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Abstract In this paper, we constructed the equations of generalized magneto-thermoelasticity in a per-
fectly conducting medium. The formulation is applied to generalizations, the Lord–Shulman theory with one
relaxation time, and the Green–Lindsay theory with two relaxation times, as well as to the coupled theory.
The material of the cylinder is supposed to be nonhomogeneous isotropic both mechanically and thermally.
The problem has been solved numerically using a finite element method. Numerical results for the tempera-
ture distribution, displacement, radial stress, and hoop stress are represented graphically. The results indicate
that the effects of nonhomogeneity, magnetic field, and thermal relaxation times are very pronounced. In the
absence of the magnetic field or relaxation times, our results reduce to those of generalized thermoelasti-
city and/or classical dynamical thermoelasticity, respectively. Results carried out in this paper can be used to
design various nonhomogeneous magneto-thermoelastic elements under magnetothermal load to meet special
engineering requirements.

Keywords Generalized magneto-thermoelasticity · Nonhomogeneous · Finite element method

1 Introduction

Generalized thermoelasticity theory is receiving the serious attention of researchers, because of the advance-
ment of pulsed lasers, fast burst nuclear reactors, and particle accelerators, etc. that can supply heat pulses with
a very fast time rise [1–5]. Chandrasekharaih [6] developed the second sound effect. Now, two different models
of generalized thermoelasticity are mainly being extensively used: one proposed by Lord and Shulman (L–S)
[7] and the other by Green and Lindsay (G–L) [8]. The L–S theory suggests one relaxation time and, according
to this theory, only Fourier’s heat conduction equation is modified, whereas the G–L theory suggests two
relaxation times and that both the energy equation and the equation of motion are modified. Erbay and Suhubi
[9] studied longitudinal wave propagation in an infinite circular cylinder, which is assumed to be made of the
generalized thermoelastic material, and thereby obtained the dispersion relation when the surface temperature
of the cylinder was kept constant. Generalized thermoelasticity problems for an infinite body with a circular
cylindrical hole and for an infinite solid cylinder were solved respectively by Furukawa et al. [10].

Increasing attention is being devoted to the interaction between magnetic fields and strain in a thermoelastic
solid due to its many applications in the fields of geophysics, plasma physics, and related topics. In the nuclear
field, the extremely high temperatures and temperature gradients as well as the magnetic fields originating
inside nuclear reactors influence their design and operation [11]. This is the domain of the theory of magneto-
thermoelasticity. It is the combination of two different disciplines: those of the theories of electromagnetism and
thermoelasticity. Bahar and Hetnarski [12,13] developed a method for solving coupled thermoelastic problems
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by using the state-space approach in which the problem is rewritten in terms of the state-space variables, namely
the temperature, the displacement, and their gradients. During the last three decades a number of investigations
[14–21] have been carried out using the aforesaid theories of generalized thermoelasticity. Note that in most
of the earlier studies mechanical or thermal loading on the bounding surface was considered to be in the form
of a shock.

The exact solution of the governing equations of the generalized thermoelasticity theory for a coupled and
nonlinear/linear system exists only for very special and simple initial and boundary problems. To calculate the
solution of general problems, a numerical solution technique is used. For this reason the finite element method
is chosen. The method of weighted residuals offers the formulation of the finite element equations and yields
the best approximate solutions to linear and nonlinear ordinary and partial differential equations. Applying
this method basically involves three steps. The first step is to assume the general behavior of the unknown
field variables in such a way as to satisfy the given differential equations. Substitution of these approximating
functions into the differential equations and boundary conditions results in some errors, called the residual.
This residual has to vanish in an average sense over the solution domain. The second step is the time integration.
The time derivatives of the unknown variables have to be determined by former results. The third step is to
solve the equations resulting from the first and the second step by using a finite element algorithm program
(see Zienkiewicz [22]).

In the present paper, we consider the thermal shock problem of generalized magneto-thermoelasticity of a
nonhomogeneous isotropic hollow cylinder. The problem has been solved numerically using a finite element
method (FEM). Numerical results for the temperature distribution, displacement, radial stress, and hoop stress
are represented graphically. The results indicate that the effects of nonhomogeneity, magnetic field, and thermal
relaxation times are very pronounced. A comparison is made with the results predicted by the three theories
discussed above.

2 Governing equation

Let us consider an infinite isotropic elastic solid cylinder with internal radius a1 and external radius a2.
A cylinder coordinate system (r, θ, z) is used for this axisymmetric problem. The cylinder is placed in a
constant primary magnetic field Ho, acting in the direction of the z-axis. For a linear, homogenous, and
isotropic thermoelastic continuum, the generalized field equations can be presented in a unified form as [19]
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..
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Where λ and µ are Lame’s constants, ρ is the density of medium, Cv is specific heat at constant strain, t is the
time, T is the temperature, To is the reference temperature, Ki j is the thermal conductivity, Q is the heat source,
t0 and t1 are the relaxation times, δi j is the Kronecker symbol, σi j are the components of stress tensor, τi j are
the components of Maxwell stress tensor, ui are the components of displacement vector, γ = (3λ+2µ)αt , αt
is the coefficient of linear thermal expansion, µo is the magnetic permeability, and hi and Ho are the perturbed
and applied magnetic fields, respectively. These equations reduce to the equations of classical dynamical (C–D)
coupled theory, Lord and Shulman’s theory (L–S), and Green and Lindsay’s theory (G–L) as follows

(i) Classical dynamical coupled theory (C–D, 1956)

t0 = 0, t1 = 0, n = 0.

(ii) Lord and Shulman’s theory (L–S, 1967)

t0 > 0, t1 = 0, n = 1.

(iii) Green and Lindsay’s theory (G–L, 1972)

t0 > 0, t1 > 0, n = 0.
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Also, let the magnetic field be such that H = Ho + h, where Ho = (0, 0, Ho) is the initial magnetic field
acting parallel to the z-axis. The Maxwell’s equations for the vacuum are

(
∂2

∂t2 − c2∇2
)

E∗, h∗ = 0, curl
(
E∗, h∗) = 1

c

∂

∂t

(−E∗, h∗) . (5)

In a cylindrical coordinate system (r, θ, z), for the axially symmetric problem, ur = ur (r, z, t), uθ =
0, uz = uz(r, z, t). Furthermore, if only the axisymmetric plane-strain problem is considered, we have
ur = u(r, t) and uθ = uz = 0. The strain–displacement relations are
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The stress–strain relations are
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It is assumed that there are no heat sources in the medium, so the equation of motion and energy equation
have the form
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In this study, we assume that the nonhomogeneous properties of the material are characterized by

λ = f (r) λ∗, µ = f (r) µ∗, µo = f (r) µo∗, ρ = f (r) ρ∗, K = f (r) K∗, (10)

where f (r) is a continuous and nondimensional function and λ∗, µ∗, µo∗, ρ∗, and K∗ are the values of
λ, µ, µo, ρ, and K in the homogeneous case, respectively. Substituting Eq. (10) into Eqs. (7)–(9) we get
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where Ha = λ∗ + 2µ∗ + µo∗H2
o , γ∗ = (3λ∗ + 2µ∗)αt . It is convenient to change the preceding equations

into a dimensionless form. To do this, the following dimensionless parameters are introduced:
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description, the initial and boundary conditions may be expressed as

u(r, 0) = ∂u(r, 0)

∂t
= 0, T (r, 0) = ∂T (r, 0)

∂t
= 0, (17)

σrr (a1, t) = 0, σrr (a2, t) = 0, T (a1, t) = H(t),
∂T (a2, t)

∂r
= 0, (18)

where a1 and a2 are the inner and outer radii of the hollow cylinder and H(t) denotes the Heaviside unit step
function.

3 Finite element method

In order to investigate the numerical solution of thermal shock problem of generalized magneto-thermoelasticity
of a nonhomogeneous isotropic hollow cylinder, the FEM [23,24] is adopted due to its flexibility in modeling
layered structures and its capability to obtain a full-field numerical solution. The governing Eqs. (15) and (16)
are coupled with the initial and boundary conditions (17) and (18). The numerical values of the dependent
variables, such as the displacement u and the temperature T , are obtained at the interesting points; these are
called degrees of freedom. The weak formulations of the nondimensional governing equations are derived. The
set of independent test functions, to consist of the displacement δu and the temperature δT , is prescribed. The
governing equations are multiplied by independent weighting functions and then integrated over the spatial
domain with the boundary. Applying integration by parts and making use of the divergence theorem to reduce
the order of the spatial derivatives allows for the application of the boundary conditions. The same shape
functions are defined piecewise on the elements. Using the Galerkin procedure, the unknown fields u and
T and the corresponding weighting functions are approximated by the same shape functions. The last step
towards the finite element discretization is to choose the element type and the associated shape functions. Three
nodes of quadrilateral elements are used. The shape function is usually denoted by the letter N and is usually
the coefficient that appears in the interpolation polynomial. A shape function is written for each node of a
finite element and has the property that its magnitude is 1 at that node and 0 for all other nodes in that element.
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Fig. 1 Variation of temperature for G–L theory at t = 0.1 and different values of Ho and m

We assume that the master element has its local coordinates in the range [−1,1]. In our case, one-dimensional
quadratic elements are used, which are given by:

1. Linear shape functions

N1 = 1

2
(1 − ξ), N2 = 1

2
(1 + ξ).

2. Quadratic shape functions

N1 = 1

2

(
ξ2 − ξ

)
, N2 = 1 − ξ2, N3 = 1

2

(
ξ2 + ξ

)
,

On the other hand, the time derivatives of the unknown variables have to be determined by the Newmark
time integration method [24].

4 Numerical results

With the view of illustrating and comparing the theoretical results obtained in the previous sections in the
context of the C–D, L–S, and G–L theories of thermoelasticity, we now present some numerical results.
Copper was chosen as the material for the purposes of numerical computation, the physical data for which are

λ∗ = 7.76 × 1010(kg)(m)−1(s)−2, µ∗ = 3.86 × 1010(kg)(m)−1(s)−2, To = 293(K),

ρ∗ = 8.954x103(kg)(m)−3, µo∗ = 1 Gauss(Oersted)−1, αt = 17.8 × 10−6(K)−1,

K∗ = 3.86x102(kg)(m)(K)−1(s)−3, Cv = 3.831x102(m)2(K)−1(s)−2,

The field quantities, temperature, displacement, and stresses, depend not only on the time t and space r,
but also on the nonhomogeneity parameter m, the axial magnetic field Ho, and the thermal relaxation time
parameters t0 and t1. It has been observed that in all three theories (C–D, L–S, and G–L) the nonhomogeneity
parameter m has a significant effect on the field quantities. Here all the variables/parameters are taken in their
nondimensional forms. The results for temperature, displacement, radial stress, and hoop stress were obtained
out by taking t = 0.1 with three different value of m (m = −1.0, 0.0, 1.0) and two different values of Ho
(Ho = 105, 106). Figures 1, 2, 3, and 4 present the variation of the temperature, displacement, radial stress, and
hoop stress with space r under the Green–Lindsay theory (G–L), i.e., when there are two thermal relaxation
times (t0 = 0.05, t1 = 0.05, n = 0) and for three different values of the nonhomogeneity parameter m with
two different value of Ho. Figures 5, 6, 7, and 8 show the variations of the temperature, displacement, radial
stress, and hoop stress in all three theories, namely C–D (t0 = 0.0, t1 = 0.0, n = 0), L–S (t0 = 0.05, t1 = 0.0,
n = 1), and G–L (t0 = 0.05, t1 = 0.05, n = 0), for two different values of axial magnetic field Ho (Ho = 105,
106) at m = 1. Figures 9, 10, 11, and 12 present the variation of the temperature displacement, radial stress,
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Fig. 4 Variation of hoop stress for G–L theory at t = 0.1 and different values of Ho and m

and hoop stress in all the three theories for two different values of nonhomogeneity parameter m (m = −1.0,
1.0) at Ho = 106.

Figures 1, 5, and 9 show the variation of temperature with radial distance in all the three theories, namely
C–D, L–S, and G–L. From these figures, one may see that the temperature has a maximum value when r = a1
(which is equal 1) and that this satisfies the boundary conditions. Also, it decreases rapidly with increasing
radial distance and vanishes before r = a2 for the three theories, for all the values of m and Ho. Figures 1, 5,
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Fig. 7 Variation of radial stress for three theories at t = 0.1 and different values of Ho

and 9 demonstrate that there is no significant difference in the values of the temperature for the L–S and G–L
theories and with the value of the axial magnetic field Ho.

Figures. 2, 6, and 10 show the variation of the radial displacement with radial distance in all three theories.
It is illustrated that the displacement starts with negative values at r = a1, then increases rapidly to positive
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values. The maximum values of the displacement depend on the values of the time, and the relaxation times
for the three theories.

Figures 3, 7, and 11 exhibit the variation of the radial stress with redial distance in all the theories. It is
noted that the radial stress increases from zero to a maximum value, after which it decreases rapidly.
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Figures 4, 8, and 12 show that the behavior of the hoop stress with the radial distance changes in the C–D,
L–S, and G–L theories in two cases: (i) the hoop stress first decreases sharply, then increases monotonically,
afterwards remaining close to zero, (ii) the hoop stress increases sharply to the maximum value, then decreases
slowly to the minimum values, after which it increases again monotonically until it remains close to zero.

Finally, It is easily to see that the physical quantities are more sensitive in the G–L theory than in the other
two theories, which are almost identical. Furthermore, it has been observed that, in all three theories (C–D, L–S,
and G–L), the nonhomogeneity parameter m axial magnetic field Ho and thermal relaxation time parameters t0
and t1 have a significant effect on the quantities. The results obtained by the finite element analysis are found
to be quite close and are in agreement with analytical and classical solutions given for special cases when
m = 0 or Ho = 0 and t0 = t1 = 0.

5 Conclusion

A solution of thermal shock problem of generalized magneto-thermoelasticity in a nonhomogeneous isotropic
hollow cylinder are presented. The nonhomogeneity of material is characterized by an m value based on the
basic material constants. For m = 0 the material properties of the cylinder are homogeneous. For m �= 0, the
material properties of the cylinder are nonhomogeneous. The thermoelastic responses in the nonhomogeneous
cylinder are mainly dependent on the nonhomogeneity properties of material. Therefore, one can design the
nonhomogeneity property m of nonhomogeneous structures to decrease the amplitude of thermal stresses
in order to satisfy various engineering applications. The problem has been solved numerically using a finite
element method. The grid size has been refined and consequently the values of different parameters investigated.
Further refinement of the mesh size over 6,000 elements does not change the values considerably, which
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is therefore accepted as the grid size for computing purpose. The results show that there is a significant
difference in the value of all the variables temperature, displacement, radial stress, and hoop stress with
the nonhomogeneity parameter m. We can also observe a large difference between the homogeneous and
nonhomogeneous cases.
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