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Abstract This paper demonstrates that, at extreme levels of kinematic hardening, the traditional formulation
of the Bodner–Partom model can produce anomalous results. The reasons for this anomalous behaviour are
explained, and a reformulated version of the model is presented. This reformulation extends the range of the
model to include levels of kinematic hardening that may be problematic in the traditional formulation. The
formulation of the model is adjusted so as to retain the rate dependency of the original Bodner–Partom model;
and to permit the values of the material parameters used with the traditional formulation to be re-used with the
extended model—with the exception only of the hardening coefficients which become dimensionless constants
holding different numerical values. This revised formulation also imposes associated flow, thereby ensuring
phase consistency between stress and plastic strain during non-proportional loading. In this way, the anomalies
are removed, the range and stability of the model is increased, and all the advantages and important features
of the Bodner–Partom model are retained.

Keywords Viscoplastic · Creep · Nonlinear · Modelling · Plasticity

1 Introduction

The Bodner–Partom model is a viscoplastic model with creep originally designed to simulate the behaviour of
metals that undergo creep at high temperatures. It is a mature model, originally created in 1975 [1] with only
isotropic work hardening. It has undergone a number of subsequent modifications to incorporate kinematic
hardening, recovery and the changing response of the material to variations in temperature [2], and continues
to be used [3–11].

Formally, the Bodner–Partom model does not require an explicit yield surface and so can reproduce the
experimentally observed smooth transition from low level creep deformation to high strain-rate plasticity as
the loads are increased. However, with appropriate choices of the values of constants, it can successfully
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approximate a sharp yield point, as shown in the work of Esat et al. [12]. This flexibility gives obvious benefits
to the modelling of a wide range of materials. In fact, recently, researchers have exploited the benefits of the
Bodner–Partom model to simulate the mechanical response of certain non-metallic materials whose behaviour
phenomenologically resembles that of metal creep [13–15], while other researchers [16] have acknowledged
this facility. Additionally, as the Bodner–Partom model has no fixed yield point, it could be used to simulate
plasticity at small strains.

It has been recognised [17], however, that the Bodner–Partom model (as currently formulated) may present
erroneous predictions when used to simulate non-proportional loading and when operating at low strain rates.
Work presented in the current paper demonstrates that issues also exist if kinematic hardening is extreme.
There is no suggestion, however, that the model does not provide perfectly acceptable predictions when used
for the range of behaviour for which it was originally intended, simply that issues may exist when departing
from proven capability.

While many other viscoplastic models exist (an excellent review [17] has recently been published), the
Bodner–Partom model remains popular and has been widely used for more than 30 years—indicating a signif-
icant investment of time and effort by many researchers. It is, therefore, timely to examine the features of the
Bodner–Partom model that can give rise to anomalous or erroneous behaviour and propose alterations to the
formulation that address these issues while permitting researchers to utilise the wealth of knowledge gained
from past experience with this model. This paper describes a number of changes which would allow a more
extended range of stress–strain behaviour to be simulated with the Bodner–Partom model and that the authors
incorporated into an existing computer program with relative ease.

This paper starts by reviewing the development of the Bodner–Partom model and the results of some simu-
lations are presented. The significance of these results, some of which are anomalous, are discussed, stressing
the limitations they indicate. Particular attention is paid to the case of cyclic loading where kinematic hard-
ening is extreme. In that case, during unloading, secondary inelastic deformation occurs before the unloading
is complete. This exposes some deep-seated issues with the implementation of kinematic hardening in the
Bodner–Partom model. Finally, a reformulated version of the model is presented that may have advantages
when the extent of kinematic hardening is problematic in the existing formulation, and when non-proportional
loading is being simulated.

2 Preliminaries

Consider an elastic–viscoplastic body lying in a Cartesian coordinate system with coordinates x1, x2 and x3.
Components of the infinitesimal strain tensor are denoted by εi j . The components (ėi j ) of the deviatoric part
of the strain rate tensor are defined as

ėi j = ε̇i j − ε̇mmδi j/3, (1)

where δi j represents the Kronecker delta. A dot over a symbol indicates a time derivative, or rate, and
Einstein’s summation convention has been used throughout this paper. The components of the deviatoric
strain rate consist of elastic (ėE

i j ) and inelastic (ė I
i j ) contributions such that

ėi j = ėE
i j + ė I

i j . (2)

The components of the stress tensor are denoted by σi j and the components (si j ) of the deviatoric part are
given by

si j = σi j − σmmδi j/3. (3)

The elastic components of the volumetric strain εE
mm , and the deviatoric strain eE

i j are related to the mean stress
(σmm/3) and components of deviatoric stress through Hooke’s law in the usual way

εE
mm = σmm

3K
(4)

eE
i j = si j

2G
, (5)

where K and G are the bulk and shear moduli, respectively.



Extending the Bodner–Partom model to simulate the response of materials 163

Consistent with these definitions, the rate of inelastic dissipation (Ẇ I ) is given by

Ẇ I = si j ė
I
i j , (6)

assuming that the hidden energy of cold work is negligible.

3 Formulation of Bodner–Partom models

The isothermal version of the Bodner–Partom model, without kinematic hardening, can be presented as relying
on three assumptions:

1. The magnitude of the plastic strain rate is given by

√
ė I

i j ė
I
i j =

√
2.0D2

0 exp

(
−

(
(Z I )2

3J2

)n)
, (7)

where J2 is the second invariant of the deviatoric stress tensor (si j si j/2); Z I represents the material
resistance to inelastic flow at the current material state; and the model constants are defined in Table 1.

2. The inelastic contribution is incompressible and obeys the Prandtl–Reuss equations

ė I
i j = λsi j , (8)

where λ is a plastic multiplier and is given by
√

ė I
i j ė

I
i j/

√
srssrs .

3. The evolution of Z I is given by the differential equation

Ż I = m1(Z1 − Z I )Ẇ I − A1 Z1

(
Z I − Z2

Z1

)r1

, (9)

with the first term representing the saturation of hardness and the second term representing the recovery.

The incorporation of kinematic hardening introduces a tensor with components of stress βi j which evolves
according to the differential equation

β̇i j = m2(Z3ui j − βi j )Ẇ I − A2 Z1

(√
βrsβrs

Z1

)r2 (
βi j√
βrsβrs

)
, (10)

Table 1 Interpretation of model parameters

Parameters Description

G (MPa) Shear modulus

K (MPa) Bulk modulus

m1 (MPa−1) Coefficient for isotropic hardening

m2 (MPa−1) Coefficient for kinematic hardening

A1 (s−1) Recovery rate coefficient for isotropic hardening

A2 (s−1) Recovery rate coefficient for kinematic hardening

D0 (s−1) Limiting (maximum) strain rate

Z0 (MPa) Initial value for isotropic hardening

Z1 (MPa) Limiting (maximum) value for isotropic hardening

Z2 (MPa) Fully recovered (minimum) value for isotropic hardening

Z3 (MPa) Limiting (maximum) value for kinematic hardening

n Strain rate sensitivity parameter

r1 Recovery exponent for isotropic hardening

r2 Recovery exponent for kinematic hardening
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where ui j are the components of a tensor defined as

ui j = si j√
srssrs

. (11)

This is then used to form

Z D = βi j ui j , (12)

a scalar contribution to the resistance to inelastic flow, modifying assumption (1) to give

√
ė I

i j ė
I
i j =

√
2.0D2

0 exp

(
−

(
(Z I + Z D)2

3J2

)n)
. (13)

This approach can be used to give quite realistic models of the stress–strain response varying with time at
a specific temperature, as shown in Fig. 1 and by [18–21]. It is, however, relatively easy to pick parameters
that do not lead to sensible stress–strain curves, especially if cyclic deformation is demanded. An example is
shown in Fig. 2. It may be argued that careful choice of the values of the parameters would avoid this type of
behaviour. However, in order to simulate the cyclic behaviour of polymers or granular materials, extreme levels
of kinematic hardening are needed and this leads inevitably to severe problems with the traditional formulation
of the Bodner–Partom model containing kinematic hardening and recovery—hereafter referred to simply as
the Bodner–Partom Model (BPM).

4 Simulations

A number of simulations were performed to illustrate features of the model. An implicit algorithm for the Bod-
ner–Partom model was developed using an optimization procedure to solve the system of non-linear equations
at each increment of strain. A number of simulations were run and the results obtained checked using another
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Fig. 1 Stress–strain curves for three loading cycles at a strain rate of 0.015 s−1, with the material properties 1 (a), and material
properties 3 (b) shown in Table 2
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Fig. 2 Stress–strain curves for three loading cycles at a strain rate of 0.015 s−1 with the material properties 2 given in Table 2;
showing the first cycle (a), the second cycle (b), the third cycle (c) and all three cycles (d)

Table 2 Parameters for tensile test simulations

Parameters 1 Parameters 2 Parameters 3

G 44,000 61,500 61,500

K 123,000 133,000 133,000

m1 0.09 0.002 0.1

m2 2.5 1.5 1.5

A1 0.2 0.15 0.15

A2 0.5 0.05 0.05

D0 10000.0 10000.0 10000.0

Z0 500.0 1000.0 1000.0

Z1 2000.0 2000.0 3500.0

Z2 200.0 200.0 1000.0

Z3 800.0 800.0 800.0

n 2.5 1.5 1.5

r1 0.9 0.9 0.9

r2 0.2 0.5 0.9

Units given in Table 1

algorithm [22–24] and published results [1]. A cyclic tensile test was then simulated, with the strain increasing
to a maximum and then reversing for three cycles, using a variety of material parameters listed in Table 2. Care
was taken to ensure that convergence was achieved at every increment and no evidence of non-uniqueness was
found.

Figures 1 and 2 clearly show that broadly similar material parameters can give radically different results
and those shown in Fig. 2 are clearly highly suspect.
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Fig. 3 Stress–strain curves for levels of fixed kinematic hardness shown, at a strain rate of 0.015 s−1, with the material properties
shown in Table 3 using BPM (a) and PEM (b)

5 Exploring the anomalous behaviour

Detailed inspection of the results indicates that these problems first manifest themselves when the kinematic

hardening is sufficiently severe that on unloading Z D is both negative and comparable in magnitude to Z I .
The simulations become pathological if their sum becomes negative. Of course the original model was never
designed to simulate such an extreme case, however the usefulness of the overall approach is such that exten-
sion into these ranges would be useful, not only for particular materials but also when using automatic means
of determining the best choice of parameters to reproduce experimental data.

In understanding this feature of the model it may be helpful to start by examining how the kinematic
hardening, as defined within the traditional formulation, effects the behaviour of the model. Figure 3a shows a
series of steady state cyclic loading curves for a fixed strain rate of 0.015 s−1 (simulated by incrementing e22)
and using identical material parameters (given in Table 3) but with the kinematic hardening set to different
values by altering the values of βi j at the start of the simulation. Values of β22 of 0.0, 200.0, 1000.0, 1500.0 and
2000.0 MPa were chosen with the other diagonal components being equal and chosen to maintain βmm = 0.
With values of β22 from zero to 1000 MPa, the stress–strain loop shifts as anticipated. The maximum stress
reached increases with increasing β22, but the difference between the maximum and minimum stress remains
constant. The horizontal shift in the stress–strain loops is caused by the elastic shift from the start tensile stress
of 300 MPa. The increase in kinematic hardness from 1500.0 to 2000.0 MPa, however, manifests an anomalous
increase in the difference between the maximum and minimum stress.

Specifically, in the traditional formulation of the Bodner–Partom model the ratio (Z I )2/J2 can be thought
of as the resistance to flow divided by a measure of the stress producing the flow. Kinematic hardening is
incorporated by modifying the resistance to flow to (Z D + Z I )2. This works well for moderate amounts of
kinematic hardening. If, however, one needs to have sufficiently severe kinematic hardening that Z D + Z I

becomes negative during strain reversal then the above formulation will produce these spurious results.
An alternative way to incorporate kinematic hardening is to let the resistance remain unaltered, but instead

modify the stress invariant. This has been the approach utilized by [25] and [26] through the incorporation of
a back stress tensor with components ρi j to give J K

2 defined by

J K
2 = (si j − ρi j )(si j − ρi j )/2. (14)
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Table 3 Parameters for plots in Fig. 3

Parameters

G 61,500

K 133,000

m1 0.0

m2 0.0

A1 0.0

A2 0.0

D0 10,000

Z0 1,000

Z1 3,500

Z2 1,000

Z3 800.0

n 1.5

r1 0.9

r2 0.9

Units given in Table 1

Equation 13 could be reformulated as

√
ė I

i j ė
I
i j =

√√√√2.0D2
0 exp

(
−

(
(Z I )2

3J K
2

)n)
, (15)

with ρi j = βi j . However, the sensitivity to deformation rate would be changed. The original sensitivity can be
preserved, and the original parameter values reused, if ρi j = Fβi j where

F = √
2/3

(
−2 ln(

√
ėi j ėi j/D0)

)−1/2n
. (16)

Running simulations with this modification exposed problems with the use of the Prandtl–Reuss equations
when ḋ22 and s22 were required to have opposite signs. The solution was to use the associated flow rule where

ė I
i j = λ(si j − ρi j ), (17)

and λ is a plastic multiplier (
√

ė I
i j ė

I
i j/

√
2J K

2 ).

These reformulations, together—hereafter referred to as the Partially Extended Bodner–Partom Model
(PEM)—resolve the anomaly shown in Fig. 3a (as can be seen from Fig. 3b). Figure 4 demonstrates that the
PEM retains the original rate dependency of the Bodner–Partom model, permitting the use of the original
values of the material constants. The model could, therefore, be used without the factor F in Eq. 16; but it
would, essentially, be a different model. A wealth of investigation has demonstrated that the rate dependency
of the Bodner–Partom model gives good agreement with experimental results for a range of strain rates. This
confidence would be lost if Eq. 16 were omitted from the formulation of the model.

The simulation shown in Fig. 2d (obtained using the traditional formulation of the Bodner–Partom model)
is reproduced in Fig. 5a to facilitate comparison with simulations obtained using variations of the partially
extended Bodner–Partom model. The simulation shown in Fig. 5b demonstrates the results of extending the
model by only incorporating the revised flow rule shown in Eq. 17. Clearly no improvement in the results was
achieved. Figure 5c shows the results obtained by only incorporating the revised invariant (J K

2 )—demonstrat-
ing that this modification is responsible for removing the anomalous dip in the stress–strain curve shown in
Fig. 2c. Only two cycles are shown as convergence was not achieved in the third cycle. This, together with
the simulation shown in Fig. 5d (which uses the full PEM incorporating both modifications) demonstrates that
these modifications are not sufficient to solve all the problems and the anomaly resulting from the form of the
evolution of Z I and β still has to be addressed.
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Fig. 4 Reproduction of the simulations shown in Fig. 1 (solid line) with simulations using a version of the model (PEM) using
Eqs. 14, 15, 16 and 17 (open circle)
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Fig. 5 The simulation illustrated in Fig. 2 using BPM (a); reproduced using PEM with Eq. 17 only (b); using PEM with J K
2 only

(c); and using the full PEM (d). Table 2 shows the material properties
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5.1 Examining the evolution of Z I and βi j

The treatment of the evolution of the isotropic and kinematic hardening may be approached in a number of ways.
While the Bodner–Partom model interprets the description “work hardening” literally and uses the work done
as the ongoing variable in the evolution equations, an alternative is to use an equivalent plastic strain instead.
The latter approach was used to model non-linear kinematic hardening by Armstrong and Fredericks [26] in
the context of rate independent plasticity and extended to viscoplasticity by Malinin and Khadjins [27].

The evolution equations for the isotropic hardening and kinematic hardening state variables, Z I and βi j

(see Eqs. 9 and 10) contain the rate of inelastic work (Ẇ I ). As this is based on stress, it will be zero if the
stress is zero (if recovery is ignored). However, the rate of plastic strain could well be large, leading to the
anomalous prediction of perfect plasticity and the ‘flat’ region in the stress strain curves observed in Figs. 2
and 5 at zero stress. One possible way of coping with this would be to use strain hardening rather than work
hardening. Then

Ż I = m′
1

(
Z1 − Z I

)√
ė I

i j ė
I
i j − A1 Z1

(
Z I − Z2

Z1

)r1

(18)

and

Z D = βi j ui j ; (19)

where

β̇i j = m′
2(Z3u̇ I

i j − βi j )

√
ė I

i j ė
I
i j − A2 Z1

(√
βrsβrs

Z1

)r2 (
βi j√
βrsβrs

)
, (20)

and m′
1 and m′

2 retain the meaning given in Table 1 for m1 and m2 respectively, but are now dimensionless
constants holding different numerical values. The values of all the other material constants remain unchanged.
This model will be referred to as the extended Bodner–Partom model (EBP) in the rest of this paper. Values of
m′

1 = 50 and m′
2 = 833 were used with this extended Bodner–Partom model for the simulation shown (◦) in

Fig. 6a, and m′
1 = 60 and m′

2 = 500 were used for the simulation shown (◦) in Fig. 6b.
Using these values as a guide, the simulation shown in Fig. 2 was repeated using the extended Bodner–

Partom model with m′
1 = 1.16 and m′

2 = 500, retaining the original values of all other material constants. The
results are shown in Fig. 7. The simulation shown in Fig. 2 has been reproduced in Fig. 7a, to facilitate com-
parison with simulations obtained using the extended Bodner–Partom model, which has been run for 3 cycles
in Fig. 7b, and for 30 cycles in Fig. 7c to demonstrate the model stability. The simulation for the first cycle
using the extended Bodner–Partom model is shown as the thick line in Fig. 7d, superimposed on the results
obtained with the Bodner–Partom model (shown as the thin line) to show that the extended Bodner–Partom
model produces the same results as the Bodner–Partom model if appropriate values are chosen for m′

1 and m′
2

(i.e. 1.16 and 500, respectively).
It should be recognized that the material parameters used were deliberately selected so as to expose these

features, which may well not manifest themselves when the traditional formulation is used, with appropriate
material properties, to simulate metal plasticity and creep. There is, however, no guarantee that these fea-
tures will not manifest themselves, to a greater or lesser extent, if this formulation is applied to materials
whose properties (with regard to this model formulation) fall outside the traditional metal plasticity envelope.
Although the features discussed here are illustrated particularly dramatically in Figs. 2 and 3a, they can occur
almost unobtrusively, depending on the material parameters, loading configuration and strain rate. It should
be remembered that the curves in these figures were obtained after full convergence at every increment and
are, therefore, genuine results for the material properties, model formulation and loading used. These fea-
tures are of considerable significance if a “least squares”, or similar optimization routine, is used to establish
material parameters from experimental data. Like the traditional formulation, the extended Bodner–Partom
model presented in this paper, is restricted to small strains. Sansour and Kollmann [28], however, have pro-
posed a general formulation of elasto-viscoplasticity at large strains and shown how it can be applied to the
Bodner–Partom model. Their approach could be applied to the modified formulation presented in this paper.
It follows that the researcher should choose the most appropriate formulation of the Bodner–Partom model for
their purposes.
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Fig. 6 Reproduction of the simulation shown in Fig. 1 (solid line) with a simulation using the extended Bodner–Partom model
(EBP) (open circle); with m′

1 = 50, m′
2 = 833 (a) and m′

1 = 60, m′
2 = 500 (b)
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Fig. 7 The simulation shown in Fig. 2 using BPM (a); repeated using EBP with m′
1 = 1.16 and m′

2 = 500 for three cycles (b);
for 30 cycles (c); and the first cycle using EBP (thick line) and BPM (thin line) (d)
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Fig. 8 Re-presentation of a simulation (dotted line) from [29] with those (solid line) obtained using the different versions of the
Bodner–Partom model presented in this paper—see text for details

Table 4 Parameters for plots in Fig. 8

Parameters

G 61,500

K 133,000

m1 0.00151

m2 2.61

A1 0.152

A2 0.0527

D0 10,000

Z0 565

Z1 3,987

Z2 565

Z3 818.0

n 2.72

r1 0.875

r2 0.157

Units given in Table 1

6 Comparison with experimental data

The three versions of the Bodner–Partom model explored in this paper were used to simulate experimental
results published by Andersson et al. [29] and the results are shown in Figure 8. Andersson’s results are
indicated by a dotted line and those obtained using the the versions of the Bodner–Partom model explored
in this paper are indicated by a solid line. The traditional formulation of the Bodner–Partom model is shown
in Fig. 8a, the partially extended Bodner–Partom model is shown in Fig. 8b and the extended Bodner–Par-
tom model is shown in Fig. 8c—all for three cycles. Figure 8d shows the extended Bodner–Partom model
running for 30 cycles to demonstrate the stability of the fully extended version of the model. The values
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used for the model constants are shown in Table 4, with m′
1 = 0.876 and m′

2 = 870 in the extended ver-
sion.

Andersson used a formulation of the Bodner–Partom model that reduced the number of non-linear equations
and increased the speed of convergence by using two different formulations based on the value of λ [30]. The
model constants used in the simulations presented here have been chosen to mimic those used by Andersson;
showing the ease with which the extended Bodner–Partom model can be applied to existing data.

7 Conclusions

1. This paper has demonstrated that previous formulations of the Bodner–Partom model can produce patho-
logical results when kinematic hardening is sufficiently extreme that Z I + Z D becomes negative.

2. This paper has demonstrated that, at high levels of kinematic hardening, the use of work hardening rather
than strain hardening is inappropriate.

3. A modification to the flow rule avoids these problems while retaining the strain rate dependency of the
original formulation and only requiring the values of two of the model’s fourteen parameters to be adjusted.

4. The proposed modifications should entail only minimal alteration to existing computer code and will
maintain the relevance of data obtained with the original formulation.
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