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Abstract Berdichevsky and Le have recently found the analytical solution of the anti-plane constrained shear
problem within the continuum dislocation theory (CMT, Contin. Mech. Thermodyn. 18:455–467, 2007).
Interesting features of this solution are the energetic and dissipative thresholds for dislocation nucleation, the
Bauschinger translational work hardening, and the size effect. In this paper an analytical solution of the plane
constrained shear problem for single crystals exhibiting similar features is obtained and the comparison with
the discrete dislocation simulation is provided.
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1 Introduction

When crystalline solids deform plastically, newly formed dislocations pile up near the grain boundaries giving
rise to material strengthening. Dislocations appear in the crystal lattice to reduce its energy. Motion of dislo-
cations yields the dissipation of energy, which, in turn, results in a resistance to the dislocation motion. Any
plasticity theory aiming at predicting plastic yielding, work hardening, and hysteresis must, therefore, take
the nucleation and motion of dislocations into account. The continuum description of geometrically necessary
dislocations is dictated by the high dislocation densities accompanying plastic deformations, which are in
the range of 108–1015 m−2, as well as the complexity of the dislocation network. Although the framework
of the continuum dislocation theory was laid down long time ago by Nye [1], Kondo [2], Bilby et al. [3],
Kröner [4], and Sedov and Berdichevsky [5], among others, the applicability of the theory has become feasible
only in recent years [6,7], thanks to the progress in statistical mechanics and thermodynamics of dislocation
network [8,9]. Among various dislocation-based plasticity theories, we mention here only those in [10–14]
which are closely relevant to our approach. In [15] the analytical solution of the anti-plane constrained shear
problem was found. The interesting features of this solution are the energetic and dissipative yielding thresh-
olds, the Bauschinger translational work hardening and the size effect. The dislocation nucleation admits a
clear characterization by the variational principle for the final plastic states [6].

This paper deals with the plane-strain constrained shear of a strip made up of a single crystal. We aim at
showing that, if only a single slip system is admitted, the analytical solution of this problem which exhibits
the same features as that found in [15] is available. The comparison with the results of discrete dislocation
simulations reported in [11,12] shows good agreement between the discrete and continuum approaches.

The paper is organized as follows. The setting of the problem is outlined in Sect. 2. Section 3 studies
dislocation nucleation at zero resistance by energy minimization. In Sect. 4 the plastic distortion at nonzero
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Fig. 1 Plane-strain constrained shear

resistance to dislocation motion is analyzed. Section 5 discusses the dislocation density, the Bauschinger
translational work hardening and the size effect.

2 Plane-strain constrained shear

Consider the strip made up of a single crystal undergoing a plane-strain shear deformation (see Fig. 1). Let the
cross-section of the strip be a rectangle of width a and height h, 0 ≤ x ≤ a, 0 ≤ y ≤ h. We realize the shear
deformation by placing the strip in a “hard” device with the prescribed displacements at its upper and lower
sides

u(0) = 0, v(0) = 0, u(h) = γ h, v(h) = 0, (1)

where u(y) and v(y) are the longitudinal and transverse displacements, respectively, with γ being the overall
shear strain. The hard device models the grain boundary. We assume that the length of the strip L is very large
and the width a is much greater than the height h (L � a � h) to neglect the end effects and to have the
stresses and strains depending only on one variable y in the central part of the strip.

For the plane strain state, the components of the strain tensor are

εxx = 0, εxy = εyx = 1

2
u,y, εyy = v,y, (2)

where the comma in indices denotes the derivative with respect to the corresponding coordinate. If the shear
strain γ is sufficiently small, then the crystal deforms elastically and u = γ y, v = 0 everywhere in the strip.
If γ exceeds some critical threshold, then edge dislocations may appear. We admit only the slip directions (or
the directions of the Burgers vectors) perpendicular to the z-axis and inclined at an angle ϕ with the x-axis and
the dislocation lines parallel to the z-axis. Since only one slip system is active, the plastic distortion is given
by βi j = βsi m j , with s = (cos ϕ, sin ϕ) being the slip direction, and m = (− sin ϕ, cos ϕ) the normal vector
to the slip plane. We assume that β depends only on y: β = β(y) (translational invariance). Because of the
prescribed boundary conditions (1), dislocations cannot penetrate the boundaries y = 0 and y = h; therefore

β(0) = β(h) = 0. (3)

The components of the plastic strain tensor ε
p
i j = 1

2 (βi j + β j i ) are

ε
p
xx = −1

2
β sin 2ϕ, ε

p
xy = 1

2
β cos 2ϕ, ε

p
yy = 1

2
β sin 2ϕ. (4)

With (2) and (4), we obtain the components of the elastic strain tensor εe
i j = εi j − ε

p
i j

εe
xx = 1

2
β sin 2ϕ, εe

xy = 1

2
(u,y − β cos 2ϕ), εe

yy = v,y − 1

2
β sin 2ϕ. (5)

As β depends only on y, there are two non-zero components of Nye’s dislocation density tensor αi j = ε jklβil,k ,
namely, αxz = β,y sin ϕ cos ϕ and αyz = β,y sin2 ϕ. Thus, the resultant Burgers vector of all dislocations whose
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dislocation lines cut the area perpendicular to the z-axis is parallel to the slip direction s and the scalar dislo-
cation density equals

ρ = 1

b
√

αi jαi j = 1

b
|β,y || sin ϕ|,

where b is the magnitude of the Burgers vector.
Energy per unit volume of the crystal with dislocations reads [9,6]

U (εe
i j , αi j ) = 1

2
λ

(
εe

ii

)2 + µεe
i jε

e
i j + µk ln

1

1 − |β,y || sin ϕ|
bρs

, (6)

where µ and λ are Lamé constants, ρs the saturated dislocation density, and k a material constant. The first
and second term of (6) describe the elastic energy, the third term is the energy of the dislocation network. With
(5) and (6), the total energy functional becomes

E(u, v, β) = aL

h∫

0

⎡

⎣1

2
λv2

,y + 1

2
µ(u,y − β cos 2ϕ)2 + 1

4
µβ2 sin2 2ϕ

+µ(v,y − 1

2
β sin 2ϕ)2 + µk ln

1

1 − |β,y || sin ϕ|
bρs

⎤

⎦ dy. (7)

Functional (7) can be reduced to a functional depending on β(y) only. Indeed, by first fixing β(y) and
taking the variation of (7) with respect to u and v, we derive the equilibrium equations

µ(u,yy − β,y cos 2ϕ) = 0,

(λ + 2µ)v,yy − µβ,y sin 2ϕ = 0.

Integrating these equations and using the boundary conditions (1), we get

u,y = γ + (β − 〈β〉) cos 2ϕ,

v,y = κ(β − 〈β〉) sin 2ϕ,
(8)

where κ = µ
λ+2µ

, and 〈β〉 = 1
h

∫ h
0 βdy. Substituting (8) into (7) and collecting the common terms, we obtain

the energy functional in terms of β

E(β) = aL

h∫

0

µ

⎡

⎣1

2
(1 − κ)β2 sin2 2ϕ + 1

2
κ〈β〉2 sin2 2ϕ

+1

2
(γ − 〈β〉 cos 2ϕ)2 + k ln

1

1 − |β,y || sin ϕ|
bρs

⎤

⎦ dy. (9)

If the dissipation is negligible, then the plastic distortion β minimizes (9) under the constraint (3). The overall
shear strain γ is regarded as a given function of time (control parameter), so one can study the evolution of
the dislocation network which accompanies the change of γ .

If the resistance to dislocation motion cannot be neglected, then the energy minimization must be replaced
by the flow rule. In case of the rate-independent plasticity, the flow rule for β̇ �= 0 reads [6]

∂ D

∂β̇
= −δγ U

δβ
, (10)

where the dissipation potential is
D = K |β̇|,
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with K being a positive constant called critical resolve shear stress, and the dot above a function denoting its
time derivative. The right-hand side of (10) is the negative variational derivative of the energy with respect to
β at fixed overall strain γ

� ≡ −δγ U

δβ
= −∂U

∂β
+ ∂

∂y

∂U

∂β,y
.

For β̇ = 0, the evolution Eq. (10) does not have to be satisfied: it is replaced by the equation β̇ = 0.
For small up to moderate dislocation densities the logarithmic term in (9) may be approximated by the

formula

ln
1

1 − |β,y || sin ϕ|
bρs

∼= |β,y || sin ϕ|
bρs

+ 1

2

β2
,y sin2 ϕ

(bρs)2 ,

so that

E(β) = aL

h∫

0

µ

[
1

2
(1 − κ)β2 sin2 2ϕ + 1

2
κ〈β〉2 sin2 2ϕ

+1

2
(γ − 〈β〉 cos 2ϕ)2 + k

(
|β,y || sin ϕ|

bρs
+ 1

2

β2
,y sin2 ϕ

(bρs)2

)]

dy. (11)

We shall deal further only with this functional.

3 Dislocation nucleation at zero resistance

In the case of zero resistance (and, hence the energy dissipation is zero), the determination of β(y) reduces to
the minimization of the total energy (11). Since U is convex with respect to β and β,y , the variational problem
has a unique solution. It is convenient to introduce the dimensionless quantities

Ē = bρs

aLµ
E, ȳ = ybρs, h̄ = hbρs .

The dimensionless variable ȳ changes on the interval (0, h̄). The functional (11) reduces to

E(β) =
h∫

0

[
1

2
(1 − κ)β2 sin2 2ϕ + 1

2
κ〈β〉2 sin2 2ϕ

+1

2
(γ − 〈β〉 cos 2ϕ)2 + k|β ′|| sin ϕ| + 1

2
kβ ′2 sin2 ϕ

]
dy, (12)

where the prime denotes differentiation with respect to ȳ, and, for short, the bars over E , y, and h are dropped.
We minimize functional (12) among functions satisfying the boundary conditions

β(0) = β(h) = 0. (13)

We know that, for the variational problem of this type, there exists a threshold value γen such that when
γ < γen no dislocations are nucleated and β = 0 [15]. Near the threshold value the dislocation density must
be small so that the last term in (12) can be neglected. Besides, the width of the boundary layer tends to zero
as γ → γen. This gives us the idea of finding the threshold value by employing the minimizing sequence of
the form

β =

⎧
⎪⎨

⎪⎩

βm
ε

y, for y ∈ (0, ε),

βm, for y ∈ (ε, h − ε),
βm
ε

(h − y), for y ∈ (h − ε, h),

(14)



Plane constrained shear 591

where βm is an unknown constant, and ε is a small unknown length which tends to zero as γ → γen. Substi-
tuting (14) into the energy functional (12) (with the last term being removed) and neglecting all small terms
of order ε and higher, we obtain

E(βm) = 1

2
[(γ − βm cos 2ϕ)2 + β2

m sin2 2ϕ]h + 2k |βm sin ϕ| . (15)

A rather simple analysis shows that the minimum of (15) is achieved at βm �= 0 if and only if

γ > γen = 2k| sin ϕ|
h| cos 2ϕ| ,

otherwise it is achieved at βm = 0 (no dislocations are nucleated). Note that the sign of βm depends on the
angle ϕ: βm is positive if 0◦ < ϕ < 45◦ and is negative if 45◦ < ϕ < 90◦. In terms of the original length h the
energetic threshold value reads

γen = 2k

hbρs

| sin ϕ|
| cos 2ϕ| ,

showing clearly the size effect.
Due to the boundary conditions β ′ should change its sign on the interval (0, h). The one-dimensional theory

of dislocation pile-ups [16] as well as the solution of the analogous anti-plane shear problem [15] suggest to
seek the minimizer in the form

β(y) =

⎧
⎪⎨

⎪⎩

β1(y), for y ∈ (0, l),
βm, for y ∈ (l, h − l),
β1(h − y), for y ∈ (h − l, h),

(16)

where βm is a constant, l an unknown length, 0 ≤ l ≤ h
2 , and β1(l) = βm . We have to find β1(y) and the

constants, βm and l. With β from (16) the total energy functional becomes

E = 2

l∫

0

[
1

2
(1 − κ)β2

1 sin2 2ϕ + k|β ′
1|| sin ϕ| + 1

2
kβ ′2

1 sin2 ϕ

]
dy

+1

2
(1 − κ)β2

m sin2 2ϕ(h − 2l) + 1

2
h
[
κ〈β〉2 sin2 2ϕ + (γ − 〈β〉 cos 2ϕ)2], (17)

where

〈β〉 = 1

h

⎛

⎝2

l∫

0

β1 dy + (h − 2l)βm

⎞

⎠ . (18)

Varying the energy functional (17) with respect to β1 we obtain

−kβ ′′
1 sin2 ϕ + (1 − κ)β1 sin2 2ϕ + (cos2 2ϕ + κ sin2 2ϕ)〈β〉 − γ cos 2ϕ = 0, (19)

where β1(y) is subject to the boundary conditions

β1(0) = 0, β1(l) = βm . (20)

The variation of (17) with respect to l gives an additional boundary condition at y = l

β ′
1(l) = 0, (21)

which means that the dislocation density must be continuous. Varying the energy functional with respect to
βm , we obtain a condition for βm

2k| sin ϕ|(signβ ′
1) + [(cos2 2ϕ + κ sin2 2ϕ)〈β〉 − γ cos 2ϕ + (1 − κ)βm sin2 2ϕ](h − 2l) = 0. (22)

Equations (19), (20)1, and (21) yield the solution

β1 = β1p (1 − cosh ηy + tanh ηl sinh ηy) , 0 ≤ y ≤ l (23)
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Fig. 2 Evolution of β: a, d) γ = 0.0068, b, e) γ = 0.0118, c, f) γ = 0.0168

with

β1p = γ cos 2ϕ − (cos2 2ϕ + κ sin2 2ϕ)〈β〉
(1 − κ) sin2 2ϕ

, (24)

and

η = 2

√
1 − κ

k
| cos ϕ|.

With (18), (20)2, (23), and (24), we obtain the average of β

〈β〉 =
γ cos 2ϕ

[
2

(
l − tanh ηl

η

)
+

(
1 − 1

cosh ηl

)
(h − 2l)

]

g(l)
, (25)

where

g(l) = h(1 − κ) sin2 2ϕ + (cos2 2ϕ + κ sin2 2ϕ)

[
2

(
l − tanh ηl

η

)
+

(
1 − 1

cosh ηl

)
(h − 2l)

]
,

and

βm = γ cos 2ϕ − 〈β〉(cos2 2ϕ + κ sin2 2ϕ)

(1 − κ) sin2 2ϕ

(
1 − 1

cosh ηl

)
. (26)

Substitution of (26) into (22) gives the following equation to determine l

f (l) ≡ 2k| sin ϕ|(signβ ′
1) − γ cos 2ϕ − 〈β〉(cos2 2ϕ + κ sin2 2ϕ)

cosh ηl
(h − 2l) = 0.

Figure 2 shows the evolution of β(ȳ) as γ increases for ϕ = 30◦ (continuous lines) and ϕ = 60◦ (dashed
lines), where ȳ = ybρs . For the numerical simulation we took k = 1.138 × 10−3, ρs = 8.8 × 1015 m−2,
µ = 26.3 GPa, ν = 0.33, b = 2.5 × 10−10 m, h = 10−6 m, so that h̄ = hbρs = 2.2.

It is interesting to plot the shear stress τ = µ(γ − 〈β〉 cos 2ϕ) as function of the shear strain. As we know,
for γ < γen no dislocations are nucleated and β = 0, so the shear stress τ = µγ . For γ > γen, we take 〈β〉
from (25) to compute the shear stress.

Figure 3 shows the normalized shear stress versus shear strain curve OAB for ϕ = 30◦ and OA′B′ for
ϕ = 60◦. There is a “work hardening” section AB for γ > γen caused by the dislocation pile-up. Mention,
however, that there is no residual strain as we unload the crystal by decreasing γ : the stress–strain curve
follows the same path BAO, so the plastic deformation is completely reversible, and no energy dissipation
occurs. In the course of unloading the dislocations nucleated annihilate, and as we approach the point A they
all disappear.
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Fig. 3 Normalized shear stress versus shear strain curve

cr

*

t

Fig. 4 A closed loading path

4 Plastic distortion at non-zero resistance

If the resistance to dislocation motion (and hence the dissipation) cannot be neglected, the plastic distortion
may evolve only if the yield condition |�| = K is fulfilled. If |�| < K , then β is frozen, the dislocation density
remains unchanged and the crystal deforms elastically. Computing the variational derivative of (11), we derive
from (10) the yield condition

µ

∣
∣∣
∣∣
k
β,yy sin2 ϕ

b2ρ2
s

− (1 − κ)β sin2 2ϕ − (cos2 2ϕ + κ sin2 2ϕ)〈β〉 + γ cos 2ϕ

∣
∣∣
∣∣
= K .

Consider first the case ϕ < 45◦. We divide this equation by µ and introduce the dimensionless variable
ȳ = ybρs to transform the yield condition to

∣
∣kβ ′′ sin2 ϕ − (1 − κ)β sin2 2ϕ − (cos2 2ϕ + κ sin2 2ϕ)〈β〉 + γ cos 2ϕ

∣
∣ = γcr cos 2ϕ, (27)

with γcr ≡ K/µ cos 2ϕ and the prime denoting the derivative with respect to ȳ. We shall further omit the bar
over y for short.

We regard γ as a given function of time (the driving variable) and try to determine β(t, y). We consider
the following loading path: γ is first increased from zero to some value γ ∗ > γcr, then decreased to −γcr, and
finally increased to zero as shown in Fig. 4. The rate of change of γ (t) does not affect the results due to the rate
independence of dissipation. The problem is to determine the evolution of β as function of t and y, provided
β(0, y) = 0 and ϕ < 45◦.

Since the plastic distortion, β, is initially zero, we see from (27) that β = 0 as long as γ < γcr. Thus, the
dissipative threshold stress (the yield stress) τy = K/ cos 2ϕ in this case. For small β(t, x) and γ > γcr, the
yield condition becomes

kβ ′′ sin2 ϕ − (1 − κ)β sin2 2ϕ − (cos2 2ϕ + κ sin2 2ϕ)〈β〉 + γ cos 2ϕ = γcr cos 2ϕ, (28)

Let us introduce the deviation of γ (t) from the critical shear γcr, γr = γ − γcr and simplify (28) to obtain

kβ ′′ sin2 ϕ − (1 − κ)β sin2 2ϕ − (cos2 2ϕ + κ sin2 2ϕ)〈β〉 + γr cos 2ϕ = 0.
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Fig. 5 Graphs of β1(ȳ)

Since this equation is linear, β is proportional to γr such that β = γrβ1, where β1 is the solution of the
following equation

kβ ′′
1 sin2 ϕ − (1 − κ)β1 sin2 2ϕ − (cos2 2ϕ + κ sin2 2ϕ)〈β1〉 + cos 2ϕ = 0. (29)

The analogous problem of anti-plane shear at nonzero resistance [15] suggests that the solution of (29) is
symmetric, i.e.,

β1(y) = β1(h − y) for y ∈ (h/2, h). (30)

Function β1(y) is determined from Eq. (29) and the boundary conditions

β1(0) = 0, β ′
1(h/2) = 0. (31)

The first condition means that dislocations cannot reach the boundary of the region because of the prescribed
displacement. The second condition follows from the continuity of plastic distortion and the symmetry property
(30).

Equations (29) and (31) admit the solution

β1 = β1p

(
1 − cosh ηy + tanh η

h

2
sinh ηy

)
, 0 ≤ y ≤ h

2
, (32)

with

β1p = cos 2ϕ − (cos2 2ϕ + κ sin2 2ϕ)〈β1〉
(1 − κ) sin2 2ϕ

, (33)

and

η = 2

√
1 − κ

k
| cos ϕ|. (34)

The average of β1 is obtained in the form

〈β1〉 =
cos 2ϕ

(
1 − 2 tanh η h

2
ηh

)

(1 − κ) sin2 2ϕ + (cos2 2ϕ + κ sin2 2ϕ)

(
1 − 2 tanh η h

2
ηh

) . (35)

Figure 5 shows the graphs of β1(ȳ) for ϕ = 30◦ (continuous line) and ϕ = 60◦ (dashed line). For the numer-
ical simulation we took µ = 26.3 GPa, ν = 0.33, k = 1.138×10−3, ρs = 8.8×1015 m−2, b = 2.5×10−10 m,
γcr = γen, and h = 1µm, so that h̄ = hbρs = 2.2.

After reaching γ ∗ > γcr, we unload the crystal by decreasing γ . Since � becomes smaller than K , β does
not change (β = β∗(y)) until

kβ∗′′ sin2 ϕ − (1 − κ)β∗ sin2 2ϕ − (cos2 2ϕ + κ sin2 2ϕ)〈β∗〉 + γ cos 2ϕ = −γcr cos 2ϕ, (36)
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where β∗(y) is the solution of (28) for γ (t) = γ ∗. From (36) we can see that the plastic flow begins when
γ − (γ ∗ − γcr) = −γcr, i.e., for γ = γ∗ = γ ∗ − 2γcr. From that value of γ , the yield condition � = −K takes
place leading to the decrease of β which should be now determined by the equation

kβ ′′ sin2 ϕ − (1 − κ)β sin2 2ϕ − (cos2 2ϕ + κ sin2 2ϕ)〈β〉 + γ cos 2ϕ = −γcr cos 2ϕ, (37)

Since for γ ∈ (−γcr, γ∗), the deviation γl = γ + γcr is positive, Eq. (37) can again be transformed to Eq. (29)
and solved in exactly the same manner if we replace γr = γ − γcr in all formulae (32)–(35) by γl = γ + γcr.
As γ approaches −γcr, β tends to zero because γl → 0. The further increase of γ from −γcr to zero does not
cause change in β which remains zero.

It is not difficult to modify the construction given above to find the solution for ϕ > 45◦.

5 Dislocation density and stress–strain curve

The normalized dislocation density α = β,y sin ϕ can be calculated from the solution (32). Since β(y) is
proportional to γr , α(y) is also proportional to γr such that α(y) = γrα1(y). For y ∈ (0, h/2) we have

α1(y) = β1p

(
−η sinh ηy + η cosh ηy tanh

ηh

2

)
sin ϕ,

with β1p from (33) and η from (34). For y ∈ (h/2, h) we have α1(y) = −α1(h − y) due to symmetry. Figure 6
shows the graphs of α1 for ϕ = 30◦ (continuous line) and ϕ = 60◦ (dashed line) for y ∈ (0, h/2).

It is interesting to calculate the shear stress τ which is a measurable quantity. During the loading, we have
for the normalized shear stress (or the elastic shear strain)

γ e = τ

µ
= γcr +

(

γr −
(

1 − 2 tanh ηh
2

ηh

)

β1p cos 2ϕ

)

, (38)

with β1p from (33). The second term of (38) causes the hardening due to the dislocations pile-up. Equation
(38) describes the size effect in this model.

Figure 7 shows the comparison between the stress–strain curves during the loading obtained from energy
minimization, from (38), and from the discrete dislocation simulations reported in [11,12]. In order to compare
with the discrete dislocation simulations we took ϕ = 60◦, τ0 = 1.9 × 10−3µm and let all other material
constants remain the same as in the previous simulations. The stress–strain curves in the discrete dislocation
simulations are provided for three different ratios h/d , where d is the spacing between the active slip planes.
Both curves obtained from energy minimization as well as from the flow rule nearly coincide with each other
and show good agreement with the discrete dislocation simulations for h/d = 80.

Figure 8 shows the comparison between the total shear strain profiles obtained from energy minimization,
from the flow rule, and from the discrete dislocation simulations reported in [11,12]. Both profiles obtained
from energy minimization and from the flow rule again show good agreement with the discrete dislocation
simulations for h/d = 80.
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Fig. 7 The normalized shear stress versus shear strain curve
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Fig. 8 The total shear strain profile

During the inverse loading, when the yield condition � = −K holds true, Eq. (38) changes to

τ

µ
= −γcr +

(

γl −
(

1 − 2 tanh ηh
2

ηh

)

β1p cos 2ϕ

)

,

with the deviation γl = γ + γcr used instead of γr = γ − γcr for the average of β.
Figure 9 shows the normalized shear stress (or elastic shear strain) versus shear strain curve for the loading

path of Fig. 4, with γ ∗ = 0.01, ϕ = 60◦, while all other parameters remain the same. The straight line OA
corresponds to the purely elastic loading with γ increasing from zero to γcr. Line AB corresponds to the plastic
yielding with � = K . Yielding begins at point A with the yield stress τy = −K/ cos 2ϕ, and we can observe
the work hardening due to the dislocation pile-up which is described by the second term of (38). During the
unloading as γ decreases from γ ∗ to γ∗ = γ ∗ − 2γcr (line BC) the plastic distortion β = β∗ is frozen. As
γ decreases further from γ∗ to −γcr, the plastic yielding occurs with � = −K (line CD). From Fig. 9, it is
seen that the yield stress τy = τ ∗ + 2K/ cos 2ϕ at point C, at which the inverse plastic flow sets on, is larger
than −K/ cos 2ϕ (because τ ∗ > −K/ cos 2ϕ). Along line CD, as γ is decreased, the created dislocations
annihilate, and at point D all dislocations have disappeared. Finally, as γ increases from −γcr to zero, the
crystal behaves elastically with β = 0. In this closed cycle OABCDO dissipation occurs only on lines AB
and CD. It is interesting that lines DA and BC are parallel and have the same length. In phenomenological
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Fig. 9 Normalized shear stress versus shear strain curve for ϕ = 60◦

plasticity theory this property is modeled as the translational shift of the yield surface in the stress space, the
so-called Bauschinger effect.

6 Conclusion

We have shown in this paper that the plane-strain constrained shear problem can be analytically solved within
the continuum dislocation theory. If the resistance to dislocation motion is negligible and only one slip system
is active, there is the energetic threshold stress for the dislocation nucleation that depends on the slip direction.
The stress–strain curve is completely reversible and no energy dissipation occurs. The work hardening caused
by the dislocation pile-up and the threshold stress are inversely proportional to the size of specimen times the
saturated dislocation density.

If the resistance to dislocation motion is taken into account, then the stress–strain curve becomes a hystere-
sis loop. The work hardening and the Bauschinger effect are quantitatively described in terms of the dislocation
density, and the size effect can be observed. The comparison with the discrete dislocation simulation shows
good agreement between the continuum and discrete approaches.
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