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Abstract First-passage failure of strongly nonlinear oscillators under combined harmonic and real noise exci-
tations is studied. The motion equation of the system is reduced to a set of averaged Itô stochastic differential
equations by stochastic averaging in the case of resonance. Then, the backward Kolmogorov equation govern-
ing the conditional reliability function and a set of generalized Pontryagin equations governing the conditional
moments of first-passage time are established. Finally, the conditional reliability function and the conditional
probability density and mean first-passage time are obtained by solving the backward Kolmogorov equation
and Pontryagin equation with suitable initial and boundary conditions. The procedure is applied to Duffing–van
der Pol system in resonant case and the analytical results are verified by Monte Carlo simulation.

Keywords First-passage failure · Combined harmonic and real noise excitations · Duffing–van der Pol
system · Stochastic averaging · Monte Carlo simulation

1 Introduction

First-passage problem has a long history, and it emerges from a wide range of stochastic phenomena, such as
neuron firing, chemical reaction rates, the triggering of stock options and stochastic structural dynamics, etc.
For stochastically excited mechanical or structural systems, first-passage failure happens when the state of the
system leaves certain domain of state space (safe or admissible domain) for the first time and the machine
or structure is disabled. The first-passage problem is related to the reliability and the life of mechanical or
structural systems under random excitation. Thus, it is significant to evaluate the probability and/or statistics
of the first-passage time.

However, the first-passage problem is among the most difficult problems in the theory of stochastic dynam-
ics. At present, a mathematical exact solution is possible only if the random phenomenon in question can be
treated as a diffusion process. For homogeneous diffusion processes, the conditional reliability function,
namely, the probability that the response remains within the safety domain with a given initial state in it, is
governed by the backward Kolmogorov equation and the moments of the first-passage time is governed by
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generalized Pontryagin equations. Known exactly analytical solutions are limited to one-dimensional case
[1,2]. For higher dimensional systems, an approach to evaluate the probability and/or statistics of the first-
passage time is numerical solution of the backward Kolmogorov equation for reliability function or the Pon-
tryagin equation for mean first-passage time by using finite element method [3], finite difference method [4]
or generalized cell mapping method [5]. Another way is Monte Carlo simulation (MCS) [6], especially the
so-called Importance Sampling procedure [7] and controlled MCS [8], or Markov chain Monte Carlo [9,10].

A powerful technique for studying the first-passage time of higher dimensional systems is the combination
of the stochastic averaging method and diffusion process method of first-passage time. The combination of
the classical stochastic averaging method and the diffusion process method for first-passage time has been
applied by many researchers to SDOF stochastic systems [11–13]. Recently, the combination of stochastic
averaging method for a quasi-Hamiltonian system and the diffusion process method for first-passage time has
been applied to study the first-passage time of MDOF strongly nonlinear stochastic systems [14].

Physical and engineering systems are often subjected to combined harmonic and random excitations. Such
combined excitations arise in the study of stochastic resonance [15], seismic analysis of rotating machinery
[16], trains crossing bridge-type structures during earthquakes or wind storms, dams excited by harmonic fluid
motion combined with seismic activity [17], and uncoupled flapping motion of rotor blades of a helicopter in
forward flight under the effect of atmospheric turbulence [18]. Linear and quasi-linear systems under combined
harmonic and white-noise or wide-band random excitations have been studied by using the classical stochastic
averaging method for obtaining the conditions of moment stability [19,20] or for obtaining the response prob-
ability density [21,22]. Recently, the method of multiple time scale has also been used to study the frequency
response of quasi-linear system excited by combined deterministic and random excitations [23]. For a strongly
nonlinear oscillator excited by combined harmonic and Gaussian white noise, the stochastic averaging method
[24] and the method of multiple scales [25] have been adopted for obtaining the response statistics, and the
generalized cell mapping with digraph (GCMD) method has been utilized to analyze crisis [26] and stochastic
bifurcation [27]. So far, little work has been done on the first-passage failure of the nonlinear system excited by
such combined excitation [17]. By using stochastic averaging method, Zhu and Wu have studied first-passage
failure [28] and its feedback minimization [29] of strongly nonlinear oscillator under combined harmonic and
white noise excitations.

Gaussian white noise is too ideal to exist in practice. So far, first passage-failure of strongly nonlinear
oscillator under combined deterministic and real noise excitations has not been studied. In the present paper,
the first-passage failure of strongly nonlinear oscillator under combined harmonic and real noise excitations is
studied. The real noise possesses wide-band spectral density. After stochastic averaging based on generalized
harmonic function, the two-dimensional non-homogeneous diffusion process of displacement and velocity
with degenerate diffusion matrix is reduced to two-dimensional homogeneous diffusion process of ampli-
tude and phase with non-degenerate diffusion matrix and only slowly varying processes are retained in the
averaged equations. In the averaging, resonant and non-resonant cases are distinguished. This distinction is
significant since harmonic function plays important role in resonant case while it can be neglected in the first
approximation in non-resonant case. The approach is applied to Duffing–van der Pol oscillator under combined
external harmonic and/or parametric wide-band random excitations. The effects of nonlinearity intensity, exci-
tation intensity and initial amplitude on the probability and statistics of first passage time are examined. The
analytical results are verified by using Monte Carlo simulation.

2 Generalized harmonic functions

Consider the free vibration of a non-linear conservative oscillator. The motion equation is

ẍ + g(x) = 0. (1)

The Hamiltonian (total energy) of the oscillator is

H = 1

2
ẋ2 + V (x), (2)

where

V (x) =
x∫

0

g(u) du (3)
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is the potential energy. Assume that oscillator (1) has a family of periodic solutions surrounding elliptic
equilibrium point (b, 0) in phase plane (x, ẋ). The periodic solutions can be expressed as

x(t) = a cos ϕ(t) + b, (4)

ẋ(t) = −aν(a, ϕ) sin ϕ(t), (5)

where

ϕ(t) = τ(t) + θ, (6)

ν(a, ϕ) = dτ

dt
=

√
2[V (a + b) − V (a cos ϕ + b)]

a2 sin2 ϕ
, (7)

a and b are constants and related to H as follows:

V (a + b) = V (−a + b) = H. (8)

cos ϕ(t) and sin ϕ(t) are called generalized harmonic functions [30]. Obviously, a and ν(a, ϕ) are the ampli-
tude and instantaneous frequency of the oscillator respectively, and θ is the initial phase angle. Expanding ν−1

(a, ϕ) in Eq. (7) into Fourier series

ν−1(a, ϕ) = C0(a) +
∞∑

n=1

Cn(a) cos nϕ, (9)

Integrating Eq. (9) with respect to ϕ from 0 to 2π yields average period

T (a) = 2πC0(a), (10)

and average frequency

ω(a) = 1

C0(a)
. (11)

Thus, in average the following approximate relation can be used

ϕ(t) ≈ ω(a)t + θ. (12)

3 Stochastic averaging

Consider a strongly nonlinear conservative oscillator subject to lightly linear and (or) nonlinear damping and
weakly external and (or) parametric excitations of harmonic function and wide-band real noises. The motion
equation of the system is of the form

Ẍ + g(X) = ε f (X, Ẋ , �t) + ε1/2hk(X, Ẋ)ξk(t), k = 1, 2, . . . , r (13)

where ε is a small parameter; ε f denotes light damping and weakly external and (or) parametric harmonic
excitation with frequency �; ε1/2hkξk(t) represent weakly external and (or) parametric random excitations
and the repeated subscript represents summation; ξk(t) are real noises with zero mean and correlation functions
Rkl(τ ) or spectral densities Skl(ω).

When ε is very small, the response of system (13) can be considered as random spread of periodic motion
of system (1). The solution can be assumed of the following form:

X (t) = A cos 
(t) + B, Ẋ(t) = −Aν(A, 
) sin 
(t) (14)

where


(t) = τ(t) + �(t), (15)

ν(A, 
) = dτ

dt
=

√
2[V (A + B) − V (A cos 
 + B)]

A2 sin2 

, (16)
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and A, 
, τ and ν are all random processes. Treating Eq. (14) as a generalized van der Pol transformation
from X, Ẋ to A, �, one can obtain the following equations for A and �:

dA

dt
= εF1(A, 
, �t) + ε1/2U1k(A, 
)ξk(t),

(17)
d�

dt
= εF2(A, 
, �t) + ε1/2U2k(A, 
)ξk(t),

where

F1 = −A

g(A + B)(1 + h)
f (A cos 
 + B, −Aν(A, 
) sin 
,�t)ν(A, 
) sin 
,

F2 = −1

g(A + B)(1 + h)
f (A cos 
 + B, −Aν(A, 
) sin 
,�t)ν(A, 
)(cos 
 + h),

U1k = −A

g(A + B)(1 + h)
hk(A cos 
 + B, −Aν(A, 
) sin 
)ν(A, 
) sin 
,

U2k = −1

g(A + B)(1 + h)
hk(A cos 
 + B, −Aν(A, 
) sin 
)ν(A, 
)(cos 
 + h),

h = d B

d A
= g(−A + B) + g(A + B)

g(−A + B) − g(A + B)
.

(18)

According to Stratonovich–Khasminskii limit theorem [31,32], A and � converge weakly to two-dimen-
sional diffusive Markov processes in a time interval of ε−1 order as ε → 0, which can be represented by the
following Itô stochastic differential equations

dA = εS1(A,
,�t) dt + ε1/2G1k(A, 
) dBk(t),

d� = εS2(A, 
, �t) dt + ε1/2G2k(A, 
) dBk(t),
(19)

where Bk(t) are independent unit Wiener processes,

Si = Fi +
0∫

−∞

(
∂Uik

∂ A

∣∣∣∣
t

U1l |t+τ Rkl(τ ) + ∂Uik

∂


∣∣∣∣
t

U2l |t+τ Rkl(τ )

)
dτ

bi j = Gik G jk =
∞∫

−∞

(
Uik |t U jl

∣∣
t+τ

Rkl(τ )
)

dτ, i, j = 1, 2; k, l = 1, . . . , r

(20)

Note that there are two procedures of averaging. One is stochastic averaging and the other is deterministic
time averaging. The deterministic time averaging procedure will be discussed later. To complete the stochastic
averaging, Uik is expanded into Fourier series with respect to 
 as follows:

Uik = Uik0(A) +
∞∑

n=1

U (c)
ikn cos n
 + U (s)

ikn sin n
 (21)

Substituting the approximate average relationship between 
 and � of the form of Eq. (12) into Eq. (21) and
completing the integration with respect to τ , one obtains the following averaged drift and diffusion coefficients:

Si (A, 
, �t)

= Fi (A, 
, �t) + Hi (A, 
)

= Fi + π

∞∑
n=1

{[
U1l0

(
dUik0

dA
+ dU (c)

ikn

dA
cos n
 + dU (s)

ikn

dA
sin n


)

+n
(

U (s)
ikn cos n
 − U (c)

ikn sin n

)

U2l0

]
Skl(0)

}
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+π

∞∑
m,n=1

{[(
dUik0

dA
+ dU (c)

ikn

dA
cos n
 + dU (s)

ikn

dA
sin n


)(
U (c)

1lm cos m
 + U (s)
1lm sin m


)

+n
(

U (s)
ikn cos n
 − U (c)

ikn sin n

) (

U (c)
2lm cos m
 + U (s)

2lm sin m

)]

Skl(mω(A))

+
[(

dUik0

dA
+ dU (c)

ikn

dA
cos n
 + dU (s)

ikn

dA
sin n


) (
U (s)

1lm cos m
 − U (c)
1lm sin m


)

+n
(

U (s)
ikn cos n
 − U (c)

ikn sin n

) (

U (s)
2lm cos m
 − U (c)

2lm sin m

)]

Ikl(mω(A))

}
(22)

where

Skl(ω) = 1

π

0∫

−∞
Rkl(τ ) cos ωτ dτ

Ikl(ω) = 1

π

0∫

−∞
Rkl(τ ) sin ωτ dτ

(23)

System (13) has harmonic excitation and two cases can be classified: resonant case and non-resonant case.
In non-resonant case, the harmonic excitation has no effect on the first approximation of the response. Thus,
we are interested in resonant case, namely,

�

ω(A)
= q

p
+ εσ, (24)

where p and q are relatively prime positive small integers and εσ is small detuning parameter. In this case,
multiplying Eq. (24) by t and utilizing the approximate relation (12) yield

�t = q

p

 + εστ − q

p
� (25)

Introduce new angle variable

� = εστ − q

p
� (26)

which � is a measure of the phase difference between the response and harmonic excitation. Then, Eq. (25)
can be rewritten as

�t = q

p

 + �. (27)

Using Itô differential formula, one can obtain the following Itô stochastic differential equations for A, 

and �:

dA = εS1(A, 
, �)dt + ε1/2G1k(A, 
)dBk(t),

d� = ε

{
σω(A) −

(
q

p

)
S2(A, 
, �)

}
dt − ε1/2 q

p
G2k(A, 
)dBk(t),

d
 = [ω(A) + εS2]dt + ε1/2G2k(A, 
)dBk(t).

(28)

Obviously, A and � are slowly varying processes while 
 is rapidly varying process. Expanding Fi into
Fourier series

Fi (A, 
, �) = Fi0(A, �) +
∞∑

n=1

[
F (c)

in cos n
 + F (s)
in sin n


]
, (29)
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Fig. 1 Safety domain

and completing the time averaging with respect to 
 lead to the finally averaged Itô stochastic differential
equations:

dA = εm̄1(A, �)dt + ε1/2σ̄1k(A)dBk(t),

d� = εm̄2(A, �)dt + ε1/2σ̄2k(A)dBk(t), k = 1, . . . , r
(30)

where

m̄1(A, �) = 〈F1(A,
, �) + H1(A, 
)〉
 = F10(A, �) + H̄1(A)

m̄2(A, �) =
〈
[F2(A, 
, �) + H2(A, 
)]

(
− q

p

)
+ σω(A)

〉



= (
F20(A, �) + H̄2(A)

)(− q

p

)
+ σω(A)

b̄i j (A) = σ̄ik σ̄ jk = 2πUik0U jl0Skl(0)

+π

∞∑
n=1

[(
U (c)

iknU (c)
jln + U (s)

iknU (s)
jln

)
Skl(nω(A)) +

(
U (c)

iknU (s)
jln − U (s)

iknU (c)
jln

)
Ikl(nω(A))

]

H̄i (A) = π
dUik0

dA
U1l0Skl(0)

+π

2

∞∑
n=1

{[(
dU (c)

ikn

dA
U (c)

1ln + dU (s)
ikn

dA
U (s)

1ln

)
+ n

(
U (s)

iknU (c)
2lm − U (c)

iknU (s)
2ln

)]
Skl(nω(A))

+
[(

dU (c)
ikn

dA
U (s)

1ln − dU (s)
ikn

dA
U (c)

1ln

)
+ n

(
U (s)

iknU (s)
2ln + U (c)

iknU (c)
2ln

)]
Ikl(nω(A))

}

i, j = 1, 2; k, l = 1, . . . , r; (31)

and 〈·〉
 denotes the averaging with respect to 
 from 0 to 2π .

4 Backward Kolmogorov equation and generalized Pontryagin equations

A(t) is the displacement amplitude of system (13). It is reasonable to assume that the first-passage failure
occurs once A(t) exceeds certain critical value ac for the first time. In phase plane (a, γ ), the safe domain �s
is inside of the two parallel lines a = 0 and a = ac (see Fig. 1). The conditional reliability function, denoted
by R(t |a0, γ0), is defined as the probability of [A(t), �(t)] being in safely domain �s within interval (0, t]
given initial state (a0, γ0) being in �s, i.e.,

R(t |a0, γ0) = P{ (A(τ ), �(τ)) ∈ �s, τ ∈ (0, t]| (a0, γ0) ∈ �s}. (32)

It is the integral of the conditional transition probability density in �s. The conditional transition probability
density is the transition probability density of the sample functions which remain in safety domain �s in all
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time interval (0, t]. For diffusion process [A, �]T, the conditional transition probability density is governed
by the backward Kolmogorov equation with drift and diffusion coefficients defined by Eq. (31). Thus, the
conditional reliability function is governed by the following backward Kolmogorov equation:

∂ R

∂t
= κ1

∂ R

∂a0
+ κ2

∂ R

∂γ0
+ 1

2
χ11

∂2 R

∂a2
0

+ χ12
∂2 R

∂a0∂γ0
+ 1

2
χ22

∂2 R

∂γ 2
0

, (33)

where

κi = κi (a0, γ0) = ε m̄i (A, �)|A=a0,�=γ0, (34)
χi j = χi j (a0) = εb̄i j = εσ̄ir (A)σ̄ jr (A)

∣∣
A=a0.

The initial condition associated with Eq. (33) is

R(0|a0, γ0) = 1, a0 < ac (35)

and the boundary conditions are

R(t |0, γ0) = finite, (36)

R(t |ac, γ0) = 0, (37)

R(t |a0, γ0 + 2nπ) = R(t |a0, γ0). (38)

The conditional probability of first-passage failure is

Pf (t |a0, γ0) = 1 − R(t |a0, γ0). (39)

The conditional probability density of the first-passage time T is then the derivative of Pf (t |a0, γ0), i.e.,

p(T |a0, γ0) = ∂ Pf

∂t

∣∣∣∣
t=T

= − ∂ R

∂t

∣∣∣∣
t=T .

(40)

The conditional moments of the first passage time are defined as

Tn(a0, γ0) =
∞∫

0

T n p(T |a0, γ0)dT = n

∞∫

0

T n−1 R(T |a0, γ0)dT, n = 1, 2, . . . . (41)

It can be shown by using Eqs. (33), (40) and (41) that the conditional moments of the first-passage time are
governed by the following generalized Pontryagin equations:

1

2
χ11

∂2Tn

∂a2
0

+ χ12
∂2Tn

∂a0∂γ0
+ 1

2
χ22

∂2Tn

∂γ 2
0

+ κ1
∂Tn

∂a0
+ κ2

∂Tn

∂γ0
= −nTn−1, n = 1, 2, . . . , (42)

where κi and χi j are defined by Eq. (34). The boundary conditions associated with Eq. (42) are obtained from
Eqs. (36)–(38) as

Tn(0, γ0) = finite, (43)

Tn(ac, γ0) = 0, (44)

Tn(a0, γ0 + 2nπ) = Tn(a0, γ0). (45)

For n = 1, T1 is the mean first-passage time and Eq. (42) is reduced to Pontryagin equation

1

2
χ11

∂2T1

∂a2
0

+ χ12
∂2T1

∂a0∂γ0
+ 1

2
χ22

∂2T1

∂γ 2
0

+ κ1
∂T1

∂a0
+ κ2

∂T1

∂γ0
= −1 (46)

To obtain the probability and statistics of the first-passage time, one have to solve backward Kolmogorov
equation (33) with initial and boundary conditions (35)–(38), or to solve generalized Pontryagin equations
(42) with boundary conditions (43)–(45). Generally, they can be solved only numerically. The backward
Kolmogorov equation can be solved by using the implicit finite difference method of alternate direction type.
And the Pontryagin equation can be solved by using finite difference method.
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5 Numerical example

To illustrate the procedure developed above, consider a Duffing–van der Pol oscillator subject to external har-
monic excitation and external and parametric wide-band real noise excitations. Duffing–van der Pol oscillator
is a typical strongly nonlinear system studied by many researchers. It can represent the motion of a thin panel
under supersonic air flow. It can also describe the dynamics of a single-model laser with a saturable absorber
[25]. The motion equation of the system is of the form

Ẍ + (β1 + β2 X2)Ẋ + ω2
0 X + αX3 = E cos �t + ξ1(t) + Xξ2(t) (47)

where β1, β2, ω0, α, E, � are constants; ξi (t)(i = 1, 2) are independently stationary and ergodic processes
with zero mean and rational spectral densities

Si (ω) = Di

π

1

ω2 + ω2
i

, i = 1, 2 (48)

in which ωi and Di are constants. ξi (t) can be regarded as the output of the following first order linear filter

ξ̇i + ωiξi = Wi (t), i = 1, 2 (49)

where Wi (t) are Gaussian white noises in the sense of Stratonovich with intensities 2Di . It is assumed that
βi and E are of the same order of ε.

For this system,

V (x) = ω2
0x2/2 + αx4/4,

g(x) = dV /dx = ω2
0x + αx3,

b = h = 0

(50)

and

ν(a, ϕ) = [(
ω2 + 3αa2/4

)
(1 + λ cos 2ϕ)

]1/2

λ = αa2/4
(
ω2 + 3αa2/4

)
.

(51)

ν(a, ϕ) can be approximated by the following finite sum with a relative error less than 0.03%:

ν(a, ϕ) = b0(a) + b2(a) cos 2ϕ + b4(a) cos 4ϕ + b6(a) cos 6ϕ (52)

where

b0(a) = (
ω2

0 + 3αa2/4
)1/2(

1 − λ2/16
)
, b2(a) = (

ω2
0 + 3αa2/4

)1/2(
λ/2 + 3λ3/64

)
,

b4(a) = (
ω2

0 + 3αa2/4
)1/2(−λ2/16

)
, b6(a) = (

ω2
0 + 3αa2/4

)1/2(
λ3/64

)
,

(53)

The averaged frequency ω(a) = b0(a).
Using the generalized van der Pol transformations (14), we can convert Eq. (47) into

dA

dt
= F1(A, 
, �t) + U11(A, 
)ξ1(t) + U12(A, 
)ξ2(t),

d�

dt
= F2(A, 
, �t) + U21(A, 
)ξ1(t) + U22(A, 
)ξ2(t),

(54)

where

F1 = − A

g(A)

[(
β1 + β2 A cos2 


)
Aν(A, 
) sin 
 + E cos �t

]
ν(A, 
) sin 
,

F2 = − 1

g(A)

[(
β1 + β2 A cos2 


)
Aν(A, 
) sin 
 + E cos �t

]
ν(A, 
) cos 
,

U11 = − A

g(A)
ν(A, 
) sin 
, U12 = − A2

g(A)
ν(A, 
) sin 
 cos 
,

U21 = − 1

g(A)
ν(A, 
) cos 
, U22 = − A

g(A)
ν(A, 
) cos2 
.

(55)
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Consider primary external resonance case. In this case,

�

ω(a)
= 1 + εσ (56)

where εσ is a small detuning parameter. Introducing the new variable

� = εστ − � (57)

and completing the stochastic averaging procedure lead to the following averaged Itô equations:

dA = m̄1(A, �)dt + σ̄11(A)dB1(t) + σ̄12(A)dB2(t),

d� = m̄2(A, �)dt + σ̄21(A)dB1(t) + σ̄22(A)dB2(t),
(58)

where the drift and diffusion coefficients are given in Appendix.
The backward Kolmogorov equation associated with Itô Eqs. (58) is

∂ R

∂t
= κ1

∂ R

∂a0
+ κ2

∂ R

∂γ0
+ 1

2
χ11

∂2 R

∂a2
0

+ 1

2
χ22

∂2 R

∂γ 2
0

(59)

where κi , χi j are defined as

κi = κi (a0, γ0) = m̄i (A, �)|A=a0,�=γ0,

χi i = χi i (a0) = b̄i i = σ̄ir (A)σ̄ir (A)|A=a0
, i, r = 1, 2

(60)

The associated two boundary conditions are Eqs. (36)–(38) and initial condition is Eq. (35). The backward
Kolmogorov equation can be solved by using finite difference method with modified standard Thomas algo-
rithm. Then the conditional probability density of first-passage time of system (47) can be obtained from the
conditional reliability function by using Eq. (40).
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Fig. 2 Reliability function R(t, a0) of system (47) in primary external resonance. ω0 = 1.0, α = 1, ω = 1.1, � = 1.1,
E = 0.01, ac = 0.7, γ0 = 1.25664, β1 = −0.01, β2 = 0.01, ω1 = ω2 = 30, D1 = 10, D2 = 3. a Analytical result; b result
from Monte Carlo simulation
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Fig. 3 Reliability function R(t) of system (47) in primary external resonance. ω0 = 1.0, α = 1, � = 1.1, E = 0.01, ac =
0.7, a0 = 0.168, γ0 = 1.25664, β1 = −0.01, β2 = 0.01, ω1 = ω2 = 30, D2 = 3; A : D1 = 10; B : D1 = 25
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Fig. 4 Probability density of first-passage time of system (47) in primary external resonance. The parameters are the same as
those in Fig. 3

The mean first-passage time of system (47) can be obtained either from the conditional reliability function
by using Eq. (41) or from solving the following Pontryagin equation

1

2
χ11

∂2T1

∂a2
0

+ 1

2
χ22

∂2T1

∂γ 2
0

+ κ1
∂T1

∂a0
+ κ2

∂T1

∂γ0
= −1 (61)

with boundary conditions

T1(0, γ0) = finite, (62)

T1(ac, γ0) = 0, (63)

T1(a0, γ0 + 2nπ) = T1(a0, γ0). (64)

Some numerical results are shown in Figs. 2, 3, and 4, where solid line denotes analytical results while
square and circle results from Monte Carlo simulation of original system (47). It is seen that the analytical
results are in rather good agreement with those from Monte Carlo simulation.

It is obviously shown in Figs. 2 and 3 that the reliability function is a monotonously decreasing function
of time. It implies that the system will fail with probability one when t → ∞. This is physically meaningful
because of the external force exciting the system. Moreover, larger strength of external random excitation will
induce larger failure probability, which is indicated in Fig. 3. And, larger strength of external random excitation
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Fig. 5 Mean first-passage time of system (47) in primary external resonance. The parameter values are the same as those in Fig. 3
except that a0 is a variable
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Fig. 6 Mean first-passage time of system (47) in primary external resonance. The parameter values are the same as those in Fig. 2
except that γ0 is a variable. a Analytical result; b result from Monte Carlo simulation

will induce shorter mean first-passage time. This is verified by Fig. 5. Furthermore, Figs. 5 and 6 show that
when the initial amplitude is more close to the critical value ac, mean first-passage time is shorter. This is
because the reliability is lower and the first-passage happens more easily when the initial state is more close
to ac, which can be seen from Fig. 2.

So, we can conclude that that all the results depend strongly on initial amplitude, the excitation intensity
and nonlinearity intensity (see Figs. 7, 8). Even if the nonlinearity intensity is high, the proposed method still
works well (see Figs. 7, 8). The reliability function is a monotonously decreasing function of time and the mean
first-passage time is a monotonously decreasing function of initial amplitude. This observation is significant
in the studying stochastic optimal control of the system with objectives of maximum reliability and maximum
mean first passage time.
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Fig. 7 Reliability function R(t) of system (47) in primary external resonance. ω0 = 1.0, � = 1.1, E = 0.01, ac = 0.7, a0 =
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

a0

0

5

10

15

20

25

30

35

40

T1

α=10

α=20

Fig. 8 Mean first-passage time of system (47) in primary external resonance. The parameter values are the same as those in Fig. 7
except that a0 is a variable

6 Conclusions

In the present paper a new procedure for estimating first-passage time of strongly nonlinear oscillators under
combined harmonic and real noise excitations has been proposed. By stochastic averaging, the motion equation
is reduced to the averaged Itô equations for homogenous diffusion processes A(t) and �(t). The backward
Kolmogorov equation for the conditional reliability function and the generalized Pontryagin equations for
moments of first-passage time are derived from the averaged Itô equations. Duffing–van der Pol system is
taken as an example to show the validity of this method. The analytical results are well verified by Monte
Carlo simulation. The results show that reliability function is a monotonously decreasing function of time and
mean first-passage time is a monotonously decreasing function of initial amplitude. All the results depend
strongly on the excitation intensity, nonlinearity intensity and initial amplitude. The procedure can work well
even if the nonlinearity intensity is high. It should be pointed that the proposed method can be extended to
multi-degree-of-freedom (MDOF) strongly nonlinear systems subject to combined harmonic and wide-band
noise excitations, if the stiffness terms are not coupled. In this case of MDOF, the presentation of generalized
harmonic function is straightforward, no matter whether the damping terms are coupled or not. And external
resonance and internal resonance should be considered. The corresponding backward Kolmogorov equation
and Pontryagin equation are of higher dimension so it is more difficult to solve them. This will be our future
work.
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Appendix

The drift and diffusion coefficients in Eq. (58) are

m̄1 = F̄10(A, �) + H̄1(A)

m̄2 = F̄20(A, �)

F̄10(A, �) = Esin�(2b0(A) − b2(A))
/

4
(
αA2 + ω2

0

)
− A

[
β1

(
16ω2

0 + 10αA2) + A2β2
(
4ω2

0 + 3αA2)]/32
(
αA2 + ω2

0

)
F̄20(A, �) = � − b0(A) + E cos �(2b0(A) + b2(A))

/
4A

(
αA2 + ω2

0

)
H̄1(A) = m̄11 + m̄12 + m̄13 + m̄14

m̄11 = m̄111S1(ω(A)) + m̄113S1(3ω(A)) + m̄115S1(5ω(A)) + m̄117S1(7ω(A))

m̄13 = m̄131S1(ω(A)) + m̄133S1(3ω(A)) + m̄135S1(5ω(A)) + m̄137S1(7ω(A))

m̄12 = m̄122 S2(2ω(A)) + m̄124 S2(4ω(A)) + m̄126S2(6ω(A)) + m̄128S2(8ω(A))

m̄14 = m̄142 S2(2ω(A)) + m̄144 S2(4ω(A)) + m̄146S2(6ω(A)) + m̄148S2(8ω(A))

m̄111 = π[b2(A) − 2b0(A)]

×
{

2αA[2b0(A) − b2(A)] + (A2α + ω2
0)

(
db2(A)

dA
− 2

db0(A)

dA

)}/[
8
(

A2α + ω2
0

)3
]

m̄113 = π[b2(A) − b4(A)]

×
{

2αA[b4(A) − b2(A)] + (A2α + ω2
0)

(
db2(A)

dA
− db4(A)

dA

)}/[
8
(

A2α + ω2
0

)3
]

m̄115 = π[b4(A) − b6(A)]

×
{

2αA[b6(A) − b4(A)] + (A2α + ω2
0)

(
db4(A)

dA
− db6(A)

dA

)}/[
8
(

A2α + ω2
0

)3
]

m̄117 = πb6(A)

{
−2αAb6(A) + (A2α + ω2

0)
db6(A)

dA

}/[
8
(

A2α + ω2
0

)3
]

m̄122 = π A[2b0(A) − b4(A)]
{
[2b0(A) − b4(A)]

(
A2α − ω2

0

)

−A
(

A2α + ω2
0

)(
2

db0(A)

dA
− db4(A)

dA

)}/[
32

(
A2α + ω2

0

)3
]

m̄124 = π A[b2(A) − b6(A)]
{
[b6(A) − b2(A)]

(
A2α − ω2

0

)

+A
(

A2α + ω2
0

)(db2(A)

dA
− db6(A)

dA

)}/[
32

(
A2α + ω2

0

)3
]

m̄126 = π Ab4(A)

{
b4(A)

(
A2α − ω2

0

) + A
(

A2α + ω2
0

)db4(A)

dA

}/[
32

(
A2α + ω2

0

)3
]

m̄128 = π Ab6(A)

{
b6(A)

(
A2α − ω2

0

) + A
(

A2α + ω2
0

)db6(A)

dA

}/[
32

(
A2α + ω2

0

)3
]

m̄131 = −π
[
b2

2(A) − 4b2
0(A)

]/[
8A

(
A2α + ω2

0

)2
]

m̄133 = −3π
[
b2

4(A) − b2
2(A)

]/[
8A

(
A2α + ω2

0

)2
]

m̄135 = −5π
[
b2

6(A) − b2
4(A)

]/[
8A

(
A2α + ω2

0

)2
]

m̄137 = 7πb2
6(A)

/[
8A

(
A2α + ω2

0

)2
]

m̄142 = π A[2b0(A) − b4(A)][2b0(A) + 2b2(A) + b4(A)]
/[

16
(

A2α + ω2
0

)2
]

m̄144 = π A[b2(A) − b6(A)][b2(A) + 2b4(A) + b6(A)]
/[

8
(

A2α + ω2
0

)2
]

m̄146 = 3π Ab4(A)[b4(A) + 2b6(A)]
/[

16
(

A2α + ω2
0

)2
]

m̄148 = π Ab2
6(A)

/[
4
(

A2α + ω2
0

)2
]
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b̄11 = σ̄11(A)σ̄11(A) + σ̄12(A)σ̄12(A) = b̄111 + b̄112

b̄22 = σ̄21(A)σ̄21(A) + σ̄22(A)σ̄22(A) = b̄221 + b̄222

b̄i j = σ̄i1(A)σ̄ j1(A) + σ̄i2(A)σ̄ j2(A) = 0, i �= j

b̄111 = b̄1111S1(ω(A)) + b̄1113S1(3ω(A)) + b̄1115S1(5ω(A)) + b̄1117S1(7ω(A))

b̄221 = b̄2211S1(ω(A)) + b̄2213S1(3ω(A)) + b̄2215S1(5ω(A)) + b̄2217S1(7ω(A))

b̄112 = b̄1122 S2(2ω(A)) + b̄1124S2(4ω(A)) + b̄1126S2(6ω(A)) + b̄1128S2(8ω(A))

b̄222 = b̄2220 S2(0) + b̄2222 S2(2ω(A)) + b̄2224S2(4ω(A)) + b̄2226S2(6ω(A)) + b̄2228S2(8ω(A))

b̄1111 = π[b2(A) − 2b0(A)]2
/

4
(
αA2 + ω2

0

)2

b̄1113 = π[b2(A) − b4(A)]2
/

4
(
αA2 + ω2

0

)2

b̄1115 = π[b4(A) − b6(A)]2
/

4
(
αA2 + ω2

0

)2

b̄1117 = πb2
6(A)

/
4
(
αA2 + ω2

0

)2

b̄1122 = π A2[b4(A) − 2b0(A)]2
/

16
(
αA2 + ω2

0

)2

b̄1124 = π A2[b2(A) − b6(A)]2
/

16
(
αA2 + ω2

0

)2

b̄1126 = π A2b2
4(A)

/
16

(
αA2 + ω2

0

)2

b̄1128 = π A2b2
6(A)

/
16

(
αA2 + ω2

0

)2

b̄2211 = π[2b0(A) + b2(A)]2
/[

4A2(αA2 + ω2
0

)2
]

b̄2213 = π[b2(A) + b4(A)]2
/[

4A2(αA2 + ω2
0

)2
]

b̄2215 = π[b4(A) + b6(A)]2
/[

4A2(αA2 + ω2
0

)2
]

b̄2217 = πb2
6(A)

/[
4A2(αA2 + ω2

0

)2
]

b̄2220 = π[2b0(A) + b2(A)]2
/[

8
(
αA2 + ω2

0

)2
]

b̄2222 = π[2b0(A) + 2b2(A) + b4(A)]2
/[

16
(
αA2 + ω2

0

)2
]

b̄2224 = π[b2(A) + 2b4(A) + b6(A)]2
/[

16
(
αA2 + ω2

0

)2
]

b̄2226 = π[b4(A) + 2b6(A)]2
/[

16
(
αA2 + ω2

0

)2
]

b̄2228 = πb2
6(A)

/[
16

(
αA2 + ω2

0

)2
]
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