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Abstract Anti-plane problem for a singularity interacting with interfacial anti-cracks (rigid lines) under uni-
form shear stress at infinity in cylindrically anisotropic composites is investigated by utilizing a complex
potential technique in this paper. After obtaining the general solution for this problem, the closed solution for
the interface containing one anti-crack is presented analytically. In addition, the complex potentials for a screw
dislocation dipole inside matrix are obtained by the superimposing method. Expressions of stress singularities
around the anti-crack tips, image forces and torques acting on the dislocation or the center of dipole are given
explicitly. The results indicate that the anisotropy properties of materials may weaken the stress singularity
near the anti-crack tip for the singularity being a concentrated force but enhance the one for the singularity
being a screw dislocation and change the equilibrium position of screw dislocation. The presented solutions
are valid for anisotropic, orthotropic or isotropic composites and can be reduced to some new or previously
known results.

Keywords Anti-plane problem · Interface anti-cracks · Cylindrically anisotropic composites

1 Introduction

The study of singularities (including concentrated forces and dislocations) interacting with interfacial cracks
and anti-cracks, which can be produced inevitably in manufacturing and the production of composite mate-
rials, as well as mechanics and materials science, is motivated by the need of a better understanding of the
mechanism of strengthening and toughening of materials. Due to its importance, this problem has received
much attention during the last several decades. For the anti-crack problem, we have provided some examples
of early contributions [1–9]. Recently, Wu and Du [10] developed an effective method to investigate the elastic
field and electric field of a rigid line in a confocal elliptic piezoelectric inhomogeneity embedded in an infinite
piezoelectric medium. Electro-elastic interaction between a semi-infinite anti-crack and a screw dislocation
under anti-plane mechanical and in-plane electrical loading was carried out by Chen et al. [11]. Xiao et al.
[12] proposed a dislocation of the pileup model for micro-crack initiation at the rigid line inhomogeneity tip
based on Zener–Stroh crack initiation mechanism. Using the complex variable method, Liu and Fang [13]
investigated the electro-elastic interaction between a piezoelectric screw dislocation and circular interfacial
rigid lines. Fang et al. [14] dealt with the interaction of a generalized screw dislocation with circular-arc
interfacial rigid lines under remote anti-plane shear stresses, in-plane electric and magnetic loads in linear
magnetoelectroelastic materials. A dislocation emission mechanism for micro-crack initiation at the tip of a
semi-infinite rigid line inhomogeneity in a piezoelectric solid was considered by Xiao et al. [15]. Applying a
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complex variable method and conformal mapping technique, Prasad et al. [16] obtained the Green’s functions
for a point force and dislocation interacting with interfacial elliptical rigid inclusion in a bonded bimaterial
system and examined the problem of an internal crack or thin rigid line interacting with the interfacial inclusion.
Xiao et al. [17] derived an analytical closed-form solution for a screw dislocation interacting with collinear
rigid lines along the interface of two dissimilar piezoelectric media.

For cylindrically anisotropic materials, Yang and Yuan [18] studied the anti-plane shear problem of a
dissimilar interfacial circular crack in cylindrically anisotropic solids. Ting [19] investigated the problem of a
circular tube subjected to a uniform normal stress and shearing stresses at the inner and outer surfaces or the
tube. A wedge of cylindrically anisotropic material under anti-plane deformation was considered by Ting [20].

This paper attempts to investigate the interaction between an anti-plane singularity and interfacial anti-
cracks in cylindrically anisotropic composites by utilizing complex potential technique. The closed solution
for interface containing one anti-crack is presented analytically. In addition, the complex potentials for a screw
dislocation dipole inside matrix are obtained by superimposing method. Stress singularities around the anti-
crack tips, image forces and torques acting on dislocation or the center of dipole are given explicitly. In the
final, the influences of materials’ anisotropies upon the stress singularities and image forces are discussed by
numerical method. It should be pointed out that the presented solutions in this paper are valid for anisotropic,
orthotropic or isotropic composites and can be reduced to some novel or previously known results.

2 Basic formulation and problem description

For a cylindrically anisotropic anti-plane problem, the equilibrium equation can be given as

c55(
∂2u3

∂r2 + 1

r

∂u3

∂r
) + 2c45

1

r

∂2u3

∂r∂θ
+ c44

1

r2

∂2u3

∂θ2 = 0 (1)

where u3 = u3(r, θ) is the out-of-plane displacement, and c44, c45 and c55 are the elastic constants of the
material. The shear stresses σ3r and σ3θ are related to the displacement u3 by the generalized Hooke’s law

σ3r = c45
1

r

∂u3

∂θ
+ c55

∂u3

∂r
(2)

σ3θ = c44
1

r

∂u3

∂θ
+ c45

∂u3

∂r
. (3)

The general solution of Eq. (1) may be expressed in terms of a single holomorphic function ϕ(ξ) as follows:

u3(r, θ) = Re[ϕ(ξ)] (4)

where Re denotes the real part, and a new argument ξ is defined as [18]

xi =
( r

a

)−iµ−1
reiθ (5)

where i = √−1, and a is a characteristic length designated here as the radius of the circular arc. The µ are
roots of the following algebraic characteristic equation

c55µ
2 − 2c45µ + c44 = 0. (6)

The roots of Eq. (6) are either complex of purely imaginary but cannot be real. Without loss of generality,
µ is chosen as

µ = c45

c55
+

i
√

c44c55 − c2
45

c55
(7)
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Fig. 1 An antiplane singularity interacting with interfacial anti-cracks model

where Re(−iµ) =
√

c44c55 − c2
45/c55 > 0. When the material is isotropic, µ becomes i . It is expedient to

define �(ξ) = dϕ(ξ)/dξ so that stress components may be written as

σ3r = 1

r
Re[βξ�(ξ)] (8)

σ3θ = 1

r
Re[µβξ�(ξ)] (9)

where β =
√

c44c55 − c2
45.

Here we also give the derivative of displacement with respect to θ in that it will be adopted in the following
text

∂u3

∂θ
= Re[iξ�(ξ)]. (10)

The problem to consider is as follows. Referring to Fig. 1, we embed a cylindrical inhomogeneity (region
S+) of radius a in an infinite matrix (region S−). The media interior to and exterior to the circle are cylindrically
anisotropic elastic solids with dissimilar material properties from each other. A singularity containing a screw
dislocation with Burgers vector b and a anti-plane concentrated force p is located at arbitrary point z0(= r0eiθ0)
inside matrix. Anti-plane uniform shear stress σ∞

0 , which makes an angle φ with the x-axis, is applied at infinite.
A series of anti-cracks (namely, rigid lines) lie along a part L of the interface between the inhomogeneity and
matrix, where L is a union of anti-cracks L j with the tips c j and d j ( j = 1, 2, . . . , n). L∗ is the remainder of
the interface along which the inhomogeneity and the matrix are perfectly bonded.

The boundary conditions along z = aeiθ for the present problem can be expressed as

u+
3(1) = u−

3(2) = δ j ( j = 1, 2, . . . , n) on L (11)

σ+
3r(1) = σ−

3r(2) on L∗ (12)

u+
3(1) = u−

3(2) on L∗ (13)

where δ j denotes a small anti-plane displacement of any anti-crack L j , the subscripts 1 and 2 denote the
quantities defined in the regions S+ and S−, with the superscripts + and – used to representing the boundary
values of the physical quantities as they are approached from S+ and S−, respectively.

From Eq. (11), we have
[
∂u3(1)

∂θ

]+
+

[
∂u3(2)

∂θ

]−
= 0 on L (14)

[
∂u3(1)

∂θ

]+
−

[
∂u3(2)

∂θ

]−
= 0 on L . (15)
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From Eq. (13), we obtain

[
∂u3(1)

∂θ

]+
=

[
∂u3(2)

∂θ

]−
on L∗. (16)

3 General solution of problem

Referring to the works by Suo [21], Kattis and Providas [22] and Lee et al. [23], the generalized analytical
function �1(ξ1) and �2(ξ2) in the region S+ and S− under considerations can be, respectively, written as

�1(ξ1) = D + �10(ξ1) ξ1 ∈ S+ (17)

�2(ξ2) = Q

ξ2 − ξ0
+ 
 + �20(ξ2) ξ2 ∈ S− (18)

where ξk = ( r
a )−iµk−1reiθ (k = 1, 2), ξ0 = ( r0

a )−iµ−1reiθ0 (here, µ = µ2 for ξ0 in the matrix) and Q =
b

2π i − p
2πβ

, D is a complex constant to be determined and �10(ξ1) = O(1/ξ1) near ξ1 = 0,�20(ξ2) is

holomorphic in the region S− and vanishes at infinity, 
 is determined from the loads at infinity.


 = σ0e−iφ/β2. (19)

Noting that on the interface ξ = z = aeiθ , one can translate the procedure derivation of the function with
argument ξk(k = 1, 2) into the corresponding function with argument z = reiθ .

Applying Riemann–Schwarz’s symmetry principle, we extend the definition of the holomorphic function
�1(z) and �2(z) into region S− and S+, respectively, through L by

�k(z) = a2

z2 �̄k

(
a2

z

)
(k = 1, 2). (20)

Inserting Eq. (17) into Eq. (20), for large value of |z|, we get

�1(z) = a2

z2 D̄ + O

(
1

z3

)
z ∈ S−. (21)

Similarly, substituting Eq. (18) into Eq. (20) yields

�2(z) = −Q̄

(
1

z − z∗ − 1

z

)
+ a2

z2 
̄ + �20(z) z ∈ S+ (22)

where z∗ = a2/z̄0, where z∗ = a2/z̄0,�20(z) is holomorphic in the region S+.
From Eqs. (15) and (16), it is found that

[
∂u3(1)

∂θ

]+
=

[
∂u3(2)

∂θ

]−
z ∈ L + L∗. (23)

Inserting Eq. (10) into Eq. (23) and noting Eq. (20) yield

[�1(z) + �2(z)]
+ = [�2(z) + �1(z)]

− z ∈ L + L∗. (24)
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According to the generalized Liouville’s theorem, Eq. (24) leads to

�1(z) + �2(z) = Q

z − z0
− Q̄

(
1

z − z∗ − 1

z

)
+ 
 + a2

z2 
̄. (25)

Substituting Eq. (8) into Eq. (12) and noting Eq. (20) yield

β1
[
�+

1 (z) + �−
1 (z)

] = β2
[
�−

2 (z) + �+
2 (z)

]
z ∈ L∗. (26)

Inserting Eq. (25) into Eq. (26), it is found

�+
1 (z) + �−

1 (z) = h(z) z ∈ L∗ (27)

where h(z) = 2m ·
[

Q
z−z0

− Q̄
(

1
z−z∗ − 1

z

)
+ 
 + a2

z2 
̄
]

with m = β2/(β1 + β2).

According to Muskhelishvili [24], the general solution of Eq. (27) can be written as

�1(z) = X0(z)

2π i

∫

L∗

h(t)dt

X+
0 (t)(t − z)

+ X0(z)Pn(z) (28)

where

P(z) = C1zn−1 + C2zn−2 + · · · + Cn (29)

X0(z) =
n∏

j=1

(z − c j )
−1/2(z − d j )

−1/2 (30)

X0(z) is a single-valued branch in the plane cut along with L∗ and for which lim|z|→∞zn X0(z) = 1.

After calculating the Cauchy integral in Eq. (27), we have

�1(z) = X0(z)

{
Pn(z) − 1

2
[h0(z) + h∞(z) + hz0(z) + hz∗(z)]

}
+ 1

2
h(z) (31)

where h0(z), h∞(z), hz0(z) and hz∗(z) represent the principal parts at the points z = 0, z = ∞, z = z0 and
z = z∗ of function h(z)/X0(z), respectively.

The remaining integration constants Cn−1, . . . , C0 in Eq. (29) are determined from the equilibrium condi-
tions of anti-cracks. Assuming that anti-cracks are external traction free, one has

d j∫

c j

σ+
3r(1)

z
dz −

d j∫

c j

σ−
3r(2)

z
dz = 0 ( j = 1, 2, . . . , n) z ∈ L j . (32)

Substituting Eq. (8) into Eq. (32) and noting Eq. (25) yield

∫

� j

[
(β1 − β2)�1(z) + β2

[
Q

z − z0
− Q̄

(
1

z − z∗ − 1

z

)
+ 
 + a2

z2 
̄

]]
dz = 0 ( j = 1, 2, . . . , n) (33)
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where � j is a closed contour encircling each anti-crack L j . The set of n linear algebraic equations given by
Eq. (33) determine solely n remaining complex integration constants. Once �1(z) is available, �2(z) will be
simply obtained from Eq. (25).

Replacing the argument z of functions �1(z) and �2(z) by ξk , the complete functions of �1(ξ1) and �2(ξ2)
can be obtained [18].

4 Closed form solution for typical case

Consider the case of the interface with a single anti-crack and uniform shear loads at infinity. Without loss
of generality, assume an interfacial anti-crack symmetrically placed with respect to the x-axis and the tips of
which are located at c1 = ae−iα and d1 = aeiα .

In this case, we have

P1(z) = C1, X0(z) = (z2 − 2az cos α + a2)−1/2. (34)

Expanding 1/X0(z) into Laurent series in the vicinity of z = 0 and |z| = ∞, and noting X0(0) = 1/a, it
is found

h0(z) = 2m ·
[

Q̄a

z
+ a3

z2 
̄ − a2

z

̄ cos α

]
, (35a)

h∞(z) = 2m · [Q + 
z − 
a cos α], (35b)

hz0(z) = 2m Q

(z − z0)X0(z0)
, (35c)

hz∗(z) = − 2m Q̄

(z − z∗)X0(z∗)
. (35d)

Substituting Eq. (31) into Eq. (33) and noting Eqs. (34) and (35), one can derive C1 by residue theorem.

C1 = 0. (36)

Replacing the argument z of functions �1(z) and �2(z) by ξk and considering Eqs. (25),(31) and (34)–(36),
we obtain

�1(ξ1) = m

[
Q

ξ1 − ξ0
− Q̄

ξ1 − ξ∗ + Q̄

ξ1

]
− m

[
Q

(ξ1 − ξ0)X0(ξ0)
− Q̄

(ξ1 − ξ∗)X0(ξ∗)
+ Q̄a

ξ1
+ Q

]
X0(ξ1)

−m

(

ξ1 − 
a cos α + a3

ξ2
1


̄ − a2

ξ1

̄ cos α

)
X0(ξ1) + m

(

 + a2

ξ2
1


̄

)
(37)

�2(ξ2) = mβ1

β2

[
Q

ξ2 − ξ0
− Q̄

ξ2 − ξ∗ + Q̄

ξ2

]
+ m

[
Q

(ξ2 − ξ0)X0(ξ0)
− Q̄

(ξ2 − ξ∗)X0(ξ∗)
+ Q̄a

ξ2
+ Q

]
X0(ξ2)

+m

(

ξ2 − 
a cos α + a3

ξ2
2


̄ − a2

ξ2

̄ cos α

)
X0(ξ2) + mβ1

β2

(

 + a2

ξ2
2


̄

)
(38)

where ξ∗ = a2/ξ̄0.
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Assuming Q = 0, the new solution for two dissimilar cylindrically anisotropic solids interface containing
an anti-crack under anti-plane shear at infinity can be simply derived from Eqs. (37) and (38). Setting β1 = β2,
we give the complex potential of corresponding homogeneity material containing a single anti-crack as

�(ξ) = 1

2

[
Q

ξ − ξ0
− Q̄

ξ − ξ∗ + Q̄

ξ

]
− 1

2

[
Q

(ξ − ξ0)X0(ξ0)
− Q̄

(ξ − ξ∗)X0(ξ∗)
+ Q̄a

ξ
+ Q

]
X0(ξ)

−1

2

(

ξ − 
a cos α + a3

ξ2 
̄ − a2

ξ

̄ cos α

)
X0(ξ) + 1

2

(

 + a2

ξ2 
̄

)
. (39)

To our knowledge, this also is a novel result.
Furthermore, assuming α = 0, namely, the interface anti-crack vanishes, one can reduce Eqs. (37) and

(38) to

�1(ξ1) = 2m Q

ξ1 − ξ0
+ 2m
 (40)

�2(ξ2) = Q

ξ2 − ξ0
+ m(β2 − β1)Q̄

β2

(
1

ξ2 − ξ∗ − 1

ξ2

)
+ 
 − m(β2 − β1)

β2

a2

ξ2
2


̄. (41)

When the symmetries of materials are restricted to the crystal system with the symmetry higher than the
orthotropy and 
 = 0, Eqs. (40) and (41) are in agreement with the work of Shin and Earmme [25].

If the matrix and inhomogeneity are two different isotropic materials, that is, c44 = c55, c45 = 0, then
β = c44, ξ = z, it can be found from Eqs. (40) and (41),

�1(z) = 2c44(2)

c44(1) + c44(2)

· Q

z − z0
+ 2c44(2)

c44(1) + c44(2)

· 
 (42)

�2(z) = Q

z − z0
+ (c44(2) − c44(1))Q̄

c44(1) + c44(2)

·
(

1

z − z∗ − 1

z

)
+ 
 − (c44(2) − c44(1))

c44(1) + c44(2)

· a2

z2 
̄. (43)

When Q = b
2π i , Eqs. (42) and (43) are in accord with the well-known solution of Smith [26] and reduced

result of Kattis and Providas [22]. And when 
 = 0 and Q = − p
2πc44(2)

, complex potential functions (42) and
(43) are identical to the results of Liu [27].

It is meaningful that, by the use of Eqs. (37) and (38), one can get the solution for a planar anti-crack
or rigid line in rectilinearly anisotropic materials. For the convenience of comparing with previous known
solutions of a planar rigid line lies on x-axis, the tips of the circular rigid line are assumed at c1 = aei(π/2−α)

and d1 = aei(π/2+α). Letting a → ∞, α → 0 and keeping a sin α = l(l denoting the half length of straight
rigid line), a situation cannot exist with the shear stress at infinity [26] and the appropriate complex potentials
due solely to a anti-plane singularity are

�1(ξ1) = m

[
Q

ξ1 − ξ0
− Q̄

ξ1 − ξ̄0

]
− m

⎡
⎣ Q

√
ξ2

0 − l2

ξ1 − ξ0
−

Q̄
√

ξ̄2
0 − l2

ξ1 − ξ̄0
+ Q̄ + Q

⎤
⎦ · 1√

ξ2 − l2
(44)

�2(ξ2) = mβ1

β2

[
Q

ξ2 − ξ0
− Q̄

ξ2 − ξ̄0

]
+ m

⎡
⎣ Q

√
ξ2

0 − l2

ξ1 − ξ0
−

Q̄
√

ξ̄2
0 − l2

ξ1 − ξ̄0
+ Q̄ + Q

⎤
⎦ · 1√

ξ2 − l2
. (45)

This is a new result. Assuming the materials of the upper and lower half-plane are two dissimilar isotropic
media, and when Q = − p

2πc44(2)
and Q = b

2π i , Eqs. (44) and (45) coincide, respectively, with the solution of
Jiang and Cheung [7] and reduced result of Xiao et al. [17].
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Fig. 2 A screw dislocation dipole interacting with an interfacial anti-crack model

In addition, the solution presented as Eqs. (37) and (38) is valid for either matrix is isotropic but inho-
mogeneity is anisotropic or matrix is anisotropic but inhomogeneity is isotropic. Moreover, when c44(1) =
c55(1) = c45(1) = 0 or c44(1) = c55(1) = ∞, c45(1) = 0, the solutions for a anti-plane singularity interacting
with a hole or a rigid inclusion in anisotropic material can be simply lead to. Here the details are omitted for
saving space.

5 Screw dislocation dipole

Equations (37)–(38) are the explicit expressions of Green’s functions for the current model subjected to a single
anti-plane singularity located in the matrix. The solutions for two or more anti-plane singularities in the matrix
can be constructed easily by the superposition of Green’s functions. We consider two screw dislocations which
are close to each other with Burgers vectors b1(= b) and b2(= −b) (they are also called a screw dislocation
dipole), respectively, interacting with an interface anti-crack in cylindrically anisotropic solids under free loads
at infinity. Referring to Fig. 2, assume that the center of the dislocation dipole with arm length 2d is z0 = r0eiθ0 ,
then the two dislocations are located at z1 = z0 − deiϑ and z2 = z0 + deiϑ , and the interfacial anti-crack
symmetrically placed with respect to the x-axis and the tips of which are located at c1 = ae−iα and d1 = aeiα .
It indicates that X0(ξ) takes the same form as Sect. 4.

Taking Eqs. (37)–(38) into account, no matter the screw dipole emitted from the anti-crack or generated
elsewhere, one can write the complex potentials in two regions as

�1(ξ1) = mb

2π i

[
ξ10 − ξ20

(ξ1 − ξ10)(ξ1 − ξ20)
+ ξ∗

10 − ξ∗
20

(ξ1 − ξ∗
10)(ξ1 − ξ∗

20)

]

− mb

2π i

[
1

(ξ1 − ξ10)X0(ξ10)
− 1

(ξ1 − ξ20)X0(ξ20)

+ 1

(ξ1 − ξ∗
10)X0(ξ

∗
10)

− 1

(ξ1 − ξ∗
20)X0(ξ

∗
20)

]
X0(ξ1) (46)

�2(ξ2) = mβ1b

2π iβ2

[
ξ10 − ξ20

(ξ2 − ξ10)(ξ2 − ξ20)
+ ξ∗

10 − ξ∗
20

(ξ2 − ξ∗
10)(ξ2 − ξ∗

20)

]

+ mb

2π i

[
1

(ξ2 − ξ10)X0(ξ10)
− 1

(ξ2 − ξ20)X0(ξ20)

+ 1

(ξ2 − ξ∗
10)X0(ξ

∗
10)

− 1

(ξ2 − ξ∗
20)X0(ξ

∗
20)

]
X0(ξ2) (47)

where ξk0 = (
rk
a )−iµ−1rkeiθk and ξ∗

k0 = a2/ξ̄k0(k = 1, 2) with rk and θk representing the polar radius and
polar angle of zk .
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From Eqs. (46) and (47), one may also find some new results for the case similarly to Sect. 4. Here we
omit the details for saving space.

6 Stress singularity near the anti-crack tips

For any anti-crack L j , similarly to the stress intensity factors at crack tips [28,29], we define the stress
singularity around the anti-crack tip d j = aeiθd as

SIII = lim
ρ→0

√
2πρσ3r (48)

where ρ means the distance from the anti-crack tip along the interface.
Inserting Eq. (8) into Eq. (48) and noting ρ = adθ lead to

SIII = β1
√

2πa Re

[
lim

θ→θd

√
θ − θdeiθ�1(ξ1)

]
. (49)

In this section, we focus on the case of the interface containing a single anti-crack. Considering the anti-
crack tip d1, then substituting Eqs. (37) and (46) into Eq. (49), respectively, lead to

SIII = Re

{
β1m

√
πa sin α(
eiα/2 + 
̄e−iα/2) −

√
πβ1meiα/2

i
√

a sin α

[
Q

(aeiα − ξ0)X0(ξ0)

− Q̄

(aeiα − ξ∗)X0(ξ∗)
+ Q̄e−iα + Q

]}
(50)

for anti-plane singularity and load at infinity, and

SIII = Re

{
β1meiα/2b

2
√

πa sin α

[
1

(aeiα − ξ10)X0(ξ10)
− 1

(aeiα − ξ20)X0(ξ20)
+ 1

(aeiα − ξ∗
10)X0(ξ

∗
10)

− 1

(aeiα − ξ∗
20)X0(ξ

∗
20)

]}
(51)

for screw dislocation dipole and absent load at infinity.
Similarly, the stress singularity near the crack tip c1 can be obtained.

7 Image forces and image torques

When the anti-plane singularity reduces to a screw dislocation, it is necessary to investigate the image force
on the dislocation due to which is a significant physical quantum for understanding interacting mechanism in
studying the interaction effects of dislocation and inhomogeneity. According to Peach–Koehler formula [30]
and noting the resolution of Cartesian to polar, the force exerted on a screw dislocation is given by polar form

Fr − i Fθ = ib[σ̃3r (ξ0) − i σ̃3θ (ξ0)] (52)

where σ̃3r (ξ0) and σ̃3θ (ξ0) are the perturbation stress components at the dislocation which are obtained by
subtracting those attributed to the dislocation in the corresponding infinite homogeneous medium from the
current stress field, then taking the limit for ξ approaching ξ0. Considering the interface containing one
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anti-crack, the components of image force are found to be

Fr = mb

r0
Re

{
µ2ξ0

[
β1b

2π i

(
1

ξ0 − ξ∗ − 1

ξ0

)
+ β2b

2π i

[
1

(ξ0 − ξ∗)X0(ξ∗)
− a

ξ0
+ 1

]
X0(ξ0)

−β2b

2π i
(ξ0 − a cos α)X2

0(ξ0) + β2

(
a3

ξ2
0


̄ − a2

ξ0

̄ cos α + 
ξ0 − 
a cos α

)
X0(ξ0) + β1

(

 + a2

ξ2
0


̄

)]}

(53)

Fθ = −mb

r0
Re

{
ξ0

[
β1b

2π i

(
1

ξ0 − ξ∗ − 1

ξ0

)
+ β2b

2π i

[
1

(ξ0 − ξ∗)X0(ξ∗)
− a

ξ0
+ 1

]
X0(ξ0)

−β2b

2π i

ξ0 − a cos α

X2
0(ξ0)

+ β2

(
a3

ξ2
0


̄ − a2

ξ0

̄ cos α + 
ξ0 − 
a cos α

)
X0(ξ0) + β1

(

 + a2

ξ2
0


̄

)]}
. (54)

Referring to the work of Juang and Lee [31], the image force components F0r and F0θ and image torque
T acting on the center of screw dislocation under consideration are possible to be arrived at

F0r = F1r cos (θ1 − θ0) + F2r cos (θ0 − θ2) − F1θ sin (θ1 − θ0) + F2θ sin (θ0 − θ2) (55)

F0θ = F1r sin (θ1 − θ0) − F2r sin (θ0 − θ2) + F1θ cos (θ1 − θ0) + F2θ cos (θ0 − θ2) (56)

T = [F1r sin (θ1 − ϑ) − F2r sin (θ2 − ϑ) + F1θ cos (θ1 − ϑ) − F2θ cos (θ2 − ϑ)]d (57)

where Fkr and Fkθ (k = 1, 2) are image force components exerted on dislocation at zk , respectively; and they
can be derived from Eq. (52) as

F1r = mb2

2πr1
Re

{
− iµ2ξ10

[
β1

(
− 1
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+ 1
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10

− 1
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20

)
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[
− 1
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+ 1
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10)X0(ξ

∗
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− 1
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∗
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]
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]}
(58)

F1θ = mb2
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Re

{
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(59)

F2r = mb2
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(60)

F2θ = − mb2
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Re

{
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[
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(
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)
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]}
. (61)

8 Numerical analysis and discussion

Taking the case of one interfacial anti-crack and free load at infinity for example, we focus on the stress
singularities at the anti-crack tips and image forces exerted on the screw dislocation in the following. It is
assumed that the anti-plane singularity or the center of screw dislocation dipole locate on x-axis and materials
are orthotropic, the latter means µ = i

√
c44/c55. Denote η = √

c44/c55, which represents the extent of
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Fig. 3 Normalized stress singularities SIII p versus λ with different η2 for η1 = 2 and α = 30◦
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Fig. 4 Normalized stress singularities SIIIb versus λ with different η2 for η1 = 2 and α = 30◦

anisotropy of material and dimensionless distance λ = r0/a. In addition, c55(2)/c55(1) is restricted to constant
one for giving prominence to the influence of anisotropy upon stress singularities and image forces. Introduce
the following parameters to scale the stress singularities and image forces:

S0p = p

2
√

πa
, S0b = c55b

2
√

πa
, F0 = c55b2

2πa
.

Figures 3, 4, 5 and 6 illustrate the influence of anisotropies of materials upon stress singularities near the
anti-crack tip. Normalized stress singularities SIII p and SIIIb versus λ with different η2 for η1 = 2 and α = 30◦
are depicted in Figs. 3 and 4, respectively. It can be observed that, with the increment of distance between the
singularity and interface anti-crack, the stress singularities around the anti-crack decrease monotonically, and
the singularity shields the anti-crack regardless of the anisotropies of materials. When the screw dislocation
is close to the anti-crack, the anisotropy ratio of matrix material may enhance the shielding effect, but when
the screw dislocation is far from the anti-crack in some sort, this trend is reversed. However, in the process
of the anti-plane concentrated force approaching the interfacial anti-crack from infinity, the anisotropy ratio
of material may weaken the stress singularities. Figures 5 and 6 show the variations of normalized stress
singularities SIII p and SIIIb versus α with different η2 for η1 = 2 and λ = 1.2. The magnitude of normalized
stress singularities decrease firstly and then augment with the increase of anti-crack angle. There are different
minimal values in the turning points and for which the shielding effects is strongest. Noticeably, the anisotropy
properties of materials may weaken the stress singularity near the anti-crack tip for the singularity being a
concentrated force but enhance the one for the singularity being a screw dislocation.
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Fig. 5 Normalized stress singularities SIII p versus α with different η2 for η1 = 2 and λ = 1.2
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Fig. 6 Normalized stress singularities SIIIb versus α with different η2 for η1 = 2 and λ = 1.2

For the case of a screw dislocation dipole near the interfacial anti-crack, Fig. 7 describes the variations
of normalized stress singularities SIIId versus dipole orientation ϑ with different η2 for η1 = 2, α = 30◦ and
λ = 1.2. As can be seen, when the two components of screw dislocation dipole are symmetrically located with
respect to x-axis (ϑ = 90◦ or 270◦), the magnitude of the stress singularities are equal to zero, and the stress
singularities possess the biggest negative values when ϑ = 0◦(360◦) and the ultimate positive values when
ϑ = 180◦. In addition, the anisotropy ratios may enhance the singular effect of dislocation dipole acting on
the anti-crack tip.

Due to the screw dislocation locates on x-axis, the tangential component of image force reduce to zero.
We focus on the remaining radial component of image force. Normalized radial image forces Fr versus λ with
different η2 for η1 = 2 and α = 10◦ are plotted in Fig. 8. It can be seen that when the screw dislocation
approaches the interface along x-axis from infinity, the inhomogeneity and interface anti-crack always repel
the screw dislocation if the anisotropy ratios of matrix are less or equal to the inhomogeneity’s; however, if
the matrix’s anisotropy ratios larger than inhomogeneity’s, the inhomogeneity and interfacial anti-crack attract
the screw dislocation firstly and then repel it. There is a stable equilibrium position at which the image force
equals to zero. Figure 9 shows the variations of normalized radial image forces Fr versus α with different η2
for η1 = 2 and λ = 1.2. It is found that the radial image forces increase with the increment of the anti-crack
angle and become constant values after the anti-crack reaches certain length. When α = 0◦, namely, the
anti-crack vanishes, the inhomogeneity attracts the screw dislocation inside the matrix with larger anisotropy
than inhomogeneity’s when it repels the dislocation in the matrix with smaller anisotropy.
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9 Conclusions

The interaction between an anti-plane singularity and interfacial anti-cracks in cylindrically anisotropic
composites is studied in this paper. By employing a complex potential technique, we obtain the general
solution of this problem. Particularly, the closed solution for interface containing one anti-crack is presented
analytically. In addition, the complex potentials for a screw dislocation dipole inside a matrix are obtained
by superimposing method. Expressions of stress singularities around the anti-crack tips, image forces and
torques acting on dislocation or the center of dipole are given explicitly. The results show that the anisotropies
of materials have significant influence on the stress singularities and image forces. The presented solutions
are valid for anisotropic, orthotropic or isotropic composites and can be reduced to some novel or previously
known results.
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