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Abstract In this paper a general solution for the analysis of shear deformable stiffened plates subjected to
arbitrary loading is presented. According to the proposed model, the arbitrarily placed parallel stiffening beams
of arbitrary doubly symmetric cross section are isolated from the plate by sections in the lower outer surface of
the plate, taking into account the arising tractions in all directions at the fictitious interfaces. These tractions are
integrated with respect to each half of the interface width resulting two interface lines, along which the loading
of the beams as well as the additional loading of the plate is defined. Their unknown distribution is established
by applying continuity conditions in all directions at the interfaces. The utilization of two interface lines for
each beam enables the nonuniform distribution of the interface transverse shear forces and the nonuniform
torsional response of the beams to be taken into account. The analysis of both the plate and the beams is
accomplished on their deformed shape taking into account second-order effects. The analysis of the plate is
based on Reissner’s theory, which may be considered as the standard thick plate theory with which all others
are compared, while the analysis of the beams is performed employing the linearized second order theory
taking into account shear deformation effect. Six boundary value problems are formulated and solved using
the analog equation method (AEM), a BEM based method. The solution of the aforementioned plate and
beam problems, which are nonlinearly coupled, is achieved using iterative numerical methods. The adopted
model permits the evaluation of the shear forces at the interfaces in both directions, the knowledge of which
is very important in the design of prefabricated ribbed plates. The effectiveness, the range of applications of
the proposed method and the influence of shear deformation effect are illustrated by working out numerical
examples with great practical interest.

Keywords Elastic stiffened plate · Reinforced plate with beams · Bending · Nonuniform torsion · Warping ·
Ribbed plate · Boundary element method · Slab-and-beam structure · Shear deformation · Reissner’s theory

1 Introduction

Structural plate systems stiffened by beams are widely used in buildings, bridges, ships, aircrafts and machines.
Stiffening of the plate is used to increase its load carrying capacity and to prevent buckling especially in case
of in-plane loading. Moreover, for cases wherein the plate or the beams are not very “thin” or the stiffeners are
closely spaced, the error incurred from the ignorance of the effect of shear deformation may be substantial,
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while the accuracy of a classical analysis decreases and the truthfulness of the results is lost with growing plate
or beam thickness. The extensive use of the aforementioned plate structures necessitates a rigorous analysis.

The behavior of stiffened plates under static loading has been widely studied. Initial research efforts
employed a restrictive approach wherein the stiffeners are assumed to be closely spaced and the stiffened plate
is replaced by an equivalent isotropic/orthotropic plate of uniform thickness [12,16,18]. Subsequently, in more
refined approximations the adopted models for the analysis of the plate–beams system isolated the beams from
the plate and employed numerical methods for the solution of the arising plate and beam problems with most
frequently used the finite element method [15,17,21,27], the boundary element method [3,6,7,14,22,23,28,29]
or a combination of these methods [2,13]. In all these approximations shear deformation effect is ignored,
while with the exception of [23] the shear longitudinal and/or transverse forces at the interfaces have been
neglected.

Contrary to the extended literature concerning the analysis of plates reinforced with beams ignoring shear
deformation effect, relatively little work has been done on the corresponding problem of shear deformable
stiffened plates. The FEM has been employed by Biswal and Ghosh [1] using higher order shear deformation
theory to analyze stiffened laminated plates. FEM has also been employed by Deb and Booton [4] for the
analysis of Mindlin’s shear distortion theory for bending of eccentrically stiffened plates subjected to transverse
loading, while the BEM has been used by Wen et al. [31] by coupling the shear deformable plate formulation
and the two-dimensional plane stress elasticity. Also in these latter research efforts the solution of the bending
problem of stiffened plates is not general since either the analysis of the plate and the beams is performed
on the undeformed shape ignoring second-order effects or the shear longitudinal or transverse forces at the
interfaces have been neglected or the torsional and warping behavior of the stiffening beams has been ignored.

In this paper a general solution for the static analysis of plates stiffened by arbitrarily placed parallel beams
of arbitrary doubly symmetric cross section subjected to arbitrary loading is presented taking into account
shear deformation effect in both the plate and the beams. The employed structural model is an improved one of
that presented by Sapountzakis and Mokos in [23], so that a nonuniform distribution of the interface transverse
shear force and the nonuniform torsional response of the beams are taken into account. According to this
model, the stiffening beams are isolated again from the plate by sections in the lower outer surface of the
plate, taking into account the arising tractions in all directions at the fictitious interfaces. These tractions are
integrated with respect to each half of the interface width resulting two interface lines, along which the loading
of the beams as well as the additional loading of the plate is defined. The utilization of two interface lines for
each beam enables the nonuniform torsional response of the beams to be taken into account as the angle of
twist is indirectly equated with the corresponding plate slope. The unknown distribution of the aforementioned
integrated tractions is established by applying continuity conditions in all directions at the two interface lines.
The analysis of both the plate and the beams is accomplished on their deformed shape taking into account
second-order effects. The analysis of the plate is based on Reissner’s theory [19,20], which may be considered
as the standard thick plate theory with which all others are compared, while the analysis of the beams is
performed employing the linearized second order theory taking into account shear deformation effect. Six
boundary value problems are formulated and solved using the analog equation method (AEM) [10], a BEM
based method. The solution of the aforementioned plate and beam problems, which are nonlinearly coupled,
is achieved using iterative numerical methods. The adopted model permits the evaluation of the shear forces
at the interfaces in both directions, the knowledge of which is very important in the design of prefabricated
ribbed plates. The effectiveness, the range of applications of the proposed method and the influence of shear
deformation effect are illustrated by working out numerical examples with great practical interest.

2 Statement of the problem

Consider a plate of homogeneous, isotropic and linearly elastic material with modulus of elasticity E , shear
modulus G and Poisson ratio µ, having constant thickness h p and occupying the two dimensional multiply
connected regionΩ of the x, y plane bounded by the piecewise smooth K +1 curvesΓ0, Γ1, . . . , ΓK−1, ΓK , as
shown in Fig. 1. The plate is stiffened by a set of i = 1, 2, . . . , I arbitrarily placed parallel beams of arbitrary
doubly symmetric cross section of homogeneous, isotropic and linearly elastic material with modulus of
elasticity Ei

b, shear modulus Gi
b and Poisson ratio µi

b, which may have either internal or boundary point
supports. For the sake of convenience the x axis is taken parallel to the beams. The stiffened plate is subjected
to the lateral load g = g (x, y). For the analysis of the aforementioned problem a global coordinate system
Oxy for the analysis of the plate and local coordinate ones Oi xi yi corresponding to the centroid axes of each
beam are employed as shown in Fig. 1.
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Fig. 1 Two dimensional region Ω occupied by the plate

The solution of the problem at hand is approached by an improved model of that proposed by Sapountzakis
and Mokos in [23]. According to this model, the stiffening beams are isolated again from the plate by sections in
its lower outer surface, taking into account the arising tractions at the fictitious interfaces (Fig. 2). Integration
of these tractions along each half of the width of the i-th beam results in line forces per unit length in all
directions in two interface lines, which are denoted by qi

x j , qi
y j and qi

z j ( j = 1, 2) encountering in this way

the nonuniform distribution of the interface transverse shear forces qi
y , which in the aforementioned model in

[23] was ignored. The aforementioned integrated tractions result in the loading of the i-th beam as well as the
additional loading of the plate. Their distribution is unknown and can be established by imposing displacement
continuity conditions in all directions along the two interface lines, enabling in this way the nonuniform
torsional response of the beams to be taken into account, which in the aforementioned model in [23] was also
ignored.

The arising additional loading at the middle surface of the plate and the loading along the centroid axes of
each beam can be summarized as follows:

a. In the plate (at the traces of the two interface lines j = 1, 2 of the i-th plate–beam interface)

(i) A lateral line load qi
z j .

(ii) A lateral line load ∂mi
pyj/∂x due to the eccentricity of the component qi

x j from the middle surface

of the plate. mi
pyj = qi

x j h p/2 is the bending moment.

(iii) A lateral line load ∂mi
px j/∂x due to the eccentricity of the component qi

y j from the middle surface

of the plate. mi
px j = qi

y j h p/2 is the bending moment.

(iv) An inplane line body force qi
x j at the middle surface of the plate.

(v) An inplane line body force qi
y j at the middle surface of the plate.

b. In each (i-th) beam (Oi xi yi zi system of axes)

(i) A perpendicularly distributed line load qi
z j along the beam centroid axis Oi xi .

(ii) A transversely distributed line load qi
y j along the beam centroid axis Oi xi .

(iii) An axially distributed line load qi
x j along the beam centroid axis Oi xi .

(iv) A distributed bending moment mi
byj = qi

x j e
i
z j about Oi yi local beam centroid axis due to the

eccentricities ei
z j of the components qi

x j from the beam centroid axis. ei
z1 = ei

z2 = −hi
b/2 are the

eccentricities.
(v) A distributed bending moment mi

bz j = −qi
x j e

i
y j about Oi zi local beam centroid axis due to the

eccentricities ei
y j of the components qi

x j from the beam centroid axis. ei
y1 = −bi

f /4, ei
y2 = bi

f /4
are the eccentricities.
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Fig. 2 Thin elastic plate stiffened by beams (a) and isolation of the beams from the plate (b)

(vi) A distributed twisting moment mi
bx j = qi

z j e
i
y j −qi

y j e
i
z j about Oi xi local beam shear center axis due

to the eccentricities ei
z j , ei

y j of the components qi
y j , qi

z j from the beam shear center axis, respectively.

ei
z1 = ei

z1 = −hi
b/2 and ei

y1 = −bi
f /4, ei

y2 = bi
f /4 are the eccentricities.

The structural models and the aforementioned additional loading of the plate and the beams are shown in
Fig. 3.

On the base of the above considerations the response of the plate and of the beams may be described by
the following boundary value problems.

a. For the plate.

The plate undergoes transverse deflection and inplane deformation. Thus, for the transverse deflection,
according to Reissner’s theory, if ψ = ψ (x, y) is a stress function satisfying the equation [30]

kψ − ∇2ψ = 0, k = 10/h2
p in Ω (1)
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Fig. 3 Structural model and directions of the additional loading of the plate and the i-th beam

the average rotations φpx , φpy of the plate with respect to the axes y, x , respectively, taking into account the
effect of shear deformation can be written as

φpx = −∂wp

∂x
+ 6

5Gh p
Q px φpy = −∂wp

∂y
+ 6

5Gh p
Q py (2a, b)

where the second term in the right hand side of these equations represents the additional angle of rotation due
to shear deformation. Moreover, the stress resultants are given as

Q px = −D
∂

∂x
∇2wp + Nx

∂wp

∂x
+ Nxy

∂wp

∂y
+ ∂ψ

∂y
(3a)

Q py = −D
∂

∂y
∇2wp + Ny

∂wp

∂y
+ Nyx

∂wp

∂x
− ∂ψ

∂x
(3b)

Mpx = −D

(
∇2wp + (µ− 1)

∂2wp

∂y2

)
+ 2

k

∂Q px

∂x
− gµ

k (1 − µ)
(3c)

Mpy = −D

(
∇2wp + (µ− 1)

∂2wp

∂x2

)
+ 2

k

∂Q py

∂y
− gµ

k (1 − µ)
(3d)

Mpxy = D (1 − µ)
∂2wp

∂x∂y
− 1

k

(
∂Q px

∂y
+ ∂Q py

∂x

)
(3e)

and the equation of equilibrium employing the linearized second order theory can be written as

D∇4wp −
(

Nx
∂2wp

∂x2 + 2Nxy
∂2wp

∂x∂y
+ Ny

∂2wp

∂y2

)
= g − h2

p

10

2 − µ

1 − µ
∇2g

−
I∑

i=1

⎛
⎝ 2∑

j=1

(
qi

z j − h2
p

10

2 − µ

1 − µ
∇2qi

z j − ∂mi
px j

∂y
+ ∂mi

pyj

∂x
− qi

x j

∂wi
pj

∂x
− qi

y j

∂wi
pj

∂y

)
δi

j

(
y − y j

)
⎞
⎠

in Ω (4)

where wp = wp (x, y) is the transverse deflection of the plate; D = Eh3
p/12(1 − v2) is its flexural rigidity;

Nx = Nx (x, y) , Ny = Ny (x, y) , Nxy = Nxy (x, y) are the membrane forces per unit length of the plate
cross section and δ(y − yi ) is the Dirac’s delta function in the y direction.



898 E. J. Sapountzakis, V. G. Mokos

The governing differential equations (1), (4) are also subjected to the pertinent boundary conditions of the
problem, which are given as

αp1wp + αp2 Q pn = αp3 (5a)

βp1φpn + βp2 Mpn = βp3 on Γ (5b)

γp1φpt + γp2 Mpnt = γp3 (5c)

where apl , βpl , γpl (l = 1, 2, 3) are given functions specified on the boundary Γ, Q pn,Mpn,Mpnt are the
shear force, the bending moment and the twisting moment along the boundary, respectively and φpn, φpt are
the average rotations of the plate with respect to the axes t, n, respectively. The boundary conditions (5a, b,
c) are the most general boundary conditions for the thick plate problem including also the elastic support. It
is apparent that all types of the conventional boundary conditions (clamped, simply supported, free or guided
edge) can be derived form these equations by specifying appropriately the functions apl , βpl and γpl (e.g. for
a clamped edge it is ap1 = βp1 = γp1 = 1, ap2 = ap3 = βp2 = βp3 = γp2 = γp3 = 0). In accordance with
Eqs. (5) the boundary stress resultants Q pn, Q pt ,Mpn,Mpnt using intrinsic coordinates n, s [8,11] are given as

Q pn = −D
∂

∂n
∇2wp + Nn

∂wp

∂n
+ Nnt

∂wp

∂s
+ ∂ψ

∂s
(6a)

Q pt = −D
∂

∂s
∇2wp + Nt

∂wp

∂s
+ Nnt

∂wp

∂n
− ∂ψ

∂n
(6b)

Mpn = −D

[
∇2wp + (µ− 1)

(
∂2wp

∂s2 + κ
∂wp

∂n

)]
+ 2

k

[
∂2ψ

∂s∂n
− κ

∂ψ

∂s

]
− gµ

k (1 − µ)

+2

k

[
−g + 1

k

(2 − µ)

(1 − µ)
∇2g + D

∂2

∂s2

(∇2wp
) + Dκ

∂

∂n

(∇2wp
)]

+2

k

[
−Nnt

(
∂2wp

∂s∂n
− κ

∂wp

∂s

)
− Nt

(
∂2wp

∂s2 + κ
∂wp

∂n

)
+ ∂Nn

∂n

∂wp

∂n
+ ∂Nnt

∂n

∂wp

∂s

]
(6c)

Mpt = −D

[
µ∇2wp − (µ− 1)

(
∂2wp

∂s2 + κ
∂wp

∂n

)]

−2

k

[
D
∂2

∂s2

(∇2wp
) + Dκ

∂

∂n

(∇2wp
) + ∂2ψ

∂s∂n
− κ

∂ψ

∂s

]
− gµ

k (1 − µ)

+2

k

[
∂Nt

∂s

∂wp

∂s
+ Nt

(
∂2wp

∂s2 + κ
∂wp

∂n

)
+ ∂Nnt

∂s

∂wp

∂n
+ Nnt

(
∂2wp

∂s∂n
− κ

∂wp

∂s

)]
(6d)

Mpnt = (1 − µ) D

[
∂2wp

∂s∂n
− κ

∂wp

∂s

]

−1

k

[
−2D

∂2

∂s∂n

(∇2wp
) + 2Dκ

∂

∂s

(∇2wp
) + 2

∂2ψ

∂s2 + 2κ
∂ψ

∂n
− kψ

]

−1

k

[
∂Nn

∂s

∂wp

∂n
+ Nn

(
∂2wp

∂s∂n
− κ

∂wp

∂s

)
+ ∂Nnt

∂s

∂wp

∂s
+ Nnt

(
∂2wp

∂s2 + κ
∂wp

∂n

)]

−1

k

[
∂Nt

∂n

∂wp

∂s
+ Nt

(
∂2wp

∂s∂n
− κ

∂wp

∂s

)
+ ∂Nnt

∂n

∂wp

∂n
+ Nnt

∂2wp

∂n2

]
(6e)

in which κ = κ (s) is the curvature of the boundary; ∂/∂s and ∂/∂n denote differentiation with respect to the
arc length s of the boundary and the outward normal n to it, respectively.

Since linearized plate bending theory is considered, the components of the membrane forces Nx , Ny, Nxy
are given as

Nx = C

(
∂u p

∂x
+ µ

∂vp

∂y

)
(7a)

Ny = C

(
µ
∂u p

∂x
+ ∂vp

∂y

)
(7b)
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Nxy = C
1 − µ

2

(
∂u p

∂y
+ ∂vp

∂x

)
(7c)

where C = Eh p/
(
1 − µ2

) ; u p = u p (x, y) , vp = vp (x, y) are the displacement components of the middle
surface of the plate arising from the line body forces qi

x j , qi
y j (i = 1, 2, . . . , I ), ( j = 1, 2). These displacement

components are established by solving independently the plane stress problem, which is described by the
following boundary value problem (Navier’s equations of equilibrium)

∇2u p + 1 + µ

1 − µ

∂

∂x

[
∂u p

∂x
+ ∂vp

∂y

]
− 1

Gh p

I∑
i=1

⎛
⎝ 2∑

j=1

qi
x jδ

i
j (y − yi )

⎞
⎠ = 0 (8a)

∇2vp + 1 + µ

1 − µ

∂

∂y

[
∂u p

∂x
+ ∂vp

∂y

]
− 1

Gh p

I∑
i=1

⎛
⎝ 2∑

j=1

qi
y jδ

i
j (y − yi )

⎞
⎠ = 0 in Ω (8b)

δp1u pn + δp2 Nn = δp3 (9a)

εp1u pt + εp2 Nt = εp3 on Γ (9b)

in which G = E/2(1 + ν) is the shear modulus of the plate; Nn, Nt and u pn, u pt are the boundary membrane
forces and displacements in the normal and tangential directions to the boundary, respectively; δpl , εpl (l =
1, 2, 3) are functions specified on the boundary Γ .

b. For each (i-th) beam.

Each beam undergoes transverse deflection with respect to zi and yi axes, axial deformation along xi axis
and nonuniform angle of twist along xi axis. Thus, for the transverse deflection with respect to zi axis the
equation of equilibrium employing the linearized second order theory and taking into account shear deformation
effect can be written as [24]

Ei
b I i

y

(
1 + Ni

b

Gi
b Ai

z

)
∂4wi

b
∂xi4 =

2∑
j=1

(
qi

z j − qi
x j
∂wi

b
∂xi + N i

bj
∂2wi

b
∂xi2 − ∂mi

by j

∂xi

)

− Ei
b I i

y

Gi
b Ai

z

2∑
j=1

(
∂2qi

z j

∂xi2 − 3qi
x j
∂3wi

b

∂xi3 − 3
∂qi

x j

∂xi

∂2wi
b

∂xi2 − ∂2qi
x j

∂xi2

∂wi
b

∂xi

) in Li , i = 1, 2, . . . , I (10)

subjected to the following boundary conditions

azi
1 w

i
b + azi

2 Ri
bz = azi

3 (11a)

βzi
1 θ

i
by + βzi

2 Mi
by = βzi

3 at the beam ends xi = 0, Li (11b)

where wi
b = wi

b

(
xi

)
is the transverse deflection of the i-th beam with respect to zi axis; I i

by is its moment

of inertia with respect to yi axis; N i
bj = N i

bj

(
xi

)
are the axial forces at the xi centroid axis arising from

the line body forces qi
x j ; azi

l , β
zi
l (l = 1, 2, 3) are coefficients specified at the boundary of the i-th beam;

θ i
by, Ri

bz,Mi
by are the slope, the reaction and the bending moment at the i-th beam ends, respectively given as

θ i
by = − Ei

b I i
by

Gi
b Ai

z

2∑
j=1

(
1 + N i

bj

Gi
b Ai

z

)
∂3wi

b

∂xi3 − ∂wi
b

∂xi
(12)

Ri
bz = −Ei

b I i
by

2∑
j=1

(
1 + N i

bj

Gi
b Ai

z

)
∂3wi

b

∂xi3 +
2∑

j=1

(
N i

bj
∂wi

b

∂xi

)
(13)

Mi
by = −Ei

b I i
by

2∑
j=1

(
1 + N i

bj

Gi
b Ai

z

)
∂2wi

b

∂xi2 (14)
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It is apparent that all types of the conventional boundary conditions (clamped, simply supported, free or guided
edge) can be derived from Eqs. (11a, b) by specifying appropriately the coefficients azi

l , β
zi
l (e.g. for a simply

supported end it is azi
1 = βzi

2 = 1, azi
2 = azi

3 = βzi
1 = βzi

3 = 0).
Similarly, the vi

b = vi
b

(
xi

)
transverse deflection with respect to yi axis must satisfy the following boundary

value problem

Ei
b I i

z

(
1 + N i

b

Gi
b Ai

y

)
∂4vi

b

∂xi4 =
2∑

j=1

(
qi

y j − qi
x j
∂vi

b

∂xi
+ N i

bj
∂2vi

b

∂xi2 − ∂mi
bz j

∂xi

)

− Ei
b I i

z

Gi
b Ai

y

2∑
j=1

(
∂2qi

y j

∂xi2 − 3qi
x j
∂3vi

b

∂xi3 − 3
∂qi

x j

∂xi

∂2vi
b

∂xi2 − ∂2qi
x j

∂xi2

∂vi
b

∂xi

)
in Li , i = 1, 2, . . . , I (15)

ayi
1 v

i
b + ayi

2 Ri
by = ayi

3 (16a)

β
yi
1 θ

i
bz + β

yi
2 Mi

bz = β
yi
3 at the beam ends xi = 0, Li (16b)

where I i
bz is the moment of inertia of the i-th beam with respect to yi axis; ayi

l , β
yi
l (l = 1, 2, 3) are coefficients

specified at its boundary; θ i
bz, Ri

by,Mi
bz are the slope, the reaction and the bending moment at the i-th beam

ends, respectively given as

θ i
bz = − Ei

b I i
bz

Gi
b Ai

y

2∑
j=1

(
1 + N i

bj

Gi
b Ai

y

)
∂3vi

b

∂xi3 − ∂vi
b

∂xi
(17)

Ri
by = −Ei

b I i
bz

2∑
j=1

(
1 + N i

bj

Gi
b Ai

y

)
∂3vi

b

∂xi3 +
2∑

j=1

(
N i

bj
∂vi

b

∂xi

)
(18)

Mi
bz = Ei

b I i
bz

2∑
j=1

(
1 + N i

bj

Gi
b Ai

y

)
∂2vi

b

∂xi2 (19)

In Eqs. (10), (12)–(14), (15), (17)–(19) Gi
b Ai

y,Gi
b Ai

z are the shear rigidities of the Timoshenko’s beam theory,
where

Ai
y = κ i

y Ai = 1

ai
y

Ai Ai
z = κ i

z Ai = 1

ai
z

Ai (20a,b)

are the shear areas with respect to y, z axes, respectively with κ i
y, κ

i
z the shear correction factors, ai

y, ai
z the

shear deformation coefficients and Ai the cross section area of the i-th stiffening beam.
Since linearized beam bending theory is considered the axial deformation ui

b of the beam arising from the
arbitrarily distributed axial forces qi

x j (i = 1, 2, . . .I ), ( j = 1, 2) is described by solving independently the
boundary value problem

Ei
b Ai

b
∂2ui

b

∂xi2 = −
2∑

j=1

qi
x j inLi , i = 1, 2, . . . , I (21)

γ xi
1 ui

b + γ xi
2 N i

b = γ xi
3 at the beam endsxi = 0, Li (22)

where N i
b is the axial reaction at the i-th beam ends given as

N i
b =

2∑
j=1

N i
bj = Ei

b Ai
b
∂ui

b

∂xi
(23)
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Finally, the nonuniform angle of twist with respect to xi shear center axis has to satisfy the following boundary
value problem [25]

Ei
b I i

bw
∂4θ i

bx

∂xi4 − Gi
b I i

bx
∂2θ i

bx

∂xi2 =
2∑

j=1

mi
bx j in Li , i = 1, 2, . . . , I (24)

axi
1 θ

i
bx + axi

2 Mi
bx = axi

3 (25a)

βxi
1
∂θ i

bx

∂xi
+ βxi

2 Mi
bw = βxi

3 at the beam ends xi = 0, Li (25b)

where θ i
bx = θ i

bx

(
xi

)
is the variable angle of twist of the i-th beam along the xi shear center axis; Gi

b =
Ei

b/2(1 + µi
b) is its shear modulus; I i

bw, I i
bx are the warping and torsion constants of the i-th beam cross

section, respectively given as

I i
bw =

∫

Ai

(
ϕP

S

)2
d Ai (26a)

I i
bx =

∫

Ai

((
yi

)2 +
(

zi
)2 + yi ∂ϕ

P
S

∂zi
− zi ∂ϕ

P
S

∂yi

)
d Ai (26b)

with ϕP
S

(
yi , zi

)
the primary warping function with respect to the shear center S of the Ai beam cross section;

axi
l , β

xi
l (l = 1, 2, 3) are coefficients specified at the boundary of the i-th beam;

∂θ i
bx

∂xi denotes the rate of

change of the angle of twist and it can be regarded as the torsional curvature; Mi
bx is the twisting moment and

Mi
bw is the warping moment due to the torsional curvature at the boundary of the i-th beam given as

Mi
bx = Mi P

bx + Mi S
bx (27a)

Mi
bw = −Ei

b I i
xw
∂2θ i

bx

∂xi2 (27b)

In Eq. (27a) Mi P
bx is the primary twisting moment resulting from primary shear stress distribution and Mi S

bx is
the secondary twisting moment resulting from secondary shear stress distribution due to warping given as [25]

Mi P
bx = Gi

b I i
bx
∂θ i

bx

∂xi
(28a)

Mi S
bx = −Ei

b I i
bw
∂3θ i

bx

∂xi3 (28b)

The boundary conditions (25a,b) are the most general linear torsional boundary conditions for the beam
problem including also the elastic support. It is apparent that all types of the conventional torsional boundary
conditions (clamped, simply supported, free or guided edge) can be derived form these equations by specifying
appropriately the coefficients axi

l , β
xi
l (l = 1, 2, 3) (e.g. for a clamped edge it is axi

1 = βxi
1 = 1, axi

2 = axi
3 =

βxi
2 = βxi

3 = 0).
Equations (1), (4), (8a), (8b), (10), (15), (21) and (24) constitute a set of eight coupled partial differential

equations including fourteen unknowns, namely ψ,wp, u p, vp, w
i
b, v

i
b, ui

b, θ
i
bx , qi

x1, qi
y1, qi

z1, qi
x2, qi

y2, qi
z2.

Six additional equations are required, which result from the displacement continuity conditions in the directions
of zi , xi and yi local axes along the two interface lines of each (i-th) plate–beam interface. These conditions
can be expressed as
In the direction of zi local axis:

wi
p1 − wi

b = −bi
f

4
θ i

bx along interface line 1( f i
j=1) (29a)

wi
p2 − wi

b = bi
f

4
θ i

bx along interface line 2( f i
j=2) (29b)
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In the direction of xi local axis:

ui
p1 − ui

b = h p

2

∂wi
p1

∂x
+ hi

b

2

∂wi
b

∂xi
+ bi

f

4

∂vi
b

∂xi
+

(
φi P

S

)
f 1

∂θ i
bx

∂xi
along interface line 1 ( f i

j=1) (29c)

ui
p2 − ui

b = h p

2

∂wi
p2

∂x
+ hi

b

2

∂wi
b

∂xi
− bi

f

4

∂vi
b

∂xi
+

(
φi P

S

)
f 2

∂θ i
bx

∂xi
along interface line 2 ( f i

j=2) (29d)

In the direction of yi local axis:

vi
p1 − vi

b = h p

2

∂wi
p1

∂y
+ hi

b

2
θ i

bx along interface line 1( f i
j=1 ) (29e)

vi
p2 − vi

b = h p

2

∂wi
p2

∂y
+ hi

b

2
θ i

bx along interface line 2( f i
j=2 ) (29f)

where [5]

ui
pj = −h p

2

∂wi
pj

∂x
+ 3

2

Q px

G
(30a)

vi
pj = −h p

2

∂wi
pj

∂y
+ 3

2

Q py

G
(30b)

while [24]

θ i
by = −∂w

i
b

∂xi
+ 1

Gi
b Ai

z

(
−Ei

b I i
y
∂3wi

b

∂xi3 − Ei
b I i

y

Gi
b Ai

z

(
∂qi

z j

∂xi
+ N i

bj
∂3wi

b

∂xi3 − 2qi
x j
∂2wi

b

∂xi2 − ∂qi
z j

∂xi

∂wi
b

∂xi

)
+ mi

byj

)

(31a)

θ i
bz = ∂vi

b

∂xi
− 1

Gi
b Ai

y

(
−Ei

b I i
z
∂3vi

b

∂xi3 − Ei
b I i

z

Gi
b Ai

y

(
∂qi

y j

∂xi
+ N i

bj
∂3vi

b

∂xi3 − 2qi
x j
∂2vi

b

∂xi2 − ∂qi
y j

∂xi

∂vi
b

∂xi

)
+ mi

bz j

)
(31b)

and
(
φi P

S

)
f j is the value of the primary warping function with respect to the shear center S of the beam

cross section at the point of the j-th interface line of the i-th plate–beam interface f . In all the aforementioned
equations the values of the primary warping function ϕi P

S (yi , zi ) should be set having the appropriate algebraic
sign corresponding to the local beam axes.

It is worth here noting that the coupling of the aforementioned equations is nonlinear due to the terms
including the unknown qi

x j and qi
y j interface forces.

3 Numerical solution

The numerical solution of the boundary value problems described by Eqs. (4–5a, b, c), (8a,b–9a, b), (10–11a,
b), (15–16a, b), (21–22) and (24–25a, b) will be accomplished employing the AEM [10]. This method is
applied for the aforementioned problems as follows.

3.1 For the plate transverse deflection wp

Let wp be the sought solution of the boundary value problem described by Eqs. (4) and (5a, b, c). Applying
the biharmonic operator to this function yields

∇4w = ppz (x, y) (32)

Equation (32) indicates that the solution of the original problem can be obtained as the deflection of a plate
with unit flexural rigidity subjected to a flexural fictitious load ppz (x, y) under the same boundary conditions.
The fictitious load is unknown. However, it can be established using BEM as follows.
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The solution of Eq. (32) is written in integral form as [23]

wp (x, y) = 1

2π

∫ ∫
Ω

Λp4 (r)ppzdΩ

− 1

2π

∫
Γ

[
Λp1 (r) wp +Λp2 (r)

∂wp

∂n
+Λp3 (r)∇2wp +Λp4 (r)

∂∇2wp

∂n

]
ds (33)

where the kernels Λpi (r), (i = 1, 2, 3, 4) are given as

Λp1 (r) = −cosφ

r
(34a)

Λp2 (r) = ln r + 1 (34b)

Λp3 (r) = −1

4
(2r ln r + r) cosφ (34c)

Λp4 (r) = 1

4
r2 ln r (34d)

where φ is the angle between vector r and the outward normal to the boundary n. Notice that in Eq. (33) for

the domain integral it is r = |Q − P| = [
(ξ − x)2 + (n − y)2

]1/2
, P, Q points inside the plate, whereas for

the line integrals r = |q − P| = [
(ζ − x)2 + (ψ − y)2

]1/2
, q point at the boundary of the plate. Applying

the operator ∇2 to both sides of the integral representation (33) the Laplasian of the plate deflection is obtained
as

∇2wp = 1

2π

∫ ∫
Ω

Λp2 (r)ppzdΩ − 1

2π

∫
Γ

[
Λp1 (r)∇2wp +Λp2 (r)

∂∇2wp

∂n

]
ds (35)

Moreover, applying the Green identity for the harmonic operator for the function ψ = ψ (x, y) and the
fundamental solution of Eq. (1), the solution of Eq. (1) is obtained in integral form as [8]

ψ (x, y) = 1

2π

∫
Γ

[
Λp5 (ρ)

∂ψ

∂n
+Λp6 (ρ)ψ

]
ds (36)

where the kernels Λpi (r), (i = 5, 6) are given as

Λp5 (r) = K0 (ρ) (37a)

Λp6 (r) = 1

l
K1 (ρ) cosφ (37b)

with K0 (ρ) , K1 (ρ) the zero- and first- order modified Bessel functions of the second kind, respectively;
ρ = r/ l, l = √

1/k, r = |Q − P|.
The integral representations (33), (35), (36) written for the boundary points onΓ together with the boundary

conditions (5a, b, c) can be employed to express the unknown boundary quantitieswp, ∂wp/∂n,∇2wp, ∂∇2wp/
∂n, ψ, ∂ψ/∂n in terms of ppz . Eliminating these quantities from the discretized counterpart of Eq. (33) applied
to all nodal points in the interior of the plate region Ω yields

{
wp

} = [
Fp

] {
ppz

}
(38)

where
[
Fp

]
is an M × M known flexibility matrix, where M is the number of the plate internal nodal points;{

wp
}
,
{

ppz
}

are M × 1 column matrices including the nodal values of the functions wp, ppz , respectively.
Moreover, the discretized counterpart of the derivatives of the plate deflection when applied to all nodal

points in the interior of the plate, after elimination of the boundary quantities yield
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{
wp,x

} = [
Fpx

] {
ppz

}
(39a){

wp,y
} = [

Fpy
] {

ppz
}

(39b){
wp,xx

} = [
Fpxx

] {
ppz

}
(39c){

wp,yy
} = [

Fpyy
] {

ppz
}

(39d){
wp,xy

} = [
Fpxy

] {
ppz

}
(39e)

where
[
Fpx

]
,
[
Fpy

]
,
[
Fpxx

]
,
[
Fpyy

]
,
[
Fpxy

]
are known M × M coefficient matrices.

The final step of AEM is to apply Eq. (4) to the M nodal points inside Ω . This yields

D
{

ppz
} −

(
[{Nx }]dg .

[
Fpxx

] + 2
[{

Nxy
}]

dg .
[
Fpxy

] + [{
Ny

}]
dg.

[
Fpyy

]) {
ppz

}
= {g} + {Lg} − [Z ] {qz} − [Z ] {Lqz} + [Z ]

[
X y

] {
qy

} − [Z ] [Xx ] {qx } + [[Z ] {qx }]dg.

[
Fpx

] {
ppz

}
+ [

[Z ]
{
qy

}]
dg.

[
Fpy

] {
ppz

}
(40)

where {g} is an M × 1 column matrix including the values of the external load; {Lg} and {Lqz} are known

M × 1 column matrices including the values of the
h2

p
10

2−µ
1−µ∇2g and

h2
p

10
2−µ
1−µ∇2qi

z j quantities, respectively;{
ppz

}
is an M × 1 column matrix including the nodal values of the function ppz; [{Nx }]dg. ,

[{
Nxy

}]
dg.

and
[{

Ny
}]

dg. are unknown diagonal M × M matrices including the values of the inplane forces; {qx }T ={ {qx1}{qx2}
}
,
{
qy

}T = { {
qy1

}{
qy2

} }
and {qz}T = { {qz1}{qz2}

}
are vectors with 2L elements including the

unknown qi
x j , qi

y j , qi
z j ( j = 1, 2) interface forces; 2L is the total number of the nodal points at the interfaces;

[Z ] is a position M × 2L matrix which converts the vectors {qx } ,
{
qy

}
, {qz} into corresponding ones with

length M ; the symbol []dg. indicates a diagonal M × M matrix with the elements of the included column

matrix and
[
Fpx

]
,
[
Fpy

]
,
[
Fpxx

]
,
[
Fpyy

]
,
[
Fpxy

]
are known M × M coefficient flexibility matrices [25]. The

matrices [Xx ] ,
[
X y

]
result after approximating the bending moment derivatives of mi

pyj ,mi
px j , respectively

using appropriately central, backward, or forward differences. Their dimensions are 2L × 2L .

3.2 For the plate inplane displacement components u p, vp.

The boundary value problem described by Eqs. (8a, b), (9a, b) is solved numerically employing the boundary
element method [9]. Using the same boundary discretization and solving the inplane plate problem for each
nodal interface point separately for qi

x j = 1.0 and qi
y j = 1.0( j = 1, 2), the descretized M values of the nodal

membrane forces for homogeneous boundary conditions (9a, b) (δp3 = εp3 = 0) are expressed as follows

{Nx } = [
Gx

dx

] {qx } + [
G y

dx

] {
qy

}
(41a){

Nxy
} =

[
Gx

dxy

]
{qx } +

[
G y

dxy

] {
qy

}
(41b)

{
Ny

} =
[
Gx

dy

]
{qx } +

[
G y

dy

] {
qy

}
(41c)

while the descretized L values of the nodal displacement components of the middle surface of the plate are
given as {

u p1
} = [

F xx
d1

] {qx1} + [
F xy

d1

] {
qy1

}
(42a)

{
u p2

} = [
F xx

d2

] {qx2} + [
F xy

d2

] {
qy2

}
(42b)

{
vp1

} = [
F yx

d1

] {qx1} + [
F yy

d1

] {
qy1

}
(42c)

{
vp2

} = [
F yx

d2

] {qx2} + [
F yy

d2

] {
qy2

}
(42d)

where
[
Gx

dx

]
,
[
G y

dx

]
,
[
Gx

dxy

]
,
[
G y

dxy

]
,
[
Gx

dy

]
and

[
G y

dy

]
are known matrices with dimensions M × 2L and[

F xx
d1

]
,
[
F xx

d2

]
,
[
F xy

d1

]
,
[
F xy

d2

]
,
[
F yx

d1

]
,
[
F yx

d2

]
,
[
F yy

d1

]
,
[
F yy

d2

]
are known flexibility matrices with dimensions

L × L .
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3.3 For the beam transverse displacements wi
b, v

i
b and for the angle of twist θ i

x̃

The numerical solution of the boundary value problems described by Eqs. (10–11a, b), (15–16a, b) and (24–25a,
b) is similar.

Let wi
b be the sought solution of the boundary value problem described by Eqs. (10) and (11a, b). Diffe-

rentiating this function four times yields

d4wi
b

dxi4 = pbz

(
xi

)
(43)

Equation (43) indicates that the solution of the original problem can be obtained as the deflection of a beam with
unit flexural rigidity subjected to a flexural fictitious load pbz = pbz

(
xi

)
under the same boundary conditions.

The fictitious load is unknown. Following the formulation developed in [23] application of the Eq. (10) to the
L nodal points in the interior of the beams yields

(
Ei

b I i
by

(
1 + N i

b

Gi
b Ai

z

)
[I ] −

[{
N i

b

}]
dg.

[
Fz

bxx

] + [{qx1} + {qx2}]dg.

[
Fz

bx

]

−
(

Ei
b I i

y

Gi
b Ai

z

)((
3 [{qx1} + {qx2}]dg.

[
Fz

bxxx

]) +
(

3 [{dqx1} + {dqx2}]dg.

[
Fz

bxx

])

+
(

3 [{ddqx1} + {ddqx2}]dg.

[
Fz

bx

])))
{pbz}

= {qz1} + {qz2} + [Xbx ] ({qx1} + {qx2})−
(

Ei
b I i

y

Gi
b Ai

z

) [{ddqz1} + {ddqz2}
]

(44)

while similarly application of the Eq. (15) gives
(

Ei
b I i

bz

(
1 + N i

b

Gi
b Ai

y

)
[I ] −

[{
N i

b

}]
dg.

[
F y

bxx

] + [{qx1} + {qx2}]dg.

[
F y

bx

]

−
(

Ei
b I i

z

Gi
b Ai

y

)((
3 [{qx1} + {qx2}]dg.

[
F y

bxxx

]) +
(

3 [{dqx1} + {dqx2}]dg.

[
F y

bxx

])

+
(

3 [{ddqx1} + {ddqx2}]dg.

[
F y

bx

]))) {
pby

}

= {
qy1

} + {
qy2

} + [
Xby

] ({
qy1

} + {
qy2

}) −
(

Ei
b I i

z

Gi
b Ai

y

) [{
ddqy1

} + {
ddqy2

}]
(45)

and for the angle of twist θ i
bx application of the Eq. (24) yields

(
Ei

b I i
bw [I ] − Gi

b I i
bx [I ]

[
Ft

bxx

]) {pbx } = [
ey1

] {qz1} + [
ey2

] {qz2}
− [

ez1
] {

qy1
} − [

ez2
] {

qy2
}

(46)

where
[{

N i
b

}]
dg. is an unknown diagonal L ×L matrix including the values of the axial forces; the symbol []dg.

indicates a diagonal L × L matrix with the elements of the included column matrix. The matrices [Xbx ] ,
[
Xby

]
result after approximating the derivatives of mi

byj ,mi
bz j using appropriately central, backward, or forward dif-

ferences. Their dimensions are also L × L . Moreover, {pbz} ,
{

pby
}
, {pbx } ,

{
qx j

}
,
{
dqx j

}
,
{
ddqx j

}
,
{
qyj

}
,{

dqyj
}
,
{
ddqyj

}
,
{
qzj

}
,
{
dqzj

}
,
{
ddqzj

}
( j = 1, 2) are L × 1 column matrices including the values of the

fictitious flexural, torsional loading, the interface forces and their derivatives,
[
F y

bx

]
,
[
F y

bxx

]
,
[
F y

bxxx

]
,
[
Fz

bx

]
,[

Fz
bxx

]
,
[
Fz

bxxx

]
,
[
Ft

bxx

]
are L × L flexibility coefficient matrices, while

[
ey1

]
,

[
ey2

]
,
[
ez1

]
,

[
ez2

]
are dia-

gonal L × L matrices including the values of the eccentricities ei
y j , ei

z j of the components qi
z j , qi

y j with respect
to the i-th beam shear center axis, respectively.
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3.4 For the axial deformation ui
b

Following the same procedure as in the previous sections, the descretized L values of the nodal axial forces
and the nodal displacements at the beam centroid axis for homogeneous boundary conditions (22) (γ xi

3 = 0)
can be expressed as

{
N i

b

}
= [

Gx
b

]
({qx1} + {qx2}) (47a)

{
ui

b

}
= [

F x
b

]
({qx1} + {qx2}) (47b)

where
[
Gx

b

]
,
[
F x

b

]
are known L × L matrices.

Equations (40), (44), (45) and (46) after elimination of the quantities Nx , Ny, Nxy, N i
b using Eqs. (41a, b, c),

(47a) together with continuity conditions (29a–f) which employing Eqs. (41a–d), (47b) and after discretization
at the L nodal points at the interfaces are written as

Shell Element

Eccentricity with Rigid Offset Beam Element

Fig. 4 Shell-beam model using rigid offsets for the analysis of the stiffened plates
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Fig. 5 Plan view (a) and section a–a (b) of the stiffened plate of Example 1

Table 1 Deflections wp (mm) of the stiffened plate of Example 1

Including inplane forces Ignoring inplane forces

With shear deformation Without Shear With Shear Without shear
(Present study) deformation deformation deformation

Center 5.8588 5.8107 (0.82%) 6.3718 (8.76%) 6.1971 (5.77%)
Middle of the free edges A, C 0.2671 0.2319 (13.14%) 0.6748 (152.67%) 0.4964 (85.86%)
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Fig. 6 Deflections along the free edges of the stiffened plate of Example 1 using the proposed (AEM) method and a FEM solution
[26]

Fig. 7 Deflection surface of the stiffened plate of Example 1
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Table 2 Bending moments Mi
by,Mi

bz (kNm), warping moment Mi
bw (kNm2) and axial force N i

b (kN) of the beams i = 1, 2 of
the stiffened plate of Example 1

Including inplane forces Ignoring inplane forces

With shear deformation Without shear With Shear Without shear
(Present study) deformation deformation deformation

Bending moment Mi
by (kNm)

Midspan 552.09 624.37 1250.29 1190.64
Edges −1001.04 −1089.37 −1885.09 −1936.71
Bending moment Mi

bz (kNm)
Midspan 75.69 77.06 0.00 0.00
Edges −253.74 −284.86 0.00 0.00
Warping moment due to the torsional curvature Mi

bw (kNm2)
Midspan 18.65 18.72 18.88 18.88
Edges −63.47 −60.65 −90.73 −91.03
Axial force N i

b (kN)
Midspan 416.58 390.94 0.00 0.00
Edges −687.18 −568.36 0.00 0.00
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Fig. 8 Plan view (a) and section a–a (b) of the stiffened plate of Example 2
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constitute a non-linear system of ten equations with respect to {qx1} , {qx2} ,
{
qy1

}
,

{
qy2

}
, {qz1} , {qz2}

(interface forces) and
{

ppz
}
, {pbx } ,

{
pby

}
, {pbz} (fictitious loading of plate and beams). This system is

solved using iterative numerical methods. Note that
[
Fp

]
is known M × M coefficient flexibility matrix,[

Fz
b

]
,
[
F y

b

]
,
[
Ft

b

]
are known flexibility coefficient matrices with dimensions L × L , while [Y1] , [Y2] are posi-

tion L × M matrices which convert the matrices
[
Fp

]
,
[
Fpx

]
,
[
Fpy

]
into corresponding ones with dimensions

L × M , appropriately referring to the nodal points of the two interface lines f i
j=1, f i

j=2, respectively.
Finally, it is worth noting that beams placed along the boundary of the plate are treated as every other stif-

fening beam, since the lines of action of the integrated interface force components qi
x j , qi

y j and qi
z j ( j = 1, 2)

will also be internal ones, taking special care during the numerical evaluation of the line integrals in order to
avoid their “near singular integral behavior”. According to this, boundary elements that are very close to each
other (distance smaller than their length) are divided in sub elements, in each of which Gauss integration is
applied [9].

Table 3 Deflections wp (mm) of the stiffened plate of Example 2

Including inplane forces Ignoring inplane forces

With shear deformation Without shear With Shear Without shear
(present study) deformation deformation deformation

Center −2.7048E−02 −3.5496E−03 −2.7528E − 02 −5.1296E−03
Middle of the free edge A −6.1369E−02 −6.8369E−04 −4.8232E − 02 1.6856E−04
Middle of the free edge C 7.4194E−01 9.3331E−01 1.0525E + 00 1.2419E+00

AEM
Including Inplane Forces & Without Shear deformation
Including Inplane Forces & With Shear deformatio n
Ignoring Inplane Forces & Without Shear deformation
Ignoring Inplane Forces & With Shear deformation

                                                 FEM
Without Shear deformation
With Shear deformation
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Fig. 9 Deflections along the free edge C of the stiffened plate of Example 2 using the proposed (AEM) method and a FEM
solution [26]
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4 Numerical examples

On the basis of the analytical and numerical procedures presented in the previous sections, a computer program
has been written and representative examples have been studied to demonstrate the efficiency and the range
of applications of the developed method. Moreover, in some cases in order to demonstrate the effectiveness
of the proposed method its numerical results are compared with those obtained from a FEM solution using
a commercial code [26] and employing a shell-beam model (modeling the plate with shell elements and the
beam with beam ones ignoring torsional warping effects) using rigid offsets for the plate–beam connection, as
this is shown in Fig. 4.

Example 1 A concrete C20/25(E = 2.9×107 kPa,µ = 0.0) rectangular plate with dimensions a×b = 18.0×
9.0 m subjected to a uniform load g = 10 kN/m2 and stiffened by two concrete C20/25(Eb = 2.9 × 107 kPa,
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Fig. 10 Interface forces q I V
x , q I V

z of the beam IV of the stiffened plate of Example 2
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µb = 0.0) rectangular beams of 1.0 m width placed at its free sides (Fig. 5) has been studied. The plate is
clamped along its small edges, while the other two edges are free according to both its transverse and inplane
boundary conditions, while the beams are also clamped at their edges according to their transverse, axial and
torsional boundary conditions. The obtained deflections of the stiffened plate in Table 1 at its center and at the
middle of the free edges A and C (Fig. 5) and in Fig. 6 along the free edges, taking into account or ignoring
inplane forces and shear deformation effect are presented demonstrating the significant influence of the inplane
forces and the effect of shear deformation especially at the middle of the free edges (numbers in parentheses in
the table indicate % discrepancy). In Figs. 6 and 7 the obtained values of the deflection surface of the stiffened
plate are compared with those obtained from a FEM solution using a commercial code [26] as explained before.
Moreover, in Table 2 the bending moments Mi

by,Mi
bz , the warping moment Mi

bw and the axial force N i
b of

the beams i = 1, 2 of the stiffened plate at midspan and at the beam edges are presented taking into account
or ignoring inplane forces and shear deformation effect. From the aforementioned table as it is observed the
magnitude of the transverse bending moment Mi

bz and the warping moment Mi
bw is considerable and should

not be neglected as it usually happens in the analysis of projects. It is worth here noting that the evaluation of
the bending moments Mi

by,Mi
bz is accomplished employing the relations
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Fig. 11 Contour lines of the total displacement component dp (mm) of the stiffened plate of Example 2 taking into account (a)
or ignoring (b) shear deformation effect
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while the warping moment Mi
bw is evaluated using Eq. (27b).

Example 2 A concrete C20/25(E = 2.9 × 107 kPa, µ = 0.0) rectangular plate with dimensions a × b =
18.0×9.0 m subjected to eccentric uniform load g = 15 kN/m2 and stiffened by four steel (Ei

b = 2.1×108 kPa,
µi

b = 0.3) I-section beams symmetrically placed (Fig. 8) has been studied. The plate is clamped along its small
edges, while the other two edges are free according to both its transverse and inplane boundary conditions,
while the beams are also clamped at their edges according to their transverse, axial and torsional boundary
conditions. The obtained deflections of the stiffened plate in Table 3 at its center and at the middle of the free
edges A and C (Fig. 8) and in Fig. 9 along the free edge C, taking into account or ignoring inplane forces and
shear deformation effect are presented demonstrating again the conclusions already drawn from Example 1,
while the results of Fig. 9 are compared with those obtained from a FEM solution using a commercial code [26]
as explained before. In Fig. 10 the obtained interface forces q I V

x , q I V
z of the beam IV (Fig. 8) of the stiffened

plate taking into account or ignoring shear deformation effect are presented demonstrating the effect of shear

deformation at the beams ends. Moreover, in Fig. 11 the total displacement component dp =
√(

u2
p + v2

p

)
taking into account or ignoring shear deformation effect are presented. From the aforementioned figures the
conclusions already drawn from Example 1 are verified.
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Example 3 A concrete C20/25(E = 2.9 × 107 kPa, µ = 0.0) rectangular plate with dimensions a × b =
18.0×9.0 m subjected to eccentric uniform loading g = 20 kN/m2 and stiffened by five concrete C35/40(Eb =
3.35 × 107 kPa, µb = 0.2) I-section beams symmetrically placed (Fig. 12) forming a bridge deck has been
studied. The plate along its small edges is simply supported according to its transverse boundary conditions,
clamped according to its inplane ones, while the other two edges are free according to both its transverse and
inplane boundary conditions. The beams at their edges are also simply supported according to their bending
boundary conditions and clamped according to their axial and torsional ones. In Table 4 the obtained deflections
of the stiffened plate at its center and at the middle of the free edges A and C (Fig. 12) and in Fig. 13 the
deflection surfaces are presented taking into account or ignoring inplane forces and shear deformation effect.
Finally, in Fig. 14 the obtained deflections wi

b, v
i
b of each stiffening beam are presented taking into account or

ignoring shear deformation effect. From the aforementioned table and figures the conclusions already drawn
are once again verified.

Table 4 Deflections wp (mm) of the stiffened plate of Example 3

Including inplane forces Ignoring inplane forces

With shear deformation Without shear With shear Without shear
(present study) deformation deformation deformation

Center 1.1094E + 00 8.9581E−01 7.2096E + 00 7.1152E + 00
Middle of the free edge A −9.3156E − 02 −6.6141E−02 2.5232E − 01 1.8170E − 01
Middle of the free edge C 9.6674E − 01 7.1705E−01 7.3523E + 00 7.2615E + 00

(a)
Present study: 

pmax w 1.287mm=

(b)
 Ignoring inplane 
forces and shear 

deformation effect: 

pmax w 8.326mm=

Fig. 13 Deflection surface of the stiffened plate of Example 3 taking into account (a) or ignoring (b) inplane forces and shear
deformation effect
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Fig. 14 Deflections wi
b, v

i
b of the beams of the stiffened plate of Example 3 taking into account (a) or ignoring (b) shear

deformation effect

5 Concluding remarks

A general solution for the analysis of shear deformable stiffened plates subjected to arbitrary loading is
presented. The main conclusions that can be drawn from this investigation are

a. The proposed model permits the study of a stiffened plate subjected to an arbitrary loading, while both the
number and the placement of the nonintersecting stiffening beams are also arbitrary (eccentric beams are
also included).

b. The proposed model permits the evaluation of both the longitudinal and the transverse inplane shear forces
at the interfaces between the plate and the beams, the knowledge of which is very important in the design
of prefabricated plate beams structures (estimation of shear connectors in both directions).

c. The evaluated lateral deflections of the plate–beams system are found to exhibit considerable discrepancy
from those of other models, which neglect inplane and axial forces and deformations.

d. In some cases, the influence of the shear deformation effect to the deflections at midspan, to the interface
forces at the beam ends and to the stress resultants is remarkable and should not be neglected.

e. The magnitude of the transverse bending moment and of the warping moment is considerable and should
not be neglected as it usually happens in the analysis of projects.
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f. In some cases the discrepancy of the normal stresses arising from the ignorance of either the inplane forces
and deformations or the shear deformation effect necessitates the inclusion of these effects in the analysis
of stiffened plates.
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