and 10−8—is immeasurably low, such a small amount of gas cannot be homogeneous in a real solid to give
a definite value of the critical distance. In relation to real solids, the questions also arise as to whether the
presence of such small amounts of free gas in the pore fluid is physically possible and whether Eqs. (42), (44)
still hold true for such amounts of gas. The practical implication of the present result is the following: if the
solid skeleton obeys the assumed constitutive relation and the gas content is known to be lower than 10−4, the
critical distance will lie between 0.1 and 100 m and is otherwise unpredictable.
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8 Concluding remarks

The acceleration-wave approach leads to simple relations between the critical distanced for plane, cylindrical
and spherical compression fronts propagating in a solid into a quiescent region. Given the critical distance for
a plane front, these relations allow us to estimate the critical distances for cylindrical and spherical fronts for
the same boundary loading depending on the radius where the loading is applied.

Besides the wave geometry, the critical distance for a given granular medium depends on the rate of the
boundary loading and the degree of saturation. Calculations performed for granular soils reveal two ranges
of saturation in which the critical distance behaves differently: with a gas content from 10−1 down to 10−4,
and below 10−4. The critical distance for plane fronts in the first range depends only slightly on the gas con-
tent and changes by a factor of two in the whole range. In contrast, the critical distance in the second range
depends strongly on the gas content and increases by three orders of magnitude as the gas content changes
from 10−4 down to full saturation. From the viewpoint of applications to real soils, such dependence means
the indeterminacy of the critical distance within a wide range if the gas content is below 10−4.

If the critical distance is less than the characteristic length in the dynamic problem of interest, the numerical
solution imposes specific requirements on both the constitutive model and the numerical algorithm. The
constitutive model must adequately describe the pressure dependence of the stiffness, while the numerical
algorithm must be capable of solving the dynamic problem with strong discontinuities.
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