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Abstract In this paper, we consider the instability of the interface between two superposed streaming
conducting and dielectric fluids of finite depths through porous medium in a vertical electric field varying
periodically with time. A damped Mathieu equation with complex coefficients is obtained. The method of
multiple scales is used to obtain an approximate solution of this equation, and then to analyze the stability
criteria of the system. We distinguish between the non-resonance case, and the resonance case, respectively.
It is found, in the first case, that both the porosity of porous medium, and the kinematic viscosities have
stabilizing effects, and the medium permeability has a destabilizing effect on the system. While in the second
case, it is found that each of the frequency of the electric field, and the fluid velocities, as well as the medium
permeability, has a stabilizing effect, and decreases the value of the resonance point, while each of the porosity
of the porous medium, and the kinematic viscosities has a destabilizing effect, and increases the value of the
resonance point. In the absence of both streaming velocities and porous medium, we obtain the canonical form
of the Mathieu equation. It is found that the fluid depth and the surface tension have a destabilizing effect on
the system. This instability sets in for any value of the fluid depth, and by increasing the depth, the instability
holds for higher values of the electric potential; while the surface tension has no effect on the instability region
for small wavenumber values. Finally, the case of a steady electric field in the presence of a porous medium is
also investigated, and the stability conditions show that each of the fluid depths and the porosity of the porous
medium ε has a destabilizing effect, while the fluid velocities have stabilizing effect. The stability conditions
for two limiting cases of interest, the case of purely fluids), and the case of absence of streaming, are also
obtained and discussed in detail.

Keywords Hydrodynamic stability · Conducting and dielectric fluids · Electrohydrodynamics ·
Flows through porous media · Multiple scales method

1 Introduction

Electrohydrodynamics, which can be explained by the classical theory of electricity and magnetism, has
recently received a great deal of attention from many researchers [1–4]. The theory suggests that the Maxwell
stresses develop body forces in a fluid, loading to localized fluid motions. Electrohydrodynamic effects and
flows are of central importance in many problems of colloidal hydrodynamics especially for the separation of
charged particles, as occurs during electrophoresis of colloids, proteins, DNA, cells and many other particles
of biological interest. Often in studying the polarization electrohydrodynamics of poorly conducting dielectric
liquids, alternating high voltage is employed to prevent the buildup of free charge on the surface of the liquid
[5,6]. The liquids used typically have charge relaxation times on the orders of seconds, and if alternating voltage
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of a sufficiently high frequency f is not used, charge accumulation at the surface can result in either of two
basic interfacial instabilities [7,8]. The criterion for avoiding these instabilities is simply related to the charge
relaxation time τ0 [5], f � 1/τ0 = σt/εt , where σt and εt are the liquid properties of electrical conductivity
and dielectric constant. Even if the above inequality is satisfied, however, the surface may be still subject
to parametric interfacial instability. Only one of the few papers on parametric surface electrohydrodynamics
considers the case of a tangential time-varying electric field at dielectric boundaries [9], but this paper does
not consider the situation of a strong electric field gradient. Other papers by Reynolds [10], and Yih [11] are
restricted to the case of a perpendicular electric field at fair to good conducting liquid surfaces. On the other
hand the parametric interfacial dynamics of oscillating or vibrating liquid systems have been under study for
some time. Hasegawa [12] has studied the stability of the interface between two-liquid layers of finite depth
under the action of a vertical oscillation, and showed that parametric resonance is possible only when the
amplitude of the vertical oscillation exceeds a threshold value. It is possible that a time-varying electric field
could be employed in an analogous fashion to suppress this instability [13].

The stability of a horizontal fluid interface between a conducting and a non-conducting fluids in the presence
of transverse electric field has been studied experimentally by Taylor and McEwan [14]. It has been shown
that the interface becomes unstable under the action of a sufficiently great electric field. Yih [11] extended the
investigation to ac electric fields and showed that the interface can be unstable even if the electric field is at all
times weaker than that needed for stability in the case of a steady field [15–19], and that when instability occurs
the waves may either be synchronous with the electric field or have twice its frequency. On the other hand,
the natural frequency of gravitational capillary waves on the interface of a fluid in an electric field depends
on the field strength. In an alternating field the natural frequency is a periodically varying parameter. Hence,
parametric excitation of instability of the surface and the initiation of parametric waves are possible in an
alternating electric field. Due to energy dissipation there must be a threshold of parametric instability. The
threshold values of the field intensity can be found within the framework of linear stability theory [20,21].
For excellent reviews about the subject of electrohydrodynamics, see the monographs of Landau and Lifshitz
[22], Melcher [23], and Castellanos [24].

The phenomena of parametric resonance arises in many branches of physics and engineering. The treatment
of parametric excitation systems having distinct natural frequencies is usually operated by using the multiple
time scales method [25]. The behavior of such systems is described by an equation of the Hill or Mathieu type
[26]. It is well known that the instability of the solutions of such equations may be described by means of the
characteristic curves of Mathieu functions which admit regions of resonance instability. Grigor’ev et al. [27]
studied the instability of capillary-gravity waves at the charged flat interface between two media when the upper
medium moves parallel to the interface with a velocity that has constant and time-dependent components. They
showed that the temporal evolution of capillary wave amplitudes in such a system is described by the Mathieu–
Hill equation. González et al. [28] presented a temporal, linear, modal stability analysis for conducting liquid
jets in air subjected to time periodic electric fields. The field is originated by a mixed ac-dc potential difference
between the jet and a long coaxial cylindrical electrode.

Flows through porous media have been a subject of great interest for the last several decades. This interest
was motivated by numerous engineering applications in various disciplines, such as geophysical thermal and
insulation engineering, the modelling of packed sphere beds, the cooling of electronic systems, groundwater
hydrology, chemical catalytic reactors, ceramic processes, grain storage devices, fiber and granular insulation,
petroleum reservoirs, coal combustors, ground water pollution and filtration processes, to name just a few
of these applications [29,30]. Much of the recent work on this topic is reviewed by Nield and Bejan [31],
Vafai [32], and Pop and Ingham [33]. In most previous studies on porous media, treatments based on Darcy’s
law have been considered. However, it is well known that Darcy’s law is an empirical formula relating the
pressure gradient, the bulk viscous resistance and the gravitational force in a porous medium. In this case, the
usual viscous term in the equation of motion is replaced by the resistive term −(µ/k1)v, where µ is the fluid
viscosity, k1 is the medium permeability, and v is the Darcian (filter) velocity of the fluid. For an excellent
work about electrohydrodynamic flow in porous medium, see ref. [34]

In this paper, the instability of the interface between two superposed streaming conducting and dielectric
fluids through porous medium in a vertical electric field varying periodically with time is considered. This
problem, which to the best of my knowledge has not been investigated yet, finds its usefulness in chemical
engineering and several geophysical situations, since in many geophysical fluid dynamical problems encoun-
tered, the fluids are dielectric or conducting and the periodic electric field of the Earth pervades the system.
Because of the time dependence of the electric field, the simple equation of force balance can no longer be
utilized to obtain the stability criterion, and the hydrodynamics of the fluids as well as of the porous medium
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Fig. 1 Defination sketch of the problen

must be taken into account. When this is done, and both the viscosity and medium permeability are included
due to Darcy’s law, the stability of the interface can be shown to be governed by a damped Mathieu equation
with complex coefficients which depend on the gravitational acceleration, surface tension, magnitude and
frequency of the periodic electric field, depths, fluid velocities, kinematic viscosities, porosity of the porous
medium, and the medium permeability. Some limiting cases are also considered, and the obtained stability
results are outlined in a conclusions section at the end of the paper.

2 Basic equations and equilibrium state

We consider here two superposed incompressible inviscid fluids streaming through porous medium in the
presence of an unsteady electric field. The upper fluid, which can be a gas or a liquid, with constant density
ρ(1) and velocity (V (1), 0, 0) is taken to be nonconducting, and the lower fluid, which is invariably a liquid,
with density ρ(2)(> ρ(1)) and velocity (V (2), 0, 0) is conductive of electricity. The xoy plane is taken to be
coincide with the unperturbed middle level separating the two fluids, and the positive z-axis in the upward
direction normal to the unperturbed fluid surfaces. The upper dielectric fluid is bounded above by an electrode
with potential φ(1) and below by the interface, has depth h1, and the lower conducting fluid is bounded below
by an electrode with potential [35,36]

φ(2) = φ0 cos(� t) (1)

has depth h2, see Fig. 1. In Eq. (1), t is the time and � is the circular frequency of φ(2). Both the fluids are
assumed to be irrotational, then the fluid velocity v can be derived from a scalar velocity potential ψ , such that
v = ∇ψ .

The basic equations of motion and continuity of the problem for the nonconducting and conducting fluids
are as follows:

1. For nonconducting fluids [37]

ρ(1)

ε

[
∂v(1)

∂t
+ 1

ε
(v(1)·∇)v(1)

]
= −∇ P(1) + K

8π
∇E (1)2 + ρ(1)g − ρ(1)ν(1)

k1
v(1) (2)

∇·v(1) = 0 (3)

∇2φ(1) = 0 (4)

2. For conducting fluids [37]

ρ(2)

ε

[
∂v(2)

∂t
+ 1

ε
(v(2)·∇)v(2)

]
= −∇ P(2) + ρ(2)g − ρ(2)ν(2)

k1
v(2) (5)

∇·v(2) = 0 (6)

where E(1) = −∇φ(1), is the electric field, g =(0, 0,−g), and K is the dielectric constant.ε is the porosity
of the porous medium, ν(1) and ν(2) are the kinematic viscosities of the upper and lower fluids, respectively;
and k1 is the medium permeability.
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In the equilibrium state, the velocity and pressure distributions in the two fluids are given by [37]

v(1) = (V (1), 0, 0) and v(2) = (V (2), 0, 0) (7)

P(1)0 = P0 − ρ(1)gz + ρ(1)ν(1)

k1
ψ
(1)
0 (8)

P(2)0 = P0 − K E2
0

8π
− ρ(2)gz + ρ(2)ν(2)

k1
ψ
(2)
0 (9)

where ψ(1),(2)0 = V (1),(2)x+ constant, is the zero order of the velocity potential, and P0 is the hydrostatic
pressure at the interface.

The electric potential φ is simply φ(2) in the conducting fluid, so that the electric field in that fluid is zero.
In the nonconducting fluid [11]

φ = φ(2) +
(
φ(1) − φ(2)

h1

)
z (10)

so that the vertical electric field in that fluid is [11]

E(1) =
(
φ(2) − φ(1)

h1

)
k (11)

where k is the unit vector in the z-direction.

3 Formulation of the stability problem

Suppose that the interface of the two fluids is slightly disturbed, as that at any time, it is described by the
equation [11]

δz = ζ = a(t) exp(ikx + ily) (12)

The electric field and potential in the lower fluid are still given by [11]

E (2) = 0 and φ(2) = φ0 cos� t (13)

But the electric potential of the upper fluid, which must satisfy the Laplace equation and the boundary conditions
(if we now specify φ(1) = −φ(2)) [37]

φ = φ(1) = −φ(2) at z = h1 (14)

φ = φ(2) at z = δz (15)

is given by

φ = φ(2)
[

1 − 2z

h1
− 2 sinh k(z − h1)

h1 sinh kh1
a(t) exp(ikx + ily)

]
(16)

The normal component of the electric stress (tensile) at the interface is, with K indicating the dielectric
constant [11]

K

8π

[(
∂φ

∂x

)2

+
(
∂φ

∂y

)2

+
(
∂φ

∂z

)2
]

(17)

since z = exp(ikx x + iky y) is a surface of constant potential φ(2) (although it varies with time). This stress
component is [11]

σen = K

2π

φ(2)2

h2
1

[
1 + 2α coth(αh1)a(t) exp(ikx + ily)

]
(18)

if terms quadratic in a(t) are neglected, where α = √
k2 + l2. The subscript e indicates that σe is an electric

stress, and the subscript n indicates the normal component.
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Now turning to the hydrodynamics of the fluids, we note that since the lower fluid has no electric field
or magnetic field, its motion is governed by the ordinary hydrodynamic equations. The potential ψ(2)1 for the
motion of the lower fluid is [11]

ψ
(2)
1 = Ã2(t) cosh α(z + h2) exp(ikx + ily)+ G2(t) (19)

which satisfies the boundary condition [37]

∂ψ
(2)
1

∂z
= 0 at z = −h2 (20)

Similarly, the upper fluid, which is free of electric charges, has a constant K , and therefore possesses a velocity
potential [11]

ψ
(1)
1 = Ã1(t) cosh α(z − h1) exp(ikx + ily)+ G1(t) (21)

which satisfied [37]
∂ψ

(1)
1

∂z
= 0 at z = h1 (22)

We are left to deal with the interfacial conditions. There are two such conditions, one kinematic, and the
other dynamic. The kinematic condition is [11]

∂ψ
(1),(2)
1

∂z
=

(
ε
∂

∂t
+ V (1),(2) ∂

∂x

)
δz at z = 0 (23)

and the dynamic condition is [16]

p(2) − p(1) + K

8π
|E|2 − 1

k1
(ρ(2)ν(2)ψ

(2)
1 − ρ(1)ν(1)ψ

(1)
1 ) = α2T δz at z = 0 (24)

T being the surface tension and p the pressure.
Conditions (20), (22), and (23), on using Eqs. (19) and (21) give

Ã1 = − 1

α sinh αh1

(
ε
∂a

∂t
+ ikV (1)a

)
(25)

Ã2 = 1

α sinh αh2

(
ε
∂a

∂t
+ ikV (2)a

)
(26)

Hence, Eqs. (19) and (21) can be written, respectively, in the form

ψ
(1)
1 = − 1

α sinh αh1

(
ε
∂a

∂t
+ ikV (1)a

)
cosh α(z − h1) exp(ikx + ily)+ G1(t) (27)

ψ
(2)
1 = 1

α sinh αh2

(
ε
∂a

∂t
+ ikV (2)a

)
cosh α(z + h2) exp(ikx + ily)+ G2(t) (28)

In order to utilize Eq. (24), it is necessary to use the Bernoulli equations [11]

ρ(1)

ε2

[
ε
∂ψ

(1)
1

∂t
+ V (1) ∂ψ

(1)
1

∂x
+ 1

2
q2

1

]
+ p(1) + ρ(1)gδz = F (1)(t) (29)

ρ(2)

ε2

[
ε
∂ψ

(2)
1

∂t
+ V (2) ∂ψ

(2)
1

∂x
+ 1

2
q2

2

]
+ p(2) + ρ(2)gδz = F (2)(t) (30)

in which q is the speed. Since an arbitrary functions of time has been added to ψ(1)1 and to ψ(2)1 , we can take
F (1)(t) and F (2)(t) to be zero. Neglecting q2, we have [11]

p(2) − p(1)=g(ρ(1) − ρ(2))δz + ρ(1)

ε2

[
ε
∂ψ

(1)
1

∂t
+ V (1) ∂ψ

(1)
1

∂x

]
− ρ

(2)

ε2

[
ε
∂ψ

(2)
1

∂t
+V (2) ∂ψ

(2)
1

∂x

]
(31)
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Substituting from Eqs. (12), (27), and (28) into Eq. (31), we obtain

p(2) − p(1) = g(ρ(1) − ρ(2))a exp(ikx + ily)

− ρ(1)

α
coth αh1

[
da

dt
+ 2ikV (1)

ε

da

dx
− k2V (1)2

ε2 a

]
exp(ikx + ily)− ρ(2)

α
coth αh2

×
[

da

dt
+ 2ikV (2)

ε

da

dx
− k2V (2)2

ε2

]
exp(ikx + ily)+ ρ(1)

ε

dG1

dt
− ρ(2)

ε

dG2

dt
(32)

Putting Eqs. (12), (27), (28), and (32) into Eq. (24), and using the σen in Eq. (18) for the electric term in
Eq. (24), we obtain [11]

K

2π

(
φ(2)

h1

)2

= ρ(2)

ε

(
d

dt
+ εν(2)

k1

)
G2(t)− ρ(1)

ε

(
d

dt
+ εν(1)

k1

)
G1(t) (33)

and

F1
d2a

dt2 + i (F2 − i F3)
da

dt
−

[
F4 − i F5 +

{
Kα2

π

(
φ0

h1

)2

cos2(� t) coth αh1 − F6

}]
a = 0 (34)

where

F1 = ρ(1) coth αh1 + ρ(2) coth αh2 (35)

F2 = 2k

ε

[
ρ(1)V (1) coth αh1 + ρ(2)V (2) coth αh2

]
(36)

F3 = ε

k1

[
ρ(1)ν(1) coth αh1 + ρ(2)ν(2) coth αh2

]
(37)

F4 = k2

ε2

[
ρ(1)V (1)2 coth αh1 + ρ(2)V (2)2 coth αh2

]
(38)

F5 = k

k1

[
ρ(1)ν(1)V (1) coth αh1 + ρ(2)ν(2)V (2) coth αh2

]
(39)

F6 = (ρ(2) − ρ(1))αg + α3T (40)

Equation (34) is the well known damped Mathieu equation with complex coefficients. We now need to determine
the structure of the stability conditions of Eq. (34).

4 Multiple time scales method

We use the method of multiple scales as described by Nayfeh and Mook [38] to obtain an approximate solution
of the damped Mathieu equation (34), and then to analyze the stability criteria of the considered system. We
introduce a fast time scale T0 = t , and a slow time scale T1 = σ t , where σ is a small parameter. The differential
operators can now be expressed as the derivative expansions

d

dt
= ∂

∂T0
+ σ

∂

∂T1
+ σ 2 ∂

∂T2
+ · · · (41)

d2

dt2 = ∂2

∂T 2
0

+ 2σ
∂2

∂T0∂T1
+ σ 2

(
∂2

∂T 2
1

+ 2
∂2

∂T0∂T2

)
+ · · · (42)

We assume also that the solution of Eq. (34) can be written as

a(t; σ) = a0(T0, T1)+ σa1(T0, T1)+ σ 2a2(T0, T1)+ · · · (43)
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Inserting Eqs. (41)–(43) into the damped Mathieu equation (34), collecting terms of like powers of σ , and
then equating these coefficients to zero, because powers of σ are linearly independent, we obtain

F1
d2a0

dT 2
0

+ i (F2 − i F3)
da0

dT0
− [(F4 − F6)− i F5] a0 = 0 (44)

and

F1
∂2a1

∂T 2
0

+ i (F2 − i F3)
∂a1

∂T0
− [(F4 − F6)− i F5] a1 = −2F1

∂2a0

∂T0∂T1

−i (F2 − i F3)
∂a0

∂T1
−

[
Kα2

π

(
φ0

h1

)2

cos2(�T0) coth αh1

]
a0 (45)

The solution of Eq. (44) can be written in the form

a0(T0, T1) = �(T1) exp[(�+ i�)T0] + C.C. (46)

where �(T1) is an unknown complex function of T1, C.C. represents the complex conjugate of the preceding
term, � and � are real. Substituting from Eq. (46) into Eq. (44), and separating the real and imaginary parts,
we obtain

F1(�
2 −�2)+ F3�− F2�− (F4 − F6) = 0 (47)

and

2�

[
�F1 + F2

2

]
= −(F3�+ F5) (48)

Eliminate � between Eqs. (47) and (48), we obtain

4F3
1�

4 + 8F2
1 F2�

3 + [
F1 F2

3 + 5F1 F2
2 + 4F2

1 (F4 − F6)
]
�2 + [

F2 F2
3 + F3

2 + 4F1 F2(F4 − F6)
]
�

+ [−F1 F2
5 + F2 F3 F5 + F2

2 (F4 − F6)
] = 0 (49)

The dispersion relation (49) is a quartic equation in� with real coefficients. To study the properties of the
roots of Eq. (49) can judge the stability of the system. The given system whose characteristic polynomial

L(ω) = �4 + b1�
3 + b2�

2 + b3�+ b4 (50)

has no zero repeated root is stable if and only if [39]

b1 > 0, b2 > 0, b3 ≥ 0, b4 ≥ 0, and b1b2b3 − b2
1b4 − b2

3 ≥ 0 (51)

Comparing Eqs. (49) and (50), and applying the stability conditions (51) to Eq. (49), we find that the first
condition in Eq. (51) is trivially satisfied, and the second and third conditions of Eqs. (51) are satisfied only if
the following condition holds:

F6 ≤ F4 +
(

F2
3 + F2

2

4F1

)
(52)

while the fourth and fifth boundary conditions in Eq. (51) are satisfied only if the following conditions hold:

F1 F2
5 + F6 F2

2 ≤ F2[F3 F5 + F2 F4] (53)

and[
F2

3 + 5F2
2 + 4F1(F4 − F6)

] [
F2

3 + F2
2 + 4F1(F4 − F6)

] − 8F1
[−F1 F2

5 + F2 F3 F5 + F2
2 (F4 − F6)

]
− F2

8F3
1

[
F2

3 + F2
2 + 4F1(F4 − F6)

]3 ≥ 0 (54)

respectively, then the system under consideration is stable only if the conditions in (52)–(54) are simultaneously
satisfied.
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Also, substitute from Eq. (46) into Eq. (45), we obtain

F1
∂2a1

∂T 2
0

+ i(F2 − i F3)
∂a1

∂T0
− [(F4 − F6)− i F5)]a1 =

−
[
{(2F1�+ F3)+ i(2F1�+ F2)} d�

dT1
+

{
Kα2

2π

(
φ0

h1

)2

coth αh1

}
�

]

× exp[(�+ i�)T0] −
{

Kα2

4π

(
φ0

h1

)2

coth αh1[exp{i(�+ 2�)T0}

+ exp{i(�− 2�)T0}]
}

� exp[�T0] + C.C. (55)

Equation (55) contains non-homogeneous terms.

5 Resonance and non-resonance cases

Now, a uniform solution for Eq. (55) is required to eliminate the secular terms. This elimination introduces
the solvability condition corresponding to the terms containing the factor exp[(�+ i�)T0]. Thus, in order to
analyze the solution of Eq. (55), we need to distinguish between two cases. The first one is the non-resonance
case, when the frequency � of the oscillating electric field is not near the frequency �, and the second one is
the resonance case which arises when the frequency � is near �.

5.1 The non-resonance case

In order to obtain a uniformly valid expansion, the coefficient of the factor exp[(�+ i�)T0] in Eq. (55) must
vanish. Thus, we have

d�

dT1
+

Kα2

2π

(
φ0
h1

)2
coth αh1

{(2F1�+ F3)+ i(2F1�+ F2)}� = 0 (56)

This equation can be simplified, using Eqs. (47) and (48), to the form

d�

dT1
− (P1 + i P2)� = 0 (57)

where

P1 =
(F2�+ F5)

{
Kα2

2π

(
φ0
h1

)2
coth αh1

}
�

{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

} (58)

P2 =
(2F1�+ F2)

{
Kα2

2π

(
φ0
h1

)2
coth αh1

}
{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

} (59)

The solution of Eq. (57) can be written as

�(T1) = Â exp[(P1 + i P2)T1] (60)

and this solution shows that stability occurs in the non-resonance case when P1 < 0. Using Eq. (52), we find
that the denominator in Eq. (58) is positive. Therefore the stability condition P1 < 0 holds if F2�+ F5 < 0,
i.e., when� < −(F5/F2), i.e., when the parameter� is less than a negative value. Substituting from Eqs. (26)
and (29), respectively, in this condition, we can conclude that both the porosity of porous medium ε, and the
kinematic viscosities ν(1), ν(2) have stabilizing effects on the considered system in the non-resonance case,
while the medium permeability k1 has a destabilizing effect.
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5.2 The resonance case

In order to obtain a solution in the neighborhood of the resonance case, we express the nearness of� to� by
introducing the detuning parameter ζ according to

� = �+ σζ (61)

and hence
−i(�− 2�)T0 = i�T0 + 2iζT1 (62)

Thus, the secular terms can be eliminated when

d�

dT1
+

Kα2

4π

(
φ0
h1

)2
coth αh1

{(2F1�+ F3)+ i(2F1�+ F2)}
{
2� + � exp(2iζT1)

} = 0 (63)

Equation (63) admits a non-trivial solution of the form [40]

�(T1) = [
β(T1)+ iγ (T1)

]
exp(iζT1) (64)

with real functions β(T1) and γ (T1).
Substituting from Eq. (64) into Eq. (63), and separating the solvability condition into real and imaginary

parts, we obtain the equations governing β and γ in the form⎡
⎢⎢⎣ d

dT1
−

3(F2�+ F5)

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}
�

{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}
⎤
⎥⎥⎦β

−

⎡
⎢⎢⎣ζ −

(2F1�+ F2)

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}
{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}
⎤
⎥⎥⎦ γ = 0 (65)

and ⎡
⎢⎢⎣ζ −

3(2F1�+ F2)

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}
{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}
⎤
⎥⎥⎦β

+

⎡
⎢⎢⎣ d

dT1
−

(F2�+ F5)

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}
�

{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}
⎤
⎥⎥⎦ γ = 0 (66)

These coupled linear equations have the solutions

β(T1) =

⎡
⎢⎢⎣ζ −

(2F1�+ F2)

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}
{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}
⎤
⎥⎥⎦ exp(QT1) (67)

and

γ (T1) =

⎡
⎢⎢⎣Q −

3(F2�+ F5)

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}
�

{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}
⎤
⎥⎥⎦ exp(QT1) (68)
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where the constant Q satisfies the equation

Q2 −
4(F2�+ F5)

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}
�

{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

} Q

+
3(F2�+ F5)

2
{

Kα2

4π

(
φ0
h1

)2
coth αh1

}2

[
�

{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}]2

+

⎡
⎢⎢⎣ζ −

3(2F1�+ F2)

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}
{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}
⎤
⎥⎥⎦

×

⎡
⎢⎢⎣ζ −

(2F1�+ F2)

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}
{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}
⎤
⎥⎥⎦ = 0 (69)

The dispersion relation (69) is a quadratic equation in the growth rate Q. Necessary and sufficient conditions
for stability are therefore governed by the inequalities � < −(F5/F2), and

ζ 2 −
4(2F1�+ F2)

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}
{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}ζ

+
3

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}2 {
(2F1�+ F2)

2 + (2F1�+ F3)
2
}

[{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}]2 > 0 (70)

This inequality can be satisfied when
(ζ − ζ ∗

1 )(ζ − ζ ∗
2 ) > 0 (71)

i.e., when
ζ > ζ ∗

1 and ζ < ζ ∗
2 (ζ ∗

1 > ζ ∗
2 ) (72)

where

ζ ∗
1,2 =

{
Kα2

4π

(
φ0
h1

)2
coth αh1

}
{
8F2

1�
2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2

2 + F2
3

}
×

[
2(2F1�+ F2)±

√
(2F1�+ F2)2 − 3(2F1�+ F3)2

]
(73)

In view of Eq. (72), the stability conditions in the resonance case can be sought in the form

φ1 < φ2
0 < φ2 (74)

where

�1,2 = 4πh2
1(� −�)

3Kα2σ coth αh1
[
(2F1�+ F2)2 + (2F1�− F3)2

]
×

[
2(2F1�+ F2)±

√
(2F1�+ F2)2 − 3(2F1�+ F3)2

]
× {

8F2
1�

2 + 4F1 F2(�+�)+ 4F1(F4 − F6)+ F2
2 + F2

3

}
(75)

The values of φ2
0 as described by Eqs. (74) and (75) are the critical values of the disturbances. These critical

values, which are known as the transition curves, separate the stable from the unstable regions. We shall
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Fig. 2 Variation of φ2
0 × 10−5 (kg m2 s−3/A) with h1 × 10−2 (m) for a system having ρ(1) = 1.293 kg/m3, ρ(2) = 879 kg/m3,

V (1) = 0.003 m/sec, V (2) = 0.005 m/sec, k1 = 0.79 × 10−12 m2, ν(1) = 0.1 × 10−4 m2/sec, ν(2) = 0.6 × 10−4 m2/sec,
ε = 3.3 sec/m, h2 = 0.008 m, k = α = 50 m−1, T = 0.076 kg/sec, g = 9.8 m/sec2, K = 0.56 × 10−10 sec2c2/kg m3, when
� = 20 sec−1 (solid curves), and � = 50 sec−1 (dashed)

Fig. 3 Variation of φ2
0 × 10−5 (kg m2 s−3/A) with h1 × 10−2 (m) for a system having ρ(1) = 1.293 kg/m3, ρ(2) = 879 kg/m3,

k1 = 0.79 × 10−12 m2, ν(1) = 0.1 × 10−4 m2/sec, ν(2) = 0.6 × 10−4 m2/sec, ε = 3.3 sec/m, h2 = 0.008 m, k = α = 50 m−1,
T = 0.076 kg/sec, g = 9.8 m/sec2, K = 0.56 × 10−10 sec2c2/kg m3, � = 20 sec−1, when V (1) = 0 m/sec, V (2) = 0 m/sec
(solid curves), and V (1) = 0.15 m/sec, V (2) = 0.2 m/sec (dashed)

give numerical discussions for the effects of various physical parameters on the stability of the system under
consideration by drawing the transition curves φ2

0 = φ1 and φ2
0 = φ2, respectively, in the (φ2

0 , h1) plane. In the
following figures, Figs. 2, 3, 4, 5 and 6, the letter S denotes stable region, while the letter U denotes unstable
region, respectively. According to the Floquet’s theory [25], the region bounded by the two branches of the
transition curves is unstable, while the area outside them is stable. Note that the value of the parameter �
appears in Eq. (75) is determined by solving Eq. (49) for � and we choose the real root of the solutions.

In Figs. 2, 3, 4, we plot φ2
0 versus h1 for different values of the frequency of the periodic electric field

� , the fluid velocities V (1), V (2), and the medium permeability k1, respectively. It is found that, when the
frequency� is changed from� = 20 sec−1 to the value� = 50 sec−1 in Fig. 2, the fluid velocities V (1), V (2)

are changed from V (1) = 0 m/sec, V (2) = 0 m/sec to V (1) = 0.15 m/sec, V (2) = 0.2 m/sec in Fig. 3, and the
medium permeability k1 is changed from k1 = 0.015 × 10−12 m2 to k1 = 0.098 × 10−12 m2 in Fig. 4, that the
instability region U has decreased, and the resonance point moves towards the left. Then the increase of each
of the frequency of the electric field� , and the fluid velocities V (1), V (2), as well as the medium permeability
k1, has a stabilizing effect on the system, and decreases the value of the resonance point.

In Figs. 5 and 6, we plot φ2
0 versus h1 for different values of the porosity of the porous medium ε, and the

kinematic viscosities ν(1), ν(2), respectively. It is found, when the porosity ε is changed from ε = 0.07 sec/m
to ε = 0.66 sec/m in Fig. 5, and the kinematic viscosities ν(1), ν(2) are changed from ν(1) = 0 m2/sec,
ν(2) = 0 m2/sec to ν(1) = 0.002 cm/sec, ν(2) = 0.0029 cm/sec in Fig. 6, respectively, that the instability region
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Fig. 4 Variation of φ2
0 × 10−5 (kg m2 s−3/A) with h1 × 10−2 (m) for a system having ρ(1) = 1.293 kg/m3, ρ(2) = 879 kg/m3,

V (1) = 0.003 m/sec, V (2) = 0.005 m/sec, ν(1) = 0.1 × 10−4 m2/sec, ν(2) = 0.6 × 10−4 m2/sec, ε = 3.3 sec/m, h2 = 0.008 m,
k = α = 50 m−1, T = 0.076 kg/sec, g = 9.8 m/sec2, K = 0.56×10−10 sec2c2/kg m3,� = 20 sec−1, when k1 = 0.15×10−12 m2

(solid curves), and k1 = 0.098 × 10−12 m2 darcy (dashed)

Fig. 5 Variation of φ2
0 × 10−5 (kg m2 s−3/A) with h1 × 10−2 (m) for a system having ρ(1) = 1.293 kg/m3, ρ(2) = 879 kg/m3,

V (1) = 0.003 m/sec, V (2) = 0.005 m/sec, k1 = 0.79×10−12 m2, ν(1) = 0.1×10−4 m2/sec, ν(2) = 0.6×10−4 m2/sec, h2 = 0.008
m, k = α = 50 m−1, T = 0.076 kg/sec, g = 9.8 m/sec2, K = 0.56 × 10−10 sec2c2/kg m3, � = 20 sec−1, when ε = 0.07 sec/m
(solid curves), and ε = 0.66 sec/m (dashed)

Fig. 6 Variation of φ2
0 × 10−5 (kg m2 s−3/A) with h1 × 10−2 (m) for a system having ρ(1) = 1.293 kg/m3, ρ(2) = 879 kg/m3,

V (1) = 0.003 m/sec, V (2) = 0.005 m/sec, k1 = 0.79 × 10−12 m2, ε = 3.3 sec/m, h2 = 0.008 m, k = α = 50 m−1, T =
0.076 kg/sec, g = 9.8 m/sec2, K = 0.56 × 10−10 sec2c2/kg m3, � = 20 sec−1, when ν(1) = 0 m2/sec, ν(2) = 0 m2/sec (solid
curves), and ν(1) = 0.002 m2/sec, ν(2) = 0.0029 m2/sec (dashed)

U has increased, and the resonance point moves towards the right. Then the increase of each of the porosity
of the porous medium ε, and the kinematic viscosities ν(1), ν(2) has a destabilizing effect on the system, and
increases the value of the resonance point.
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6 Absence of streaming and porous medium

In the absence of both streaming velocities and porous medium, then Eqs. (33) and (34) reduce to the following
forms:

K

2π

(
φ(2)

h1

)2

= ρ(2)G ′
2(t)− ρ(1)G ′

1(t) (76)

and [
ρ(1) coth αh1 + ρ(2) coth αh2

] d2a

dt2 +
{
(ρ(2) − ρ(1))αg + α3T

− Kα2

π

(
φ0

h1

)2

cos2(� t) coth αh1

}
a = 0 (77)

or
d2a

dt2 + [
ω2

0 − b − b cos(2� t)
]

a = 0 (78)

in which

ω2
0 = (ρ(2) − ρ(1))αg + α3T

ρ(1) coth αh1 + ρ(2) coth αh2
, (79)

b =
Kα2

2π

(
φ0
h1

)2
coth αh1

ρ(1) coth αh1 + ρ(2) coth αh2
(80)

Equation (78) can be put in the canonical form of the Mathieu equation

d2a

dτ 2 + [δ1 − 2δ2 cos(2τ)] a = 0 (81)

if we put

τ = � t , δ1 = ω2
0 − b

� 2 , and δ2 = b

2� 2 (82)

Equations (81) and (82) are the same equations obtained earlier by Yih [11] i.e., they can be obtained from
our results in the limiting case of absence of both streaming and porous medium. The stability of the solutions
of Eq. (81) is determined entirely by the coefficients δ1 and δ2. This solution can be written in the form
a = â(τ ) exp(±χτ), where χ = χ(δ1, δ2) is the exponential growth rate. The function â(τ ) is periodic with
fundamental frequency equal to m� (m = 1, 2, 3, …). Jones [13] have shown that the m = 1 solution has its
fundamental harmonic at the frequency of the voltage, and over-all stability of the continuum is determined by
considering all possible wavenumbers. The stability diagram for Eq. (81) is standard [41], and for completeness
is given in Fig. 7 (and also in ref. [11]), which shows that even if b is very small, there may be regions of
instability. Since φ2

0 has a frequency of 2� , not � , the various regions correspond to double frequency and
synchronism of the hydrodynamic oscillations in relation to φ0, instead of synchronism and half-frequency,
respectively. It should be remarked that the instability found here is akin to the one found by Benjamin and
Ursell [42] for the free surface of a liquid in vertical periodic motion.

The stability condition for Mathieu equation (81) reduced to the problem of the bounded regions of the
Mathieu functions for which McLachlan [26] gives the condition for stability as

δ2
2 − 4δ1δ2 + 2δ1(1 − δ1) > 0 (83)

Substituting from Eq. (82) into the stability condition (83), we get

8� 2(ω2
0 − b)+ [

b2 − 8ω2
0(ω

2
0 − b)

]
> 0 (84)

For any arbitrary frequency � , the condition (84) can be satisfied when the following two conditions hold:

ω2
0 > b (85)
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Fig. 7 The stability diagram for the Mathieu equation (81)

and
b2 + 8ω2

0b − 8ω4
0 > 0 (86)

Substitute from Eqs. (79) and (80) into the conditions (85) and (86), we obtain

φ2
0 < Hc, Hc > 0 (87)

and
φ4

0 + 8Hcφ
2
0 − 8H2

c > 0 (88)

where

Hc = 2πh2
1 F6

Kα2 coth αh1
(89)

The inequality (88) can be written in the form[
φ2

0 − 2(
√

6 − 2)Hc

] [
φ2

0 + 2(
√

6 + 2)Hc

]
> 0 (90)

For Hc > 0 (since ρ(2) > ρ(1)) [
φ2

0 − 2(
√

6 − 2)Hc

]
> 0 (91)

The stability occurs only when
3.6Hc < φ2

0 < Hc (92)

Otherwise the system will be unstable, when

Hc < φ2
0 < 3.6Hc (93)
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Fig. 8 Variation of φ2
0 × 10−5 (kg m2 s−3/A) with k × 10−2 (m−1) for a system having ρ(1) = 1.293 kg/m3, ρ(2) = 879 kg/m3,

h2 = 0.8 cm, T = 0.076 kg/sec, g = 9.8 m/sec2, K = 0.56 × 10−10 sec2c2/kg m3, when h1 = 0.005 m (solid curves), and
h1 = 0.006 m (dashed)

Fig. 9 Variation of φ2
0 × 10−5 (kg m2 s−3/A) with k × 10−2 (m−1) for a system having ρ(1) = 1.293 kg/m3, ρ(2) = 879 kg/m3,

h1 = 0.005 m, h2 = 0.008 m, g = 9.8 m/sec2, K = 0.56 × 10−10 sec2c2/kg m3, when T = 0.03 kg/sec (solid curves), and
T = 0.076 kg/sec (dashed)

The values of φ2
0 as described by Eqs. (92) or (93) are the critical values of the disturbances. These critical

values, which are known as the transition curves, separate the stable from the unstable regions. We shall give
numerical discussions for the stability of the system under consideration by drawing the transition curves
φ2

0 < Hc and φ2
0 = 3.6Hc, respectively, in the (φ2

0 , k) plane. In the following Figs. 8 and 9, the letter S denotes
stable region, while the letter U denotes unstable region, respectively. According to the Floquet’s theory [25],
the region bounded by the two branches of the transition curves is unstable, while the area outside them is
stable.

In Figs. 8 and 9, we plot φ2
0 versus k for different values of the porosity of the fluid depth h1, and the surface

tension T , respectively. It is found, when the depth h1 is changed from h1 = 0.005 m to h1 = 0.006 m in Fig. 8,
and the surface tension T is changed from T = 0.03 kg/sec to T = 0.076 kg/sec in Fig. 9, respectively, that
the instability region U has increased. Then the increase of each of the fluid depth h1, and the surface tension
T has a destabilizing effect on the system. Figure 8 shows also that the instability sets in for any value of the
fluid depth h1, and by increasing the depth, the instability holds for higher values of φ2

0 ; while Fig. 9 shows
that the surface tension T has no effect on the instability region for small wavenumber values k till a critical
wavenumber value kc after which the instability region increases by increasing the surface tension parameter T .

7 The case of steady electric field

If the applied electric field is steady, then � = 0; in this case put a(t) = exp(iωt) in Eq. (34), we thus obtain
the following dispersion relation

F1ω
2 + (F2 − i F3) ω +

[
F4 − i F5 + Kα2

π

(
φ0

h1

)2

coth αh1 − F6

]
a = 0 (94)
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Fig. 10 Variation of φ2
0 × 10−5 (kg m2 s−3/A) with k × 10−2 (m−1) for a system having ρ(1) = 1.293 kg/m3, ρ(2) = 879 kg/m3,

V (1) = 0.003 m/sec, V (2) = 0.005 m/sec, k1 = 0.79 × 10−12 m2, ν(1) = 0.6 × 10−4 m2/sec, ν(2) = 0.8 × 10−4 m2/sec,
ε = 3.3 sec/m, T = 0.076 kg/sec, g = 9.8 m/sec2, K = 0.56 × 10−10 sec2c2/kg m3, when h1 = 0.003 m, h2 = 0.005 m (solid
curve), h1 = 0.004 m, h2 = 0.006 m (dashed), and h1 = 0.005 m, h2 = 0.007 m (dotted)

The dispersion relation (94) is a quadratic equation in ω with complex coefficients. Solving this equation, we
have

ω = 1

2

[
− F2 − i F3

F1
± √

a1 + ib1

]
(95)

where

a1 =
F2

2 − F2
3 − 4F1

[
F4 − F6 + Kα2

π

(
φ0
h1

)2
coth αh1

]
F2

1

(96)

b1 = 4F1 F5 − 2F2 F3

F2
1

(97)

From Eq. (95), we have

Re(ω) = 1

2

[
− F2

F1
±

√
1

2

(√
a1 + ib1 + a1

)]
(98)

Im(ω) = 1

2

[
F3

F1
±

√
1

2

(√
a1 + ib1 − a1

)]
(99)

It can be shown that Im(ω) < 0 if

b2
1 < 4

(
F3

F1

)4

+ 4a1

(
F2

F1

)2

(100)

Thus the flow will be unstable if

φ2
0 < φ3, φ3 = πh2

1

Kα2

[
F5(F2 F3 − F1 F5)+ F2

3 (F6 − F4)

F2
3 coth αh1

]
(101)

The values ofφ2
0 as described by Eq. (101) are the critical values (or the transition curves) of the disturbances

which separate the stable from the unstable regions. We shall give numerical discussions for the effects of
various physical parameters on the stability of the system under consideration by drawing the transition curves
φ2

0 = φ3, in the (φ2
0 , k) plane. In the following Figs. 10, 11, 12, the letter S denotes stable region, while the

letter U denotes unstable region, respectively.
In Figs. 10 and 11, we plot φ2

0 versus k for different values of the fluid depths h1, h2 and the porosity
of the porous medium ε, respectively. It is found, when fluid depths h1, h2 are changed from h1 = 0.003 m,
h2 = 0.005 m to h1 = 0.004 m, h2 = 0.006 m, and then to h1 = 0.005 m, h2 = 0.007 m in Fig. 10, and
the porosity of the porous medium ε is changed from ε = 0.0033 sec/m to ε = 0.0066 sec/m, and then to
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Fig. 11 Variation of φ2
0 × 10−5 (kg m2 s−3/A) with k × 10−2 (m−1) for a system having ρ(1) = 1.293 kg/m3, ρ(2) = 879 kg/m3,

V (1) = 0.003 m/sec, V (2) = 0.005 m/sec, k1 = 0.79 × 10−12 m2, ν(1) = 0.6 × 10−4 m2/sec, ν(2) = 0.8 × 10−4 m2/sec,
h1 = 0.005 m, h2 = 0.008 m, T = 0.076 kg/sec, g = 9.8 m/sec2 , K = 0.56 × 10−10 sec2c2/kg m3, when ε = 0.0033 sec/m
(solid curve); ε = 0.0066 sec/m (dashed); and ε = 6.54 sec/m (dotted)

Fig. 12 Variation ofφ2
0×10−5 (kg m2 s−3/A) with k×10−2 (m−1) for a system havingρ(1) = 1.293 kg/m3,ρ(2) = 879 kg/m3,k1 =

0.79 × 10−12 m2, ν(1) = 0.1 × 10−4 m2/sec, ν(2) = 0.6 × 10−4 m2/sec, ε = 0.033 sec/m, h1 = 0.005 m, h2 = 0.008 m,
T = 0.076 kg/sec, g = 9.8 m/sec2, K = 0.56 × 10−10 sec2c2/kg m3, when V (1) = 0 m/sec, V (2) = 0 m/sec (solid curves);
V (1) = 0.4 m/sec, V (2) = 1.1 m/sec (dashed), and V (1) = 1 m/sec, V (2) = 2 m/sec (dotted)

ε = 6.54 sec/m in Fig. 11, that the instability region U has increased, Then the increase of each of the fluid
depths h1, h2 and the porosity of the porous medium ε has a destabilizing effect on the system.

In Fig. 12, we plotφ2
0 versus k for different values of the fluid velocities V (1), V (2). It is found, when the fluid

velocities V (1), V (2) are changed from V (1) = 0 m/sec, V (2) = 0 m/sec to V (1) = 0.4 m/sec, V (2) = 1.1 m/sec,
and then to V (1) = 1 m/sec, V (2) = 2 m/sec, that the instability region U has decreased. Then the increase of
the fluid velocities V (1), V (2) has a stabilizing effect on the system.

In the next, we shall discuss the stability conditions for two limiting cases of interest, the case of pure fluids
(non-porous media), and the case of absence of streaming (the Rayleigh–Taylor instability), as follows.

7.1 The case of pure fluids

For non-porous medium, i.e., when ε → 1 and k1 → ∞, then Eq. (94), on using Eqs. (35)–(40), reduces to

ω2
[
ρ(1) coth αh1 + ρ(2) coth αh2

]
+ 2kω

[
ρ(1)V (1) coth αh1 + ρ(2)V (2) coth αh2

]
+ k2

[
ρ(1)V (1)2 coth αh1 + ρ(2)V (2)2 coth αh2

]

+ α

[
Kα

π

(
φ0

h1

)2

coth αh1 − (ρ(2) − ρ(1))g − α2T

]
= 0, (102)
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which gives

ω[ρ(1) coth αh1 + ρ(2) coth αh2] + k[ρ(1)V (1) coth αh1

+ ρ(2)V (2) coth αh2] = ±i
√
α[ρ(1) coth αh1 + ρ(2) coth αh2]

×
{

k2ρ(1)ρ(2)(V (1) − V (2))2 coth αh1 coth αh2

α[ρ(1) coth αh1 + ρ(2) coth αh2]

+
[

Kα

π

(
φ0

h1

)2

coth αh1 − (ρ(2) − ρ(1))g − α2T

]}1/2

(103)

As ρ(2) > ρ(1), we note from Eq. (103) that the interface will be unstable if the function

F = k2ρ(1)ρ(2)(V (1) − V (2))2 coth αh1 coth αh2

α[ρ(1) coth αh1 + ρ(2) coth αh2]

+
[

Kα

π

(
φ0

h1

)2

coth αh1 − (ρ(2) − ρ(1))g − α2T

]
(104)

is positive, and stable when it is negative [37]. Therefore, the system will be stable or unstable, if the following
conditions are satisfied, respectively:

k2ρ(1)ρ(2)(V (1) − V (2))2 coth αh1 coth αh2

α[ρ(1) coth αh1 + ρ(2) coth αh2] + Kα

π

(
φ0

h1

)2

coth αh1

≶ [(ρ(2) − ρ(1))g + α2T ] (105)

Now, considering the wave motion in x-direction only, i.e., when l = 0 (or α = k), and h1 = h2 then from
Eq. 104, F can be written in the following form:

F(x) = (a + b)x coth x − (1 + cx2) (106)

where

a = ρ(1)(V (1) − V (2))2

gh1
(
1 + ρ(1)/ρ(2)

)
(ρ(2) − ρ(1))

(107)

b = Kφ2
0

πgh3
1(ρ

(2) − ρ(1))
(108)

c = T

gh2
1(ρ

(2) − ρ(1))
(109)

x = kh1 (110)

Equations (106)–(110) are the same equations obtained earlier by Murhty [37]; i.e., they can be obtained from
our results in the limiting case of steady electric field and non-porous medium. From the analytic behavior of
the function F(x), we make the following conclusions:

(1) Absence of surface tension, i.e., when c = 0. In this case, Eq. (106) becomes

F(x) = (a + b)x coth x − 1 (111)

We find from Eq. (111), and Fig. 13 (see also ref. [37]) that, if (a + b) > 1, curve (12), then the system
is unstable for all wavenumbers, and if (a + b) = 1, curve (11), then the system is unstable only for
wavenumber values greater than 0.4; while if (a + b) < 1, curves (5)–(10), then the system is stable
for wavenumbers less than the critical wavenumber x0, beyond which the system is unstable. Note that
the critical value x0 increases by increasing the value of (a + b). It is known that, the relative streaming
between two fluids destabilizes short wavelength perturbations [43]. The above results show that this is the
case even when the electric part of the Maxwellian stress is present and further that this short wavelength
instability is enhanced by the presence of Maxwellian stresses.
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Fig. 13 The stability diagram for the function F(x) defined by Eq. (106) versus x for the following cases: (1) a + b = 2.2,
c = 10, (2) a + b = 0.7, c = 1, (3) a + b = 1.5, c = 1, (4) a + b = 2.5, c = 1, (5) a + b = 0.1, c = 0, (6) a + b = 0.2, c = 0,
(7) a + b = 0.3, c = 0, (8) a + b = 0.5, c = 0, (9) a + b = 0.6, c = 0, (10) a + b = 0.7, c = 0, (11) a + b = 1, c = 0, and
(12) a + b = 2.2, c = 0

(2) Presence of surface tension, i.e., when c 
= 0. In this case, we find from Eq. (106), and Fig. 13 that
for (a + b) > 1, curves (3) and (4), and for small values of c, the system is unstable for x < x ′

0, and
then it is stable for x > x ′

0. As we decrease the surface tension parameter c it appears that the unstable
wavenumbers band is decreased. Note also that by increasing the values of c and (a + b), curve (1), then
the unstable wavenumbers band is decreased in comparison with curves (3) and (4). When (a + b) < 1,
curve (2), and whatever may be the value of c, the surface tension parameter, the system is always stable.
Thus we conclude that for (a + b) > 1, and for any value of c, the system has a stabilizing effect due
to the presence of surface tension [44]. In this case, we may say that the surface tension inhibits the
Kelvin–Helmholtz instability.

7.2 Rayleigh-Taylor instability

If V (1) = V (2) = 0, then Eq. (94), on using Eqs. (35)–(40), reduces to

(iω)2
[
ρ(1) coth αh1 + ρ(2) coth αh2

]
+ (iω)

(
ε

k1

)[
ρ(1)ν(1) coth αh1 + ρ(2)ν(2) coth αh2

]

− α

[
Kα

π

(
φ0

h1

)2

coth αh1 − (ρ(2) − ρ(1))g − α2T

]
= 0 (112)

The roots of this equation are given by

iω = −
(
ε

2k1

)(
ρ(1)ν(1) coth αh1 + ρ(2)ν(2) coth αh2

ρ(1) coth αh1 + ρ(2) coth αh2

)

±

⎧⎪⎨
⎪⎩

(
ε

2k1

)2
(
ρ(1)ν(1) coth αh1 + ρ(2)ν(2) coth αh2

ρ(1) coth αh1 + ρ(2) coth αh2

)2

+ α

⎡
⎢⎣

Kα
π

(
φ0
h1

)2
coth αh1 − (ρ(2) − ρ(1))g − α2T

ρ(1) coth αh1 + ρ(2) coth αh2

⎤
⎥⎦
⎫⎪⎬
⎪⎭

1/2

(113)

If
Kα

π

(
φ0

h1

)2

coth αh1 < [(ρ(2) − ρ(1))g + α2T ] (114)

then both the values of (iω) are either real negative or complex conjugates with negative real parts, and the
system is thus stable when the condition (114) is satisfied. Otherwise the system will be unstable.
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8 Concluding remarks

In this paper, the instability of the interface between two superposed streaming conducting and dielectric fluids
through porous medium in a vertical electric field varying periodically with time is considered. Because of the
time dependence of the electric field, the simple equation of force balance can no longer be utilized to obtain
the stability criterion, and the hydrodynamics of the fluids as well as of the porous medium must be taken
into account. When this is done, and both the viscosity and medium permeability are included due to Darcy’s
law, the stability of the interface can be shown to be governed by a damped Mathieu equation with complex
coefficients which depend on the gravitational acceleration, surface tension, magnitude and frequency of the
periodic electric field, depths, fluid velocities, kinematic viscosities, porosity of the porous medium, and the
medium permeability. The method of multiple scales is used to obtain an approximate solution of the damped
Mathieu equation, and then to analyze the stability criteria of the considered system. In order to analyze the
solution of this equation, we need to distinguish between two cases. The first one is the non-resonance case,
when the frequency � of the oscillating electric field is not near the frequency �, and the second one is the
resonance case which arises when the frequency� is near�. The stability conditions for the damped Mathieu
equation are obtained in both cases.

A simple condition for the stability in the non-resonance case show that stability occurs when � is less
than a negative critical value from which we conclude that

(1) Both the porosity of porous medium ε, and the kinematic viscosities ν(1), ν(2) have stabilizing effects on
the considered system.

(2) The medium permeability k1 has a destabilizing effect on the system.

While the numerical calculations of the stability conditions for the resonance case indicate that

(1) The frequency of the electric field � , and the fluid velocities V (1), V (2), as well as the medium perme-
ability k1, has a stabilizing effect on the system, and decreases the value of the resonance point.

(2) The porosity of the porous medium ε, and the kinematic viscosities ν(1), ν(2) has a destabilizing effect
on the system, and increases the value of the resonance point.

In the absence of both streaming velocities and porous medium, then the obtained equation can be put in
the canonical form of the Mathieu equation. The stability condition for Mathieu equation is obtained, and the
numerical calculations indicate that the fluid depth h1, and the surface tension T has a destabilizing effect
on the system. The instability sets in for any value of the fluid depth h1, and by increasing the depth, the
instability holds for higher values of φ2

0 ; while the surface tension T has no effect on the instability region for
small wavenumber values k till a critical wavenumber value kc after which the instability region increases by
increasing the surface tension parameter T .

Finally, the case of steady electric field in the presence of porous medium is also investigated, and the
stability conditions are obtained analytically and confirmed numerically, which show that

(1) Each of the fluid depths h1, h2 and the porosity of the porous medium ε has a destabilizing effect on the
system.

(2) The fluid velocities V (1), V (2) have stabilizing effects on the system.

In the latter case, the stability conditions for the two limiting cases of interest, the case of purely fluids
(non-porous media) and the case of absence of streaming (the Rayleigh-Taylor instability), are also obtained
and discussed in detail
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