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Abstract This paper deals with the paradoxical properties of the solution of string vibration under a moving
mass. The solutions published to date are not simple enough and cannot be applied to investigations in the entire
range of mass speeds, including the overcritical range. We propose a formulation of the problem that allows us
to reduce the problem to a second-order matrix differential equation. Its solution is characteristic of all features
of the critical, subcritical, and overcritical motion. Results exhibit discontinuity of the mass trajectory at the
end support point, which has not been previously reported in the literature. The closed solution in the case of
a massless string is analyzed and the discontinuity is proved. Numerical results obtained for an inertial string
demonstrate similar features. Small vibrations are analyzed, which is why the effect discussed in the paper is
of purely mathematical interest. However, the phenomenon results in complexity in discrete solutions.

Keywords Moving mass · Vibrations of string · Inertial load

1 Introduction

Inertial loads moving on strings and beams with sub- or supercritical speed are of special interest. Theoretical
solutions are applied to many practical problems: train–track interaction, vehicle–bridge interaction, panto-
graph collectors in railways, magnetic rails, guideways in robotic solutions, etc. The problem has been widely
treated in literature. Attempts to find a solution to this problem started in the middle of the 19th century.
However, we do not yet have a complete closed analytical solution. The term describing the concentrated mass
motion is the reason for difficulties. Differential equations with variable coefficients, which except for a few
cases do not have analytical solutions, pose serious limitations on closed solutions. These types of equations
are finally solved by numerical means.

In the literature numerous historical reviews concerning the moving-loads problem exist (for example, [1–
3]). In most cases the moving massless constant force was considered as a moving load. This type of problem
results in closed solutions. Unfortunately, the problem of inertial loads is still open. Saller [4] considered the
moving mass for the first time. He proved, in spite of essential simplifications, the significant influence of the
moving mass in beam dynamics. In the 1930s two important contributions for researchers working in the field
of moving loads appeared. Inglis [5] applied simplifications and the solution was expressed with only the first
term of the trigonometric series; the time function obeyed a second-order differential equation with variable
coefficients. This equation was derived considering the acceleration under the moving mass, expressed by the
so-called Renaudot formula. In fact this is the derivative with constant velocity, computed with the chain rule.
The final solution of the differential equation with variable coefficients was proposed as an infinite series,
which approaches the solution.
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Schallenkamp [6] proposed another approach to the problem of moving masses. However, his attempt
allows us to describe the motion only under the moving mass. The method of separation of variables by
the expansion of the unknown function into a sine Fourier series was applied. Boundary conditions in the
beam were taken into account in a natural way. The ordinary differential equation that describes the motion
under the moving mass was expressed in generalized coordinates by using the second Lagrange equations.
The generalized force was derived from the principle of virtual work. Schallenkamp’s approach is relatively
complex and converges slowly since the final solution is expressed in terms of a triple infinite series.

The works of Inglis and Schallenkamp can be considered as the basis for the analysis of the problem of
moving mass in successive works such as [7–9] amongst others. An excellent and important monograph in this
field was written by Szcześniak [10], in which one can find hundreds of references concerning moving loads on
beams and strings. In [11] the authors consider a simply supported beam modeled by Bernoulli–Euler theory.
The equation of motion is written in integral–differential form with Green function terms. In order to compute
this equation a dual numerical scheme has been used: a backward difference technique was applied to treat
the time parameter while numerical integration was used for the spatial parameter. This solution approach,
though applicable to higher velocities, still requires complex mathematical operations. Each solution enables
us to determine displacements under the moving load only and does not give solutions for a wide range of the
parameters x and t . Only one closed analytical solution can be found in the literature. Smith [12] proposed a
purely analytical solution for an inertial moving load, however, only in the case of the massless string. The basic
motion equation without the term that describes the string inertia was transformed to the hypergeometrical
equation, which has an analytical solution in terms of infinite series. Frýba [13] applied the same approach and
found a closed analytical solution for the particular case α′ = 1. However, the formula given in [13] contains
mistakes.

Recent papers have contributed the analysis of complex problems of structures subjected to moving inertial
loads [14] or oscillators [15–17]. Variable speed was analyzed in [18–20]. Equivalent mass influence is ana-
lyzed in [21]. An infinitely long string subjected to a uniformly accelerated point mass was also treated [22]
and the analytical solution of the problem concerning the motion of an infinite string on a Winkler foundation
subjected to an inertial load moving at a constant speed has been given [23].

In the paper we consider small vibrations of massless and massed strings subjected to a moving inertial
load and propose an analytical–numerical solution of the problem. The final solution has the form of a matrix
differential equation of second order. Numerical integration results in a solution for the full range of the veloc-
ity, including undercritical and overcritical regimes. It exhibits discontinuity of the mass trajectory at the end
support point, a new feature which has not been reported in literature. The closed solution in the case of the
massless string is analyzed and its discontinuity is proved mathematically. Fully numerical results obtained for
the inertial string demonstrate a similar feature. Since small vibrations are analyzed, the discontinuity effect
discussed in the paper is of purely mathematical interest.

Results are compared with approached numerical solutions obtained by the finite element method. The
string is subjected to a moving oscillator. In the case of the rigid spring we approach the analytical solution.
However, in the case of higher speed (v > 0.2c) the accuracy of the finite element method (FEM) solution is
poor.

2 Analytical formulation

Let us consider a string of the length l, cross-sectional area A, mass density ρ, tensile force N , subjected to a
mass m accompanied by a force P (Fig. 1), moving with a constant speed v. The motion equation of the string
under a moving inertial load with a constant speed v has the form

− N
∂ 2u(x, t)

∂ x 2 + ρ A
∂ 2u(x, t)

∂ t 2 = δ(x − vt) P − δ(x − vt) m
∂ 2u(vt, t)

∂ t 2 . (1)

We impose boundary conditions
u(0, t) = 0 u(l, t) = 0 (2)

and initial conditions

u(x, 0) = 0
∂ u(x, t)

∂ t

∣
∣
∣
∣
t = 0

= 0 . (3)
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Fig. 1 Moving inertial load

In order to reduce the partial differential equation to an ordinary differential equation, we apply the Fourier
sine integral transformation in a finite range (i.e., the finite length of the string) (4), (5)

V ( j, t) =
l∫

0

u(x, t) sin
jπx

l
dx (4)

u(x, t) = 2

l

∞
∑

j=1

V ( j, t) sin
jπx

l
. (5)

We can present each of the functions as an infinite sum of sine functions (5) with corresponding coefficients
(4). Then the expansion of the moving mass acceleration in a series takes the form

∂ 2u(vt, t)

∂ t 2 = 2

l

∞
∑

k=1

[

V̈ (k, t) sin
kπvt

l
+ 2kπv

l
V̇ (k, t) cos

kπvt

l
− k2π2v2

l2 V (k, t) sin
kπvt

l

]

. (6)

The integral transformation (4) of Eq. (1) with consideration of (6) can be performed:

N
j2 π2

l2 V ( j, t) + ρ A V̈ ( j, t) = P sin
jπct

l
− m

∂ 2u(vt, t)

∂ t 2

l∫

0

δ(x − vt) sin
jπx

l
dx . (7)

The integral containing the delta Dirac function in the above equation is

l∫

0

δ(x − vt) sin
jπx

l
dx = sin

jπvt

l
. (8)

Let us now consider (6) and (8):

N
j2 π2

l2 V ( j, t) + ρ A V̈ ( j, t) = P sin
jπvt

l
− 2m

l

∞
∑

k=1

V̈ (k, t) sin
kπvt

l
sin

jπvt

l

−2m

l

∞
∑

k=1

2kπv

l
V̇ (k, t) cos

kπvt

l
sin

jπvt

l

+ 2m

l

∞
∑

k=1

k2π2v2

l2 V (k, t) sin
kπvt

l
sin

jπvt

l
. (9)

Finally, the motion equation after Fourier transformation can be written

ρ A V̈ ( j, t) + α

∞
∑

k=1

V̈ (k, t) sin ωk t sin ω j t + 2α

∞
∑

k=1

ωk V̇ (k, t) cos ωk t sin ω j t

+ �2 V ( j, t) − α

∞
∑

k=1

ω2
k V (k, t) sin ωk t sin ω j t = P sin ω j t , (10)
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where

ωk = kπv

l
, ω j = jπv

l
, �2 = N

j2π2

l2 , α = 2m

l
. (11)

The analytical solution for this problem does not exist. We must solve this final equation numerically. Thus
we obtain a semi-analytical solution. Equation (10) is written in a matrix form, where M, C, and K are square
matrices ( j, k = 1 . . . n):

M

⎡

⎢
⎢
⎢
⎣

V̈ (1, t)
V̈ (2, t)

...

V̈ (n, t)

⎤

⎥
⎥
⎥
⎦

+ C

⎡

⎢
⎢
⎢
⎣

V̇ (1, t)
V̇ (2, t)

...

V̇ (n, t)

⎤

⎥
⎥
⎥
⎦

+ K

⎡

⎢
⎢
⎣

V (1, t)
V (2, t)

...
V (n, t)

⎤

⎥
⎥
⎦

= P (12)

or
MV̈ + CV̇ + KV = P , (13)

where

M =

⎡

⎢
⎢
⎣

ρ A 0 · · · 0
0 ρ A · · · 0
...

...
. . .

...
0 0 · · · ρ A

⎤

⎥
⎥
⎦
+ α

⎡

⎢
⎢
⎢
⎢
⎢
⎣

sin 1πvt
l sin 1πvt

l sin 1πvt
l sin 2πvt

l · · · sin 1πvt
l sin nπvt

l

sin 2πvt
l sin 1πvt

l sin 2πvt
l sin 2πvt

l · · · sin 2πvt
l sin nπvt

l

...
...

. . .
...

sin nπvt
l sin 1πvt

l sin nπvt
l sin 2πvt

l · · · sin nπvt
l sin nπvt

l

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (14)

C = 2α

⎡

⎢
⎢
⎢
⎢
⎣

1πv
l sin 1πvt

l cos 1πvt
l

2πv
l sin 1πvt

l cos 2πvt
l · · · nπv

l sin 1πvt
l cos nπvt

l
1πv

l sin 2πvt
l cos 1πvt

l
2πv

l sin 2πvt
l cos 2πvt

l · · · nπv
l sin 2πvt

l cos nπvt
l

...
...

. . .
...

1πv
l sin nπvt

l cos 1πvt
l

2πv
l sin nπvt

l cos 2πvt
l · · · nπv

l sin nπvt
l cos nπvt

l ,

⎤

⎥
⎥
⎥
⎥
⎦

(15)

K =

⎡

⎢
⎢
⎢
⎢
⎣

12π2

l2 N 0 · · · 0

0 22π2

l2 N · · · 0
...

...
. . .

...

0 0 · · · n2π2

l2 N

⎤

⎥
⎥
⎥
⎥
⎦

(16)

−α

⎡

⎢
⎢
⎢
⎢
⎢
⎣

12π2v2

l2 sin 1πvt
l sin 1πvt

l
22π2v2

l2 sin 1πvt
l sin 2πvt

l · · · n2π2v2

l2 sin 1πvt
l sin nπvt

l

12π2v2

l2 sin 2πvt
l sin 1πvt

l
22π2v2

l2 sin 2πvt
l sin 2πvt

l · · · n2π2v2

l2 sin 2πvt
l sin nπvt

l
...

...
. . .

...
12π2v2

l2 sin nπvt
l sin 1πvt

l
22π2v2

l2 sin nπvt
l sin 2πvt

l · · · n2π2v2

l2 sin nπvt
l sin nπvt

l

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

P = P

⎡

⎢
⎢
⎢
⎢
⎣

sin 1πvt
l

sin 2πvt
l

...

sin nπvt
l

⎤

⎥
⎥
⎥
⎥
⎦

. (17)

When the coefficients V ( j, t) are computed, the displacements of the string (5) can be found as a solution of
(1). This solution has full range and we can calculate the displacement at each point of the string and and for
all values of v. We see that, assuming ρ = 0 in (14), we have the formulation for the massless string.

3 Results

First we present the moderate convergence rate of the series which constitutes the solution (Fig. 2). We denote
the wave speed in the unloaded string by c (c2 = N/ρ A). Further figures will exhibit the vertical deflection of
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Fig. 2 Trigonometric series convergence for v = 0.2c
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Fig. 3 Inertial string—displacements computed semi-analytically

the string u related to the deflection in the quasistatic mass motion in the middle of the span u0. We can notice
that the first term is already close to the exact solution. Three or five terms are sufficient for an accurate result
in the engineering sense. We must emphasize here that higher mass speeds, for example, 0.9c or c, require as
many as 100 terms and a short time step for the time integration of the differential equation, since the solution
exhibits small jumps near the final support. The plot for the various velocity values v is shown in Fig. 3.

Let us look at the diagrams of the displacements of the string at the point under the mass. A diagram
for various masses related to the string mass is shown in Fig. 4 for a speed of v = 0.2c. A more detailed
presentation of the string motion is given in Fig. 5. We can notice the sharp edge of the wave and reflection
from both supports. Moreover, the wave reflection from the traveling mass is clearly visible, especially for the
case v = 1.2c. Both the mass trajectory and waves are depicted.

The convergence near the end point is depicted in Fig. 6. The mass trajectory is plotted for increasing
numbers of term at a speed of v = 0.5c. We note that the function tends slowly to the jump at x = l. All
characteristic lines are smooth. The convergence rate is low and, especially near x = l, the number of terms
used must be at least then 50. In the high velocity range (in our case v > 0.8) a sufficiently short time step for
the integration of (13) must be applied (even 10−5) to avoid small oscillations of the solution in the last stage.

Supersonic motion of the mass results in zero displacement. In the diagram obtained numerically this value
oscillates with low amplitude. The amplitude decreases with increasing numbers of terms in the sum (Fig. 7).

Analytical results were compared with numerical solutions obtained by the finite element method. The
string was discretized by a set of 100 finite elements and was subjected to an oscillator moving over the span.
Two autonomous systems were considered: a string subjected to a contact force between the oscillator spring
and the string, and the oscillator itself, subjected to a force P applied to a mass and displacements determined
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Fig. 4 Displacements under the mass for different mass values at a speed of v = 0.2c
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Fig. 5 Simulation of the string motion under the mass moving at v = 0.2c, 0.5c, 1.0c, and 1.2c

from the string motion, applied to a spring. The oscillator spring stiffness was assumed to be high enough to
simulate a rigid contact of the mass with the string. The results are depicted in Fig. 8.

4 Discontinuity of the solution

The advantages of the solution method presented in the paper allowed us to demonstrate an interesting feature
of the solution near the end support. The resulting diagrams exhibit jumps of the mass displacement in time;
let us consider the physical nature of these jumps. The simplest explanation is based on the force equilibrium
(Fig. 9). We must remember that a constant string tension N is a fundamental assumption in our problem.
Moreover, in Fig. 9 the horizontal force pushing the mass to maintain the speed v must be included in the
scheme. At the final stage (as depicted in Fig. 9) the remaining distance d will be traversed in a time d/v,
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Fig. 8 Finite element solution: displacements of the string under the oscillator
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Fig. 9 Final stage of the moving mass
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Fig. 10 Trajectories for the mass moving on a massless string for: lower number of terms in the sum (left diagram) and higher
number of terms (right diagram)

during which the mass m must be lifted from the position u B to zero. If the deflection u B is high enough
compared with other parameters the necessary acceleration applied to the mass must result in strong forces
in the string F ∼ umv2/d2. In such a case F can exceed N if m or v is sufficiently high. This violates our
assumptions and the condition for the applicability of the equation for small vibrations (∂u/∂x)2 << 1.

Let us consider a massless string, which is a particular case of our problem. The solution is given by a
sum [13]

y(τ ) = 4 α

α − 1
τ (τ − 1)

∞
∑

k=1

k
∏

i=1

(a + i − 1)(b + i − 1)

c + i − 1

τ k

k! , (18)

where τ = vt/ l > 0 is the time parameter and α = Nl/(2mv2) > 0 determines the dimensionless parameter.
The parameters a, b, and c are

a1,2 = 3 ± √
1 + 8 α

2
b1,2 = 3 ∓ √

1 + 8 α

2
c = 2. (19)

In the case of α = 1 the initial problem has a closed solution

u(τ ) = 4

3
τ(1 − τ) − 4

3
τ (1 + 2τ ln(1 − τ) − 2 ln(1 − τ)) . (20)

Here we consider the case of α �= 1. In Fig. 10 we can notice the strong influence of the precision on the
solution near the end support. Let us consider the solution given by (18). The first term τ(τ − 1) is zero for
τ = 1.

∞
∑

k=1

k
∏

i=1

(a + i − 1)(b + i − 1)

c + i − 1

τ k

k! (21)

tends to ∞ if τ → 1. We have an indefinite solution at τ = 1−.
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1

τ

Fig. 11 Discontinuity of the function (18) at τ = 1

1
τ

Fig. 12 Left and right limits at τ = 1

The same result can be obtained on the base of Abel theorem. The power series can be written in the form

∞
∑

k=1

Ak τ k , Ak =
k

∏

i=1

(a + i − 1)(b + i − 1)

(c + i − 1) i
. (22)

In this case limτ→1− Ak τ k = ∞ and y(1−) = 0 · ∞.
In the case a + b < c the series (22) is convergent and there are no singularities. However, this is not our

case. In the case of a + b > c the series diverges (the sum tends to ∞). We have an indefinite value 0 · ∞
while testing the function.

We can also perform another scheme of analysis. Below we will include the term τ(τ − t) in the sum. Thus
(18) can be reduced to the following form:

(1 − τ)

∞
∑

k=1

(ak) (bk)

(ck)

τ k

k! = a b τ

c
+

∞
∑

k=2

(ak−1) (bk−1)

(ck−1)

(
(a + k − 1)(b + k − 1)

k(c + k − 1)
− 1

)
τ k

(k − 1)! (23)

where

(ak) = a (a + 1) · · · (a + k − 1)

(bk) = b (b + 1) · · · (b + k − 1)

(ck) = c (c + 1) · · · (c + k − 1)

By using the Rabbe criterion one can show that for a + b < c + 2 the limit

lim
τ→1

[

(1 − τ)

∞
∑

k=1

k
∏

i=1

(a + i − 1)(b + i − 1)

c + i − 1

τ k

k!

]

is finite. Now we can estimate the value of the sum (23). The sum of the first two to three terms, depending on
the parameters, including abτ/c, is positive. The next terms are all positive. This proves that the sum (23) is
finite and is greater than 0. The function (18) is depicted in Fig. 11.

The case a + b = c + 1 is particular (our set of parameters), for which the convergence is faster.
Let us look at the boundary condition at τ = 1 (Fig. 12). We can say that it is fulfilled. We can imagine the

symmetrical problem, with the mass moving from τ = 2 towards τ = 1 (with opposite direction of the force
P). Then we have two analogous problems at τ = 1. Both limits result in a zero value at τ = 1:

1

2

(

lim
τ→1− y(τ ) + lim

τ→1+ y(τ )

)

= 0 .

We can also consider the derivative dy/dτ . The resulting formula can be derived. For negative P the result is

lim
τ→1−

dy

dτ
= ∞ . (24)
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Fig. 13 Comparison of the particle’s trajectory moving on a massless and inertial string

We can observe the same properties of the solution in the case of the inertial string. A comparative plot is
presented in Fig. 13. We can emphasize that, for lower m/ρ Al ratio, the coincidence of each pair of curves
is greater. However, an analytical proof of discontinuity in the case of an inertial string cannot be obtained
because of the numerical integration stage.

5 Conclusions

Herein we present a global analytical formulation for the vibration problem for a string, both massless and
inertial, subjected to a moving mass. The numerical solution of the resulting second-order matrix differential
equation is relatively simple and is valid for the whole range of speed v (subcritical, critical, and overcritical).
The analysis of the results exhibits a jump of the mass in the neighborhood of the end support. The force acting
on the mass is, however, limited to the tensile force N . Discontinuity of the mass trajectory at x = l exists in
the case 0 < v ≤ c. In the case of a massless string this discontinuity is proven mathematically. In the case
v > c there is no discontinuity, since for x ≥ vt the deflection u(vt, t) = 0.

Unfortunately, we cannot answer the question of whether the string is continuous in the case that the
discontinuity of the particle’s trajectory occurs. The shape of the massless or massed string is not determined
in the analytical form; we can only expect such a discontinuity on the base of numerical results. The particle
motion is continuous only in the trivial case of m = 0. The expression in parenthesis in (23) is equal to zero,
and since α = 0 in (18), finally y(1−) = 0 and y(1) = 0.

We consider small vibrations. Discontinuity in this case is a feature of mathematical rather then practical
interest. However, in various analytical or numerical investigations of problems with a traveling inertial load
one may meet slow convergence of solutions in places where boundary conditions are imposed. Our analysis
can explain anomalies in such cases.
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13. Frỳba, L.: Vibrations of solids and structures under moving loads. Academia, Prague (1972)
14. Wu, J.-J.: Dynamic analysis of an inclined beam due to moving loads. J. Sound Vib. 288, 107–131 (2005)
15. Metrikine, A.V., Verichev, S.N.: Instability of vibration of a moving oscillator on a flexibly supported Timoshenko beam. Arch.

Appl. Mech. 71(9), 613–624 (2001)
16. Pesterev, A.V., Bergman, L.A., Tan, C.A., Tsao, T.-C., Yang, B.: On asymptotics of thesolution of the moving oscillator

problem. J. Sound Vib. 260, 519–536 (2003)
17. Biondi, B., Muscolino, G.: New improved series expansion for solving the moving oscillator problem. J. Sound Vib. 281, 99–

117 (2005)
18. Andrianov, I.V., Awrejcewicz, J.: Dynamics of a string moving with time-varying speed. J. Sound Vib. 292, 935–940 (2006)
19. Michaltsos, G.T.: Dynamic behaviour of a single-span beam subjected to loads moving with variable speeds. J. Sound

Vibr. 258(2), 359–372 (2002)
20. Gavrilov, S.N., Indeitsev, D.A.: The evolution of a trapped mode of oscillations in a string on an elastic foundation G moving

inertial inclusion system. J. Appl. Math. Mech. 66(5), 852–833 (2002)
21. Gavrilov, S.N.: The effective mass of a point mass moving along a string on a Winkler foundation. J. Appl. Math.

Mech. 70(4), 641–649 (2006)
22. Rodeman, R., Longcope, D.B., Shampine, L.F.: Response of a string to an accelerating mass. J. Appl. Mech. 98(4), 675–

680 (1976)
23. Kaplunov, Y.D.: The torsional oscillations of a rod on a deformable foundation under the action of a moving inertial load (in

Russian). Izv Akad Nauk SSSR, MTT 6, 174–177 (1986)


	Introduction
	Analytical formulation
	Results
	Discontinuity of the solution
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


