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Abstract In this study, free vibration analysis of a rotating, double-tapered Timoshenko beam that undergoes
flapwise bending vibration is performed. At the beginning of the study, the kinetic- and potential energy
expressions of this beam model are derived using several explanatory tables and figures. In the following
section, Hamilton’s principle is applied to the derived energy expressions to obtain the governing differential
equations of motion and the boundary conditions. The parameters for the hub radius, rotational speed, shear
deformation, slenderness ratio, and taper ratios are incorporated into the equations of motion. In the solution, an
efficient mathematical technique, called the differential transform method (DTM), is used to solve the governing
differential equations of motion. Using the computer package Mathematica the effects of the incorporated
parameters on the natural frequencies are investigated and the results are tabulated in several tables and
graphics.

Keywords Nonuniform Timoshenko beam · Tapered Timoshenko beam · Rotating Timoshenko beam ·
Differential transform method · Differential transformation

List of symbols
A cross-sectional area
b0 beam breadth at the root section
cb breadth taper ratio
ch height taper ratio
E Young’s modulus
E A axial rigidity of the beam cross section
E I bending rigidity of the beam cross section
G shear modulus
h0 beam height at the root section
�i, �j, �k unit vectors in the x , y, and z directions
Iy second moment of inertia about the y axis
k shear correction factor
k AG shear rigidity
L beam length
P reference point after deformation
P0 reference point before deformation
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r inverse of the slenderness ratio S
�r0 position vector of P0
�r1 position vector of P
R hub radius
S slenderness ratio
t time
T centrifugal force
u0 axial displacement due to the centrifugal force
Ub potential energy due to bending
Us potential energy due to shear
Vx , Vy, Vz velocity components of point P
W [k], θ [k] transformed functions
w flapwise bending displacement
w′ flapwise bending slope
x spanwise coordinate
x̄ spanwise coordinate parameter
x0, y0, z0 coordinates of P0
x1, y1, z1 coordinates of P
δ hub radius parameter
γ shear angle
ε0 uniform strain due to the centrifugal force
εi j classical strain tensor
εxx axial strain
εηη, εξξ transverse normal strains
η sectional coordinate corresponding to major principal axis for P0 on the elastic axis
µ natural frequency parameter
ξ sectional coordinate for P0 normal to η axis at the elastic axis
ρ density of the blade material
ρ A mass per unit length
θ rotation angle due to bending
ω circular natural frequency
	 constant rotational speed
	̄ rotational speed parameter

1 Introduction

The dynamic characteristics, i.e., natural frequencies and related mode shapes, of rotating tapered beams are
required to determine resonant responses and perform forced vibration analysis. Therefore, many investigators
have studied rotating tapered beams, which are very important for the design and performance evaluation of
several engineering applications such as rotating machinery, helicopter blades, robot manipulators, spinning
space structures, etc. Klein [11] used a combination of a finite-element approach and the Rayleigh–Ritz method
to analyze the vibration of tapered beams. Downs [4] applied a dynamic discretization technique to calculate the
natural frequencies of a nonrotating double-tapered beam based on both the Euler–Bernoulli and Timoshenko
beam theories. Swaminathan and Rao [21], computed the frequencies of a pretwisted, tapered rotating blade
using the Rayleigh–Ritz method and including the effects of the rotational speed, pretwist angle, and breadth
taper. To [22] developed a higher-order tapered beam finite-element approach for transverse vibration of
tapered cantilever beam structures. Sato [19] used the Ritz method to study a linearly tapered beam with ends
constrained elastically against rotation and subjected to an axial force. Lau [12] studied the free vibrations of
a tapered beam with an end mass using the exact method. Banerjee and Williams [2] derived the exact dynamic
stiffness matrices of axial, torsional, and transverse vibrations for a range of tapered beam elements. Williams
and Banerjee [23] studied the free vibration of an axially loaded beam with linear or parabolic taper, using a
stepped approximation to model the beam as a rigidly connected set of uniform members. Storti and Aboelnaga
[20] studied the transverse deflections of a straight tapered symmetric beam attached to a rotating hub as a
model for the bending vibration of blades in turbomachinery. Kim and Dickinson [10] used the Rayleigh–Ritz
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Fig. 1 Configuration of a rotating, double-tapered, cantilever Timoshenko beam

method to analyze slender beams subject to various complicated effects. Lee et al. [15] used the Green’s
function method in the Laplace transform domain to study the vibration of general elastically constrained
tapered beams and obtained the approximate fundamental solution by using a number of stepped beams to
represent the tapered beam. Lee and Kuo [13] used the Green’s function method to study truncated nonuniform
beams on an elastic base with polynomially varying bending rigidity and elastically constrained ends, giving
an exact fundamental solution in power series form. Grossi and Bhat [6] used, respectively, the Rayleigh–Ritz
method and the Rayleigh–Schmidt method to analyze the truncated tapered beams with rotational constraints
at two ends. Naguleswaran [16] used the Frobenius method to analyze the free vibration of wedge and cone
beams and beams with one constant side and another square-root-varying side. Bazoune and Khulief [3]
developed a finite beam element for vibration analysis of a rotating double-tapered Timoshenko beam. Khulief
and Bazoune [9] extended the work in Bazoune and Khulief [3] to account for different combinations of the
fixed, hinged, and free end conditions.

In this study, as an extension of the authors’ previous works [8,17,18], free vibration analysis of a rotating,
double-tapered, cantilever Timoshenko beam that undergoes flapwise bending vibration is performed using
the differential transform method (DTM), which is an iterative procedure to obtain analytic Taylor series
solutions of differential equations. The advantage of DTM is its simplicity and accuracy in calculating the
natural frequencies and plotting the mode shapes, and also its wide area of application. In the literature, there
are several studies that have used DTM to deal with linear and nonlinear initial value problems, eigenvalue
problems, ordinary and partial differential equations, aeroelasticity problems, etc. A brief review of these
studies is given by Ozdemir Ozgumus and Kaya [17].

2 Beam configuration

The governing partial differential equations of motion are derived for the flapwise bending vibration of a
rotating, double-tapered, cantilever Timoshenko beam represented by Fig. 1.

Here, a cantilever beam of length L , fixed at point O to a rigid hub, is shown. The hub has radius R and
rotates in a counterclockwise direction at a constant rotational speed of 	. The beam tapers linearly from a
height of h0 at the root to h at the free end in the xz plane and from a breadth b0 to b in the xy plane. In
the right-handed Cartesian coordinate system, the x-axis coincides with the neutral axis of the beam in the
undeflected position, the z-axis is parallel to the axis of rotation (but not coincident), and the y-axis lies in the
plane of rotation.

The following assumptions are made in this study,

a. The flapwise bending displacement is small.
b. The planar cross sections that are initially perpendicular to the neutral axis of the beam remain plane, but

are no longer perpendicular to the neutral axis during bending.
c. The beam material is homogeneous and isotropic.

3 Derivation of the governing equations of motion

The cross-sectional and side views of the flapwise bending displacement of a rotating Timoshenko beam are
shown in Fig. 2a and b, respectively.

Here, a reference point is chosen and is represented by P0 before deformation and by P after deformation.
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Fig. 2 a Cross-sectional view. b Longitudinal view of a rotating Timoshenko beam before and after flapwise bending deformation

3.1 Derivation of the potential energy expression

Examining Fig. 2a and b, the coordinates of the reference point are written as follows. Before deformation
(coordinates of P0):

x0 = R + x, y0 = η, z0 = ξ. (1)

After deformation (coordinates of P):

x1 = R + x + u0 − ξθ, y1 = η, z1 = w + ξ. (2)

Here, the rotation angle due to bending, θ , is small, so it is assumed that Sinθ ∼= θ .
Knowing that �r0 and �r1 are the position vectors of P0 and P , respectively, d�r0 and d�r1 can be given by

d
⇀
r 0 = (dx0)

⇀

i + (dy0)
⇀

j + (dz0)
⇀

k and d
⇀
r 1 = (dx1)

⇀

i + (dy1)
⇀

j + (dz1)
⇀

k . (3)

The components of d
⇀
r 0 and d

⇀
r 1 are expressed as follows

dx0 = dx, dy0 = dη, dz0 = dξ (4)

dx1 = (1 + u′
0 − ξθ ′)dx−θdξ, dy1 = dη, dz1 = w′dx + dξ (5)

where the prime denotes differentiation with respect to the spanwise position x .
The classical strain tensor εi j may be obtained using the equilibrium equation below [5].

d�r1 · d�r1 − d�r0 · d�r0 = 2�dxdηdξ�[εij
]�dxdηdξ�T. (6)

Substituting Eqs. (4) and (5) into Eq. (6), the elements of the strain tensor εi j are obtained as follows

εxx = u′
0 − ξθ ′ +

(
u′)2

2
+ ξ2

(
θ ′)2

2
− u′

0θ
′ξ + w′2

2
, γxη = 0, γxξ = (

w′ − θ
) + ξθθ ′ − u′

0θ. (7)

In this work εxx , γxη, and γxξ are used in the calculations because, as noted by Hodges and Dowell [7], for
long slender beams, the axial strain εxx is dominant over the transverse normal strains, εηη and εξξ . Moreover,
the shear strain γηξ is two orders of magnitude smaller than the other shear strains, γxη and γxξ . Therefore,
εηη, εξξ , and γηξ can be neglected.

To obtain simpler expressions for the strain components, higher-order terms should be neglected so an
order-of-magnitude analysis is performed by using the ordering scheme taken from Hodges and Dowell [7]
and introduced in Table 1.
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Table 1 Ordering scheme for Timoshenko beam formulation

x
L = O(1)

η
L = O(ε)

w
L = O(ε) θ = O(ε)

ξ
L = O(ε) u0

L = O(ε2)

γ = w′ − θ = O(ε2)

Table 2 Area integrals for the potential energy expression

∫∫

A
dηdξ = A

∫∫

A
η2 dηdξ = Iz

∫∫

A
ξ2 dηdξ = Iy

∫∫

A

(
η2 + ξ2

)
dηdξ = J

∫∫

A
ξ dηdξ = ∫∫

A
η dηdξ = ∫∫

A
ξ η dηdξ = 0

The Euler–Bernoulli beam theory is used by Hodges and Dowell [7]. In the present work, their formulation
is modified for a Timoshenko beam and the following new expression is added to their ordering scheme as a
contribution to the literature.

γ = w′ − θ = O(ε2). (8)

Using Table 1, the strain components in Eq. (7) can be reduced to

εxx = u′
0 − ξθ ′ + (w′)2

2
, γ xη = 0, γxξ = w′ − θ. (9)

Using Eq. (9), the potential energy expressions are derived. The potential energy contribution due to
flapwise bending, Ub, is given by

Ub = 1

2

L∫

0

⎛

⎝
∫∫

A

Eε2
xx dηdξ

⎞

⎠dx . (10)

Substituting the first expression of Eq. (9) into Eq. (10), taking integration over the blade cross section and
referring to the definitions given by Table 2, the following potential energy expression is obtained for flapwise
bending

Ub = 1

2

L∫

0

E A(u′
0)

2dx + 1

2

L∫

0

E Iy(θ
′)2dx + 1

2

L∫

0

E Au′
0(w

′)2dx . (11)

The uniform strain, εo, and the associated axial displacement, u0, that is a result of the centrifugal force,
T (x), are related to each other as follows

u′
0(x) = ε0(x) = T (x)

E A
(12)

where the centrifugal force is given by

T (x) =
L∫

x

ρ A	2(R + x)dx . (13)

Substituting Eq. (12) into Eq. (11) and noting that the 1
2

∫ L
0

T 2(x)
E A dx term is constant and will be denoted

as C1, the final form of the bending potential energy is obtained as follows

Ub = 1

2

L∫

0

E I (θ ′)2dx + 1

2

∫ L

0
T (w′)2dx + C1. (14)
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The potential energy contribution due to shear, Us, is given by

Us = 1

2

L∫

0

⎡

⎣
∫∫

A

(
kGγ 2

xξ

)
dηdξ

⎤

⎦dx . (15)

Substituting the third expression of Eq. (9) into Eq. (15) and referring to the definitions given by Table 2,
the following potential energy expression is obtained for the shear

Us = 1

2

L∫

0

k AG(w′ − θ)2dx . (16)

Summing Eqs. (14) and (16), the total potential energy expression is obtained

U = 1

2

L∫

0

[
E I (θ ′)2 + k AG(w′ − θ)2 + T (w′)2]dx + C1. (17)

3.2 Derivation of the kinetic energy expression

The velocity vector of the reference point P due to rotation of the beam is expressed as

�V = ∂�r1

∂t
+ 	�k × �r1. (18)

Substituting the coordinates given by Eq. (2) into Eq. (18), the velocity components are obtained as follows

Vx = −ξ θ̇ − η	, Vy = ( R + x + u0 − ξθ)	, Vz = ẇ. (19)

Using Eq. (19), the kinetic energy expression, �, is derived as

� = 1

2

L∫

0

⎛

⎝
∫∫

A

ρ
(

V 2
x + V 2

y + V 2
z

)
dηdξ

⎞

⎠dx . (20)

Substituting Eq. (19) into Eq. (20) and referring to the definitions given by Table 3, the final form of the
kinetic energy expression is obtained.

� = 1

2

L∫

0

(
ρ Aẇ2 + ρ Iy θ̇

2 + ρ Iy	
2θ2)dx + C2 (21)

where C2 includes the constant terms ρ A(R + x + u0) and ρ Iz	
2 that appear after substituting Eq. (19) into

Eq. (20).

Table 3 Area integrals for the kinetic energy expression

∫∫

A
ρ dηdξ = m

∫∫

A
ρ η2 dηdξ = ρ Iz

∫∫

A
ρ ξ2 dηdξ = ρ Iy

∫∫

A
ξ dηdξ = ∫∫

A
η dηdξ = ∫∫

A
ξ η dηdξ = 0
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3.3 Application of Hamilton’s principle

The governing equations of motion and the associated boundary conditions can be derived by means of the
Hamilton’s principle, which can be stated in the following form for an undamped free vibration analysis.

t2∫

t1

δ(U − �)dt = 0. (22)

Using variational principles, the variation of the kinetic and potential energy expressions are taken and
the governing equations of motions of a rotating, nonuniform Timoshenko beam undergoing flapwise bending
vibration are derived as follows

−ρ A
∂2w

∂t2 + ∂

∂x

(
T

∂w

∂x

)
+ ∂

∂x

[
k AG

(
∂w

∂x
− θ

)]
= 0 (23a)

−ρ Iy
∂2θ

∂t2 + ρ Iy	
2θ + ∂

∂x

(
E Iy

∂θ

∂x

)
+ k AG

(
∂w

∂x
− θ

)
= 0. (23b)

Additionally, after the application of the Hamilton’s principle, the associated boundary conditions are
obtained as follows

• The geometric boundary conditions at the fixed end, x = 0, of the Timoshenko beam,

w(0, t) = θ(0, t) = 0. (24a)

• The natural boundary conditions at the free end, x = L , of the Timoshenko beam,

Shear force:T
∂w

∂x
+ k AG

(
∂w

∂x
− θ

)
= 0. (24b)

Bending moment:E Iy
∂θ

∂x
= 0. (24c)

The boundary conditions expressed by Eqs. (24b)–(24c) can be simplified by noting that T = 0 at the free
end, x = L .

∂w

∂x
− θ = 0 (25a)

∂θ

∂x
= 0. (25b)

4 Vibration analysis

4.1 Harmonic motion assumption

In order to investigate the free vibration of the beam model considered in this study, a sinusoidal variation of
w(x, t) and θ(x, t) with a circular natural frequency, ω, is assumed and the functions are approximated as

w(x, t) = w̄(x)eiωt and θ(x, t) = θ̄ (x)eiωt . (26)

Substituting Eq. (26) into Eqs. (23a) and (23b), the equations of motion are expressed as

ρ Aω2w̄ + d

dx

(
T

dw̄

dx

)
+ d

dx

[
k AG

(
dw̄

dx
− θ̄

)]
= 0 (27a)

ρ Iyω
2θ̄ + ρ Iy	

2θ̄ + d

dx

(
E Iy

dθ̄

dx

)
+ k AG

(
dw̄

dx
− θ̄

)
= 0. (27b)
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4.2 Tapered beam formulation and dimensionless parameters

The basic equations for the breadth b(x), the height h(x), the cross-sectional area, A(x) and the second moment
of inertia, Iy(x) of a beam that tapers in two planes are

b(x) = b0

(
1 − cb

x

L

)m
and h(x) = h0

(
1 − ch

x

L

)n
(28a)

A(x) = A0

(
1 − cb

x

L

)m(
1 − ch

x

L

)n
and Iy(x) = Iy0

(
1 − cb

x

L

)m(
1 − ch

x

L

)3n
(28b)

where the breadth taper ratio, cb and the height taper ratio, ch are given by

cb = 1 − b

b0
and ch = 1 − h

h0
. (29)

The values of the constants n and m depend on the type of taper. In this study, the values n = 1 and m = 1
are used to model a beam that tapers linearly in two planes. Since the Young’s modulus E , the shear modulus
G and the material density, ρ are assumed to be constant, the mass per unit length ρ A, the flapwise bending
rigidity E Iy and the shear rigidity k AG vary according to the Eqs. (28a) and (28b).

In order to make comparisons with the results in the literature, the following dimensionless parameters can
be introduced.

x̄ = x

L
δ = R

L
w̃ = w̄

L
µ2 = ρ A0L4ω2

E Iy0
	̄2 = ρ A0L4	2

E Iy0
r2 = 1

S2 = Iy0

A0L2 s2 = E Iy0

k A0GL2 . (30)

Substituting the tapered beam formulas and the dimensionless parameters into Eqs. (27a) and (27b), the
following dimensionless equations of motion are obtained for the linear taper case (m = 1, n = 1).

d

dx̄

[(
cbch

4
+ δ − 1

2
(cbδ + chδ − 1) − 1

3
(cb + chδ − cbchδ) − x̄δ+ x̄2

2
(cbδ + chδ − 1)

+ x̄3

3
(cb + chδ − cbchδ) − x̄4

4
cbch

)
dw̃

dx̄

]
+

(
µ

	̄

)2

(1 − cb x̄)(1 − ch x̄)w̃

+
(

1

s	̄

)2 d

dx̄

[
(1 − cb x̄)(1 − ch x̄)

(
dw̃

dx̄
− θ̄

)]
= 0 (31a)

d

dx̄

[
(1 − cb x̄)(1 − ch x̄)3 dθ̄

dx̄

]
+ r2(µ2 + 	̄2)(1 − cb x̄)(1 − ch x̄)3θ̄

+ 1

s2 (1 − cb x̄)(1 − ch x̄)

(
dw̃

dx̄
− θ̄

)
= 0. (31b)

Additionally, substituting the dimensionless parameter into Eqs. (24a)–(25b), the dimensionless boundary
conditions of a rotating cantilever Timoshenko beam can be obtained as

At x̄ = 0 w̃ = θ̄ = 0 (32a)

At x̄ = 1
dw̃

dx̄
− θ̄ = 0 and

dθ̄

dx̄
= 0. (32b)

5 The differential transform method

The differential transform method is a transformation technique based on the Taylor series expansion and is a
useful tool to obtain analytical solutions of these differential equations. In this method, certain transformation
rules are applied to both the governing differential equations of motion and the boundary conditions of the
system in order to transform them into a set of algebraic equations. The solution of these algebraic equations
gives the desired results of the problem. This approach is different from the high-order Taylor series method
because the Taylor series method requires symbolic computation of the necessary derivatives of the data
functions and is expensive for large orders. The details of the application procedure of DTM are explained by
Ozdemir Ozgumus and Kaya [17] using several explanatory tables.
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6 Formulation with DTM

In the solution step, DTM is applied to Eqs. (31a) and (31b) and the following expressions are obtained.
[

1

2
+ δ + 1

s2	̄2
− (2 + 3δ)

6
(cb + ch) + (3 + 4δ)

12
cbch

]
(k + 1)(k + 2)W [k + 2]

−(k + 1)2
(

δ + cb + ch

s2	̄2

)
W [k + 1] +

{
k(k + 1)

[
(cb + ch)δ

2
+ cbch

s2	̄2
− 1

2

]
+ µ2

	̄2

}
W [k]

+
[
(k − 1)(k + 1)

3
(cb + ch + δcbch) − (cb + ch)

µ2

	̄2

]
W [k − 1] (33a)

+
[

µ2

	̄2
− (k + 1)(k + 2)

4

]
cbchW [k − 2] − (k + 1)

s2	̄2
θ [k + 1] + cb + ch

s2	̄2
(k + 1)θ [k]

− cbch

s2	̄2
(k + 1)θ [k − 1] = 0

(k + 1)(k + 2)θ [k + 2] − (cb + 3ch)(k + 1)2θ [k + 1]

+ [3ch(cb + ch)k(k + 1)− 1

s2 + r2(µ2 + 	̄2)
]

θ [k]

−
[

c2
h(k − 1)(k + 1)(3cb + ch) − cb + ch

s2 + r2(µ2 + 	̄2)(cb + 3ch)
]
θ [k − 1]

+
[
cbc3

h(k + 1)(k − 2) − cbch

s2 + 3ch(cb + ch)r
2(µ2 + 	̄2)] θ [k − 2] (33b)

−[
c2

h(3cb + ch)r
2(µ2 + 	̄2)]θ [k − 3] + cbc3

hr2(µ2 + 	̄2)θ [k − 4]

+ (k + 1)

s2 W [k + 1] − (cb + ch)k

s2 W [k] + cbch(k − 1)

s2 W [k − 1] = 0.

Additionally, DTM is applied to Eqs. (32a)–(32b) and the following transformed boundary conditions are
obtained.

At x̄ = 0 W [0] = θ [0] = 0 (34a)

At x̄ = 1
∞∑

k=0

(kW [k] − θ [k]) = 0 and
∞∑

k=0

kθ [k] = 0. (34b)

In Eqs. (33a)–(34b), W [k] and θ [k] are the differential transforms of w̃(x̄) and θ̄ (x̄), respectively. Using
Eqs. (33a) and (33b), W [k] and θ [k] values can now be evaluated in terms of cb, ch, µ, 	̄, d1 and d2 for
k = 2, 3 . . . The results calculated in Mathematica for δ = 0, r = 0.02, k = 2/3, and E/G = 8/3 values are

W [2] = −3750
d2 + (cb + ch)d1

7500 + (6 − 4ch − 4cb + 3chcb)	̄2

W [3] = 781250d1 − (1250.04cb + 3750ch)d2 + 2499.96(cb + ch)d2

7500 + (6 − 4ch − 4cb + 3chcb)	̄2

+
[
2499.96chcb + 2.04

(
µ2 − 	̄2

)]
d1

7500 + (6 − 4ch − 4cb + 3chcb)	̄2
− 18750000

[(cb + ch)d1 + d2](cb + ch)
[
7500 + (6 − 4ch − 4cb + 3chcb)	̄2

]2

θ [2] = −312.5d1 + 0.5(cb + 3ch)d2

θ [3] = 104.17(cb + ch)d1 − 781250
(cb + ch)d1 + d2

7500 + (6 − 4ch − 4cb + 3chcb)	̄2

+ (0.33cb + ch)[−625d1 + (cb + 3ch)d2] − [−104.17 + chcb + c2
h + 0.000067

(
	̄2 + µ2)]d2.
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Fig. 3 Convergence of the first four natural frequencies (δ = 0, 	 = 4, cb = ch = 0.5, r = 0.08, v = 0.3, k = 0.85)

Here the constants d1 and d2 that appear in the W [k]s and θ [k]s are defined as follows

d1 = W [1] =
(

dw̃

dx̄

)

x=0
and d2 = θ [1] =

(
dθ

dx̄

)

x=0
. (35)

7 Results and discussions

The computer package Mathematica is used to write code for the expressions given by Eqs. (33a)–(34b).
The effects of the rotational speed, hub radius, slenderness ratio, and taper ratios on the natural frequencies
are investigated and the related graphics are plotted. Additionally, in order to validate the calculated results,
comparisons with the studies in the literature are made and very good agreement between the results is observed.

In Fig. 3, convergence of the first four natural frequencies with respect to the number of terms, used in the
DTM application is introduced. In order to evaluate up to the fourth natural frequency with five-digit precision,
it was necessary to include 39 terms. During the calculations, it was noticed that, when the rotational speed
parameter was increased, the number of terms had to be increased to achieve the same accuracy. Additionally,
here it was seen that higher modes appear when more terms were taken into account in application of the DTM.
Thus, depending on the order of the required mode, one must try a few values for the number of terms at the
beginning of the Mathematica calculations to find the adequate number of terms.

In Fig. 4, the variation of the first three natural frequencies of a rotating tapered Timoshenko beam with
respect to the rotational speed parameter, 	̄ and the hub radius parameter, δ, is shown. As expected, the natural
frequencies increase with increasing rotational speed parameter due to the stiffening effect of the centrifugal
force, which is directly proportional to the square of the rotational speed. Moreover, as seen in Fig. 4, δ makes
the rate of increase of the natural frequencies larger because the centrifugal force, which is directly proportional
to the hub radius, makes the beam stiffer for increasing δ (Fig. 4).

In Table 4, the variation of the natural frequencies of a uniform beam with respect to the inverse of the
slenderness ratio, r , and the rotational speed parameter, 	̄, is introduced and the results are compared with
those given by Banerjee [1]. Besides increasing with the rotational speed parameter, the natural frequencies
decrease as the inverse of the slenderness ratio, r , increases. At 	̄ = 12, the decrease in the frequencies due
to r is 7% for the first mode, 23.12% for the second mode, 37% for the third mode, and 59.7% for the fourth
mode. Comparing the percentage decrease in the frequencies, it is noticed that the effect of the slenderness
ratio is dominant for the higher modes and this effect diminishes rapidly as the frequency order decreases. This
is expected because the Timoshenko beam theory is used when the higher mode frequencies are of interest. The
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Fig. 4 Variation of the natural frequencies with respect to the hub radius parameter, δ and the rotational speed parameter, 	
(r = 0.08, v = 0.3, k = 0.5, δ = 1 dashed line; δ = 0.5 dashed dotted line; δ = 0 solid line)

Table 4 Variation of the natural frequencies of a uniform Timoshenko beam with respect to the inverse of the slenderness ratio
parameter, r and rotational speed parameter, 	 (cb = ch = 0, k = 2/3, E/G = 8/3, δ = 0)

r Natural frequencies

	

0 4 8 12

Present Ref. [1] Present Ref. [1] Present Ref. [1] Present Ref. [1]

0 3.51601 3.5160 5.58500 5.585 9.25684 9.2568 13.1702 13.170
22.0345 – 24.2733 – 29.9954 – 37.6031 –
61.6971 – 63.9666 – 70.2929 – 79.6144 –
120.901 – 123.261 – 130.049 – 140.534 –

0.02 3.49980 3.4998 5.56158 5.5616 9.20959 9.2096 13.0870 13.087
21.3547 – 23.6061 – 29.3215 – 36.8659 –
57.4705 – 59.8117 – 66.2748 – 75.6698 –
106.926 – 109.459 – 116.665 – 127.604 –

0.04 3.45267 3.4527 5.49511 5.4951 9.08544 9.0854 12.8934 12.893
19.6497 – 21.9557 – 27.7082 – 35.1811 –
48.8891 – 51.4822 – 58.4507 – 68.2339 –
84.1133 – 87.1836 – 95.6423 – 107.887 –

0.06 3.37873 3.3787 5.39542 5.3954 8.92085 8.9208 12.6724 12.672
17.5470 – 19.9662 – 25.8362 – 33.2672 –
40.7447 – 43.7365 – 51.4154 – 61.6011 –
66.3623 – 70.1298 – 79.9414 – 93.0672 –

0.08 3.28370 3.2837 5.27486 5.2749 8.74555 8.7456 12.4581 12.458
15.4883 – 18.0628 – 24.0479 – 31.2846 –
34.3005 – 37.7317 – 45.9683 – 55.9744 –
53.6516 – 57.9491 – 67.8215 – 77.1047 –

0.1 3.17377 3.1738 5.14482 5.1448 8.57351 8.5735 12.2467 12.247
13.6607 – 16.3946 – 22.3506 – 28.9100 –
29.3614 – 33.1793 – 41.4632 – 49.6484 –
43.9102 – 47.8101 – 53.2833 – 56.6750 –

effect of the slenderness ratio can be observed better in Fig. 5, where the variation of the natural frequencies
with respect to the inverse of the slenderness ratio, r , is shown.

In Table 5, the variation of the natural frequencies of a nonrotating Timoshenko beam with respect to
various combinations of breadth and height taper ratios is given as a reference for the future studies and the
results are compared with those calculated by Downs [4].
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Fig. 5 Variation of the natural frequencies of a uniform rotating Timoshenko beam with respect to the inverse of the slenderness
ratio effect, r (δ = 0, 	 = 4, k = 2/3, E/G = 8/3, cb = ch = 0)

Table 5 Variation of the natural frequencies of a nonrotating Timoshenko beam with different combinations of breadth and height
taper ratios (r = 0.08, E/kG = 3.059, δ = 0)

ch cb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0 3.32404 3.42876 3.5485 3.68722 3.85054 4.04668 4.28828 4.59598 5.00621

3.32405a – – 3.68723a – – 4.28829a – 5.00623a

16.2889 16.4625 16.6561 16.8750 17.127 17.4242 17.7869 18.253 18.9024
16.2890a – – 16.8752a – – 17.7871a – 18.9026a

36.7073 36.8384 36.9869 37.1583 37.3608 37.6076 37.9216 38.347 38.9849
36.7078a – – 37.1588a – – 37.9221a – 38.9854a

58.2778 58.394 58.5281 58.6862 58.8777 59.1179 59.4326 59.8717 60.5467
58.2788a – – 58.6872a – – 59.4336a – 60.5477a

0.2 3.42466 3.52998 3.65042 3.78999 3.95437 4.15186 4.39529 4.70561 5.11985
15.8905 16.0538 16.2362 16.4429 16.6816 16.9642 17.3110 17.7598 18.3917
35.4301 35.5595 35.7054 35.8731 36.0704 36.3101 36.6141 37.0259 37.6454
56.8910 57.0023 57.1293 57.2775 57.4552 57.6759 57.9630 58.3626 58.9813

0.4 3.56054 36.6661 3.78791 3.9285 4.09410 4.29314 4.5386 4.85176 5.27027
15.3528 15.5057 15.6769 15.8715 16.0970 16.3651 16.6961 17.1278 17.7423
33.7876 33.9159 34.0602 34.2253 34.4189 34.6531 34.9495 35.3502 35.9542
54.7561 54.8654 54.9893 55.1324 55.3024 55.5115 55.7815 56.1557 56.7371

0.6 3.76227 3.86943 3.99193 4.13388 4.30106 4.50198 4.74978 5.06597 5.48870
3.76228a – – 4.13389a – – 4.74979a – 5.48871a

14.6448 14.7872 14.9472 15.1296 15.3418 15.5954 15.9106 16.3251 16.9223
14.6449a – – 15.1297a – – 15.9107a – 16.9224a

31.6239 31.7515 31.8945 32.0578 32.2486 32.4786 32.7688 33.1603 33.7509
31.6243a – – 32.0582a – – 32.7693a – 33.7513a

51.6225 51.7327 51.8566 51.9987 52.1660 52.3699 52.6309 52.9901 53.5473
51.6225a – – 51.9995a – – 52.6316a – 53.5481a

0.8 4.11768 4.22692 4.35163 4.49590 4.66552 4.86899 5.11941 5.43815 5.86286
13.7574 13.8888 14.0370 14.2068 14.4055 14.6445 14.9439 15.3418 15.9229
28.6360 28.7620 28.9031 29.0641 29.2519 29.4779 29.7625 30.1461 30.7255
46.8288 46.9419 47.0683 47.2125 47.3811 47.5848 47.8431 48.1956 48.7392

a Downs [4]

Furthermore, in order to observe the effects of the taper ratios, Fig. 6a and b can be considered. As seen in
Fig. 6a and b, the breadth taper ratio, cb, has very little or even no influence on the flapwise bending frequencies
while the height taper ratio, ch, has a linear decreasing effect on the natural frequencies except the fundamental
natural frequency, which increases a little with ch.
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Fig. 6 Effects of the taper ratios, cb and ch, on the natural frequencies (δ = 0, 	 = 0, r = 0.08, v = 0.3, k = 0.85). Euler: solid
line; Timoshenko: dashed line

8 Conclusion

The main contributions of this study to the literature appear in the derivation of the governing equations of
motion and can be summarized as follows:

• The detailed and clear derivation of both the potential and the kinetic energy expressions.
• In the study of Hodges and Dowell [7], the Euler–Bernoulli beam theory is used while in the present study

their formulation is modified for the Timoshenko beam theory and a new expression, γ = w′ −ϕ = O(ε2),
is added to their ordering scheme.

The effects of the slenderness ratio, hub radius, rotational speed and taper ratios on the natural frequencies
are examined. The following results are obtained:

• The natural frequencies increase with the increasing rotational speed and this rate of increase becomes
larger with increasing hub radius parameter, δ.

• The effect of the rotational speed is dominant on the fundamental natural frequency and this effect diminishes
rapidly as the frequency order increases.

• The height taper ratio has a slight increasing effect on the fundamental natural frequency. The other natural
frequencies decrease as the height taper ratio increases.

• The breadth taper ratio has very little, or even no influence, on the bending frequencies.
• The inverse of the slenderness ratio has a decreasing effect on the natural frequencies. Therefore, the natural

frequencies of a Timoshenko beam are lower than the natural frequencies of a Euler–Bernoulli beam.
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