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Abstract In this paper, we investigate theoretically and experimentally dynamics of a buckled beam under
high-frequency excitation. It is theoretically predicted from linear analysis that the high-frequency excitation
shifts the pitchfork bifurcation point and increases the buckling force. The shifting amount increases as the
excitation amplitude or frequency increases. Namely, under the compressive force exceeding the buckling one,
high-frequency excitation can stabilize the beam to the straight position. Some experiments are performed
to investigate effects of the high-frequency excitation on the buckled beam. The dependency of the buckling
force on the amounts of excitation amplitude and frequency is compared with theoretical results. The transient
state is observed in which the beam is recovered from the buckled position to the straight position due to the
excitation. Furthermore, the bifurcation diagrams are measured in the cases with and without high-frequency
excitation. It is experimentally clarified that the high-frequency excitation changes the nonlinear property of
the bifurcation from supercritical pitchfork bifurcation to subcritical pitchfork bifurcation and then the stable
steady state of the beam exhibits hysteresis as the compressive force is reversed.

Keywords High frequency · Buckling · Bifurcation · Dynamic stabilization

1 Introduction

Interest of the usage of high-frequency excitation has focused on changing the linear and nonlinear dynamics
of mechanical systems (a comprehensive survey on the application of high-frequency excitation is found in
[1,2]). For example, it has been known for a long time that a pendulum can be stabilized in the inverted position
by high-frequency excitation [3,4]. Also, a bifurcation control method under high-frequency excitation is pro-
posed for the motion control of an underactuated manipulator without state feedback [5]. As seen from this
study, the high-frequency excitation can cause the perturbation of the bifurcation and can modify not only
linear, but also nonlinear properties inherently existing in systems.

In the present study, we experimentally deal with the effects of the high-frequency excitation on a buckled
beam. Chelomei [6] shows from linear theoretical analysis that adding high-frequency axial excitation to the
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Fig. 1 Elastic beam subjected to an axial static force and high-frequency axial excitation

entirety of the beam can stabilize the simply supported buckled beam. The results are limited in the neighbor-
hood of the straight position. On the other hand, Jensen [7] theoretically discusses nonlinear characteristics
of the bifurcation of a compressive simply supported beam in the case when the high-frequency excitation is
embedded in the compressive force. Also, for the same system and a cantilever beam, the stiffening effects
of the high-frequency excitation are experimentally investigated [8,9]. In these studies, the nonlinear phe-
nomenon which can be predicted from nonlinear theory is not experimentally confirmed. In this paper, the
nonlinear dynamics of a clamped–clamped beam is experimentally investigated when the entirety of the beam
is excited with high-frequency. The transient state from the buckled position to the straight position is experi-
mentally observed under the high-frequency excitation. The bifurcation diagram is detected and the nonlinear
characteristics are compared with one in the case without excitation.

2 Analytical model and buckling force

2.1 Equation of motion

We consider a clamped–clamped beam subjected to compressive force P as shown in Fig. 1. When the compres-
sive force is over a critical value Pcr, the buckling occurs in the beam. In this study, we examine the nonlinear
dynamics of the buckled beam in the case when the entirety of the system is excited with xe = a cos Nt ; a is
excitation amplitude and N is excitation frequency. The notation employed in this analysis is as follows: t is
the time; s is the distance along not deformed neutral axis; x and y are the inertial coordinates; v(s, t) are the
displacement at the position s along the inertial axes y; and other parameters are as follows:

l: Length of the beam, m: end mass, ρ A: line density of the beam
E : Young’s modulus, I : moment of inertia of cross-sectional area.
Using the Bernoulli–Euler beam theory and assuming the inextensible condition, we can express the line-

arized equation of motion and the associated boundary conditions for the beam as

ρ A
∂2v

∂t2 + E I
∂4v

∂s4 + P
∂2v

∂s2 −
[
{ρ A(l − s) + m} ∂2v

∂s2 − ρ A
∂v

∂s

]
aN 2 cos Nt = 0 (1)

v
∣∣
s=0 = ∂v

∂s

∣∣
s=0 = v

∣∣
s=l = ∂v

∂s

∣∣
s=l = 0. (2)

The following nondimensionalization is suitably employed to render the equation nondimensional:

t∗ = Nt, s∗ = s

l
, v∗ = v

l
, a∗ = a

l
, m∗ = m

ρ Al
(18.23),

P∗ = P

ρ Al2 N 2 (79.43P/N 2), K ∗ = E I

ρ Al4 N 2 (12.42/N 2),

where the star indicates nondimensional variables; P∗ is the dimensionless compressive force and K ∗ is
the dimensionless flexural rigidity. The values for the subsequent experimental setup are also given in the
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parenthesis. The dimensionless equation of motion and associated boundary conditions are

v̈∗ + K ∗v∗′′′′ + P∗v∗′′ − a∗ cos t∗{(1 + m∗ − s∗)v∗′′ − v∗′} = 0 (3)

v∗∣∣
s∗=0 = v∗′∣∣

s∗=0 = v∗∣∣
s∗=1 = v∗′∣∣

s∗=1 = 0, (4)

where [˙] and [′] are replaced by ∂/∂t∗ and ∂/∂s∗, respectively. Hereafter, the star will be dropped for ease of
notation and the employed variables will be nondimensional unless otherwise specified.

2.2 Buckling force of compressive beam

In this section, we consider the equation of the motion in which the excitation is neglected.

v̈ + Pv′′ + Kv′′′′ = 0 (5)

v(0) = v′(0) = v(1) = v′(1) = 0. (6)

Separating variables as

v = X (t)φ(s) (7)

and letting v̈ = 0 leads to

Kv′′′′ + Pv′′ = 0, (8)

v(0) = v′(0) = v(1) = v′(1) = 0. (9)

The smallest P satisfying Eqs. (8) and (9)is the buckling force for the first mode and is expressed as

P ≡ Pcr = 4π2 K . (10)

Then, the mode shape can be expressed as

Φ1(s) = 1 − cos 2πs. (11)

3 Increase of the buckling force by added high-frequency excitation

3.1 Averaged equation

A third-order expansion of the solutions of the equation of motion is

v = εv1(t0, t1, t2) + ε2v2(t0, t1, t2) + ε3v3(t0, t1, t2), (12)

where ε is a small parameter (|ε|�1) of a book-keeping device and the multiple time scales [10] are introduced
as follows:

t0 = t, t1 = εt, t2 = ε2t. (13)

We rewrite the compressive force P as

P = Pcr + ∆p, (14)

where ∆p is a detuning parameter which expresses the nearness of the compressive force P from the buckling
force Pcr. Furthermore, we perform the scaling of some parameters according to

a = εâ, ∆p = ε2∆ p̂, (15)
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where ˆ denotes the order of O(1). Substituting Eqs. (12), (14), and (15) into Eqs. (3) and (4) yields the
following equation of the orders O(ε), O(ε2), and O(ε2):

O(ε) : D2
0v1 + Pcrv

′′
1 + Kv′′′′

1 = 0 (16)

O(ε2) : D2
0v2 + Pcrv

′′
2 + Kv′′′′

2 = −2D0 D1v1 − â cos t0{(1 + m − s)v1
′′ − v1

′} (17)

O(ε3) : D2
0v3 + Pcrv

′′
3 + Kv′′′′

3 = −2D0 D1v2 − 2D0 D2v1 − D2
1v1

−∆ p̂v′′
1 + â cos t0{(1 + m − s)v2

′′ − v2
′}, (18)

where Dn = ∂/∂tn (n = 0, 1, 2). The associated boundary conditions are

v1(0) = v′
1(0) = v1(1) = v′

1(1) = 0 (19)

v2(0) = v′
2(0) = v2(1) = v′

2(1) = 0 (20)

v3(0) = v′
3(0) = v3(1) = v′

3(1) = 0. (21)

Using Eqs. (8) and (9), Eq. (16) leads to D2
0v1 = 0. Therefore, the general solution of Eqs. (16) and (19) can

be written as

v1 = {A0(t1, t2)t0 + A1(t1, t2)} Φ1(s). (22)

We note that the first term is a secular term. For a uniform expansion, this term must be eliminated by setting
A0 to zero. Then, the general solution becomes

v1 = A1(t1, t2)Φ1(s). (23)

Substituting Eq. (23) into Eq. (17), we have

D2
0v2 + Pcrv

′′
2 + Kv′′′′

2 = â

2

[{(1 − s)Φ1
′′ − Φ1

′} + mΦ ′′
1

]
A1(t1, t2)e

i t0 + c.c., (24)

where c.c. denotes the complex conjugate of the preceding terms. Because no terms in the right hand side
produce the secular term in the solution of v2, a particular solution of v2 can be written as follows:

v2 = â A1(t1, t2)e
i t0Φ2(s) + c.c. (25)

Substituting Eq. (25) into Eq. (24) yields

KΦ ′′′′
2 + PcrΦ

′′
2 − Φ2 = 1

2
{(1 − s)Φ1

′′ − Φ1
′} + 1

2
mΦ ′′

1 ,

= 1

2

(
β2 cos βs − β sin βs − β2s cos βs

) + 1

2
mβ2 cos βs, (26)

where β = 2π and the associated boundary conditions are

Φ2(0) = Φ ′
2(0) = Φ2(1) = Φ ′

2(1) = 0. (27)

The general solution of Φ2 is expressed as

Φ2 = Φ̃2 + Φ2p, (28)

where Φ̃2 and Φ2p are the homogeneous and a particular solution of Eqs. (26) and (27). Also, a particular
solution Φ2p is expressed as

Φ2p = f1 cos βs + f2 sin βs + f3s cos βs, (29)

where

f1 = −1

2
β2(1 + m), f2 = (2K − 1)β5 + β3 + β

2(β4 − β2 − 1)
, f3 = −β2

2(β4 − β2 − 1)
. (30)

The homogeneous solution is

Φ̃2 = h1 cos qs + h2 sin qs + h3 cosh ps + h4 sinh ps, (31)
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where

p =
√

−Pcr +
√

Pcr
2 + 4K

2K
, q =

√
Pcr +

√
Pcr

2 + 4K

2K
.

Substituting Eqs. (29) and (31) into Eq. (28) and taking into account the boundary conditions of Eq. (27)
determine the coefficients of Eq. (31) as shown in Appendix A. Furthermore, substituting Eqs. (23) and (25)
into Eq. (18), we have

D2
0v3 + Pcrv

′′
3 + Kv′′′′

3 = −Φ1 D2
1 A1 − Φ1

′′	 p̂ A1 + â2{(1 + m − s)Φ2
′′ − Φ2

′}A1

−2i âΦ2 D1 A1(e
i t0 + e−i t0)

+1

2
â2{(1 + m − s)Φ2

′′ − Φ2
′}(e2i t0 + e−2i t0). (32)

The particular solution can be written in the form:

v3p = Φ3_DC (t1, t2, s) + Φ3_t0(s)A1(t1, t2)e
i t0 + Φ3_2t0(s)A1(t1, t2)e

2i t0 + c.c. (33)

Because v1 is independent of t0 from Eq. (23), the first term of Φ3_DC (t1, t2, s) in the particular solution can be
the secular term for v3. The condition not to produce the secular term is equivalent to the solvability condition
of Φ3_DC . Substituting v3p = Φ3_DC (t1, t2, s) into Eq. (32) yields

KΦ ′′′′
3_DC + PcrΦ

′′
3_DC = −Φ1 D2

1 A1 − Φ1
′′∆ p̂ A1 + â2{(1+m− s)Φ ′′

2 − Φ ′
2}A1 (34)

Φ3_DC (0) = Φ3_DC
′(0) = Φ3_DC (1) = Φ3_DC

′(1) = 0. (35)

Multiplying Eq. (34) by Φ1, integrating the result from s = 0 to s = 1, and taking into account the boundary
conditions Eq. (35), the solvability condition of Eqs. (34) and (35) can be expressed as

D2
1 A1 + (C1∆ p̂ − C2â2)A1 = 0, (36)

where

C1 =
1∫

0

Φ1Φ1
′′ds

/ 1∫
0

Φ1
2ds (−13.16),

C2 =
1∫

0

Φ1{(1+m− s)Φ2
′′ − Φ2

′}ds

/ 1∫
0

Φ1
2ds (−3.12 × 104in the case of N/2π = 33 Hz),

(37)

where the values corresponding to the system in subsequent experimental setup are shown in the parenthesis.
By multiplying ε3 and taking into account Eqs. (15) and (36) leads to

d2 A

dt2 + (C1∆p − C2a2)A = 0, (38)

where A = ε A1 and 2A is the deflection at the midpoint of the beam. Then the approximate solution can be
expressed as

v = εv1 + O(ε2) = ε A1Φ1(s) + O(ε2) = AΦ1(s) + O(ε2), (39)

where the time-variation of A is governed with Eq. (38).
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Fig. 2 Dependence of excitation amplitude on the buckling force (N/2π = 33 Hz)
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Fig. 3 Dependence of excitation frequency on the buckling force (a = 0.14 mm)

3.2 Linear analysis

The autonomous equation (38) enables us to perform the stability analysis of the trivial equilibrium point under
the excitation. The sign of the coefficient of the second term in the left-hand side kequiv = C1∆p − C2a2, i.e.
equivalent stiffness, determines the stability. When the sign is positive and negative, the trivial equilibrium
point is stable and unstable, respectively. The critical point of the buckling corresponds to the case of kequiv = 0.
Of course in the case without excitation (a = 0), ∆p = 0 satisfies kequiv = 0. The dependence of ∆pcr on the
excitation amplitude is shown in Fig. 2. The buckling force is increased with the excitation amplitude under
constant excitation frequency N/2π = 33 Hz.

The critical point shifts from p = pcr to p = pcr + ∆pcr where ∆pcr = c2a2/c1. The solid line in
Fig. 3 shows the relationship between the shift of the critical point ∆pcr and the excitation frequency N under
the constant excitation amplitude a = 0.14 mm; the circles show the experimental results mentioned later. It
is theoretically predicted that the buckling force increases with the excitation frequency N .

4 Experiment

4.1 Experimental setup

We perform experiments to examine effects of high-frequency excitation on the buckled beam. We show the
experimental apparatus in Figs. 4 and 5. The test specimen employed in the experimental investigations is a
uniform with rectangular cross section made of phosphor bronze and it is rigidly clamped at the both end in
the lateral direction (Fig. 6). We note that the width direction has been placed in a vertical plane to overcome
the presence of the initial static curvature due to gravity. One of the supporting points is rigidly clamped on
an aluminum slab. The other end is mounted on top of a sliding linear bearing (IKO Ball Slide Unit, Model
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Fig. 4 Experimental apparatus

Fig. 5 Setup of the beam

BSU 44-50 A) with an end mass m; the first and second natural frequencies are 12.55 and 34.5 Hz, respec-
tively. On the end of the linear bearing, two linear motors (Showa-Densen-Denran Model 26-02R) apply the
static compressive force. Force of the motor is proportional to the input current to the motor. The current is
produced by a power supply unit (KIKUSUI Corp., PBX40-10). Also, the excitation in the axial direction for
the stabilization of the buckling is added by a shaker (EMIC 371-A). The excitation amplitude and frequency
are adjusted by a function generator (TOA FS-2201). Laser displacement sensors, 1 and 2 (KEYENCE Corp.,
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Fig. 6 Expanded view of the sliding end
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Fig. 7 Resonance of beam under high-frequency excitation (N/2π = 30 Hz, a = 0.14 mm, ∆p = 0.06 N). a Time history of the
beam. b Power spectrum of time history of beam. c Time history of the excitation. d Power spectrum of time history of excitation

LB-01) are used to measure the axial excitation and the displacement of the beam at one-quarter of the beam
span from the fixed end. The main properties of the beam are summarized as follows:

l = 4.50 × 10−1 m, m = 5.1 × 10−1 kg, ρ A = 6.21 × 10−2 kg/m,
E = 1.11 × 1011 N/m2, I = 2.86 × 10−13 m4.

4.2 Experimental result and discussion

First, by quasi-stationary increasing the compressive force, the buckling force without excitation is measured
and turned out to be Pcr = 5.925 N, whereas theoretical prediction is 6.174 N.

We investigate change of the critical buckling force depending on the excitation amplitude under the
constant excitation frequency (33 Hz). Figure 2 shows the relationship between the buckling force and the
excitation amplitude. The buckling force is monotonically increased with the excitation amplitude. The exper-
imental results qualitatively correspond well to the theoretical ones. Quantitative discrepancy may be due to
the luck of consideration of extension and shear deformation in the theory.
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Fig. 8 Stabilization of buckled beam to the straight position (N/2π = 18 Hz, P = 6.01 N). a Time history of beam. b Time
history of excitation

Next, we investigate the change of the buckling force depending on the excitation frequency under constant
excitation amplitude (0.14 mm). Figure 3 shows the relationship between the excitation frequency N and the
increase of the buckling force ∆pcr. Experimental results indicate that the increase of the excitation frequency
enlarges the buckling force as the theoretical result (solid line). In the hatched region of Fig. 3, certain reso-
nances are observed. For example, at the condition of the symbol * in Fig. 3 (N/2π = 30 Hz, a = 0.14 mm,
and 	p = 0.06 N), the beam is excited as shown in Fig. 7; the biggest frequency component of the beam is
2.45 Hz, though the excitation frequency is 30 Hz.

We set the compressive force P = 6.01 N which is larger than the buckling force. We examine the
time history of the beam when the excitation amplitude is increased under constant excitation frequency
(N/2π = 18 Hz). In this experiment, we manually increase the excitation amplitude with a constant excitation
frequency N/2π =18 Hz. Figure 8a, b show the time histories of the deflections of the beam and of the
excitation in the axial direction, respectively. The beam is initially in the post buckling state. At t = 3 s, we
start exciting the beam in the axial direction by the shaker and gradually increase the excitation amplitude
until a = 0.29 mm. When the excitation amplitude becomes 0.27 mm, the transient state of the beam starts
for recovering to the straight position. Finally, the buckled beam is stabilized in the neighborhood of the trivial
equilibrium point which is unstable in the case without excitation.

Next, we show experimentally obtained bifurcation diagrams in the cases without and with excitation in
Figs. 9a, b, respectively. The circle denotes stable equilibrium point. Because of initial imperfection of the
beam, the experimentally obtained diagram in Fig. 9a shows a perturbed supercritical pitchfork bifurcation.
Comparing the stable trivial equilibrium points of Figs. 9a, b, we can experimentally confirm that the buckling
force is increased as the results of linear analysis. Furthermore, the supercritical pitchfork bifurcation in the
case without excitation is not simply shifted in the right direction by the excitation. In the region below the
increased buckling force in Fig. 9b, two stable nontrivial equilibrium states coexist with the trivial stable
equilibrium state. This phenomenon corresponds to the nonlinear feature [7], which is theoretically predicted
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Fig. 9 Relationship between deflection of the beam v and axial compressive force P . a Without excitation. b With excitation
(N/2π = 33 Hz, a = 0.14 mm)

by using a little different system from the present system. It appears that the bifurcation point at the increased
buckling force is not supercritical but subcritical pitchfork bifurcation coexisting with two saddle-node bifur-
cations. In order to detect the nonlinear feature of the beam under high-frequency excitation, extensibility and
shearability should be taken into account.

Figure 9b consists of data obtained by some quasi-stationary sweeps of P . On the other hand, the bullet•
of Fig. 10a–c and shows separately equilibrium points obtained by each quasi-stationary sweep. For reference
every figure in Fig. 10, the stable equilibrium points in the case without excitation are shown by ◦. Figure 10a
represents the equilibrium points in the quasi-stationary forward sweep of P . Figure 10b represents the equi-
librium points in the quasi-stationary backward sweep of P from an upper stable nontrivial equilibrium point.
Figure 10c represents the equilibrium points in the quasi-stationary backward sweep of P from a lower stable
nontrivial equilibrium point.

5 Conclusion

In this research, we experimentally investigate the influence of high-frequency excitation on the nonlinear
dynamics of a bucked beam. First, we apply linear theory to the analytical model neglecting the nonlinearity,
extensibility, and shearability. It is theoretically shown that the buckling force is enlarged as the excitation
amplitude or frequency increases. The same feature is experimentally confirmed, though there are discrepancies
with the theoretical results. Theoretical approach by considering extensibility and shearability may produce
quantitative good agreement with experimental results. In a range of excitation condition, high-frequency exci-
tation induces resonance with much lower frequency component than excitation frequency. The bifurcation
diagram is experimentally obtained, and it is experimentally clarified that the high-frequency excitation does
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not simply shift the bifurcation point of the buckling, but changes the nonlinear characteristics from super-
critical to subcritical. As a result, the stable steady state of the beam exhibits hysteresis as the compressive
force is reversed. From the above mentioned discrepancy between the theoretical and experimental results and
the experimentally obtained bifurcation diagram, it appears that the effects of extensibility and shearability
together with nonlinear curvature should be taken into account to theoretically investigate nonlinear dynam-
ics of buckled beam under high-frequency excitation. The nonlinear formulation of governing equations and
nonlinear analysis are in future work.
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Appendix A

h1 = 2π2
[
−p cosh p[q{4π2(−1 + 4π2) + m(−1 − 4π2 + 16π4)}
+q cos q(1 + m)(−1 − 4π2 + 16π4) − 2 sin q{1 + 2π2 + 8π4(−1 + 2K )}]
+p

[
q(1 + m)(−1 − 4π2 + 16π4) + q cos q{4π2(−1 + 4π2) + m(−1 − 4π2 + 16π4)}

− sin q{1 + 2π2 + 8π4(−1 + 2K )} − sinh p[−2q{1 + 2π2 + 8π4(−1 + 2K )}
+2q cos q{1 + 2π2 + 8π4(−1 + 2K )} − p2 sin q(1 + m)(−1 − 4π2 + 16π4)]]]/

[(−1 − 4π2 + 16π4){2pq − 2pq cos q cosh p + sin q sinh p(p2 − q2)}] (40)

h2 = −2π2
[

p cosh p[2 + 4π2 − 16π4 + 32Kπ4 + 2 cos q{1 + 2π2 + 8(−1 + 2K )π4}
+q sin q(1 + m)(−1 − 4π2 + 16π4)] − p

[[2 + 4π2 − 16π4 + 32Kπ4

+2q sin q cos q{1 + 2π2 + 8(−1 + 2K )π4}(−m − 4π2 − 4mπ2 + 16π4 + 16mπ4)]
+ sinh p[p2(m + 4π2 + 4mπ2 − 16π4 − 16mπ4) + p2 cos q(1 + m)(−1 − 4π2 + 16π4)

+2{1 + 2π2 + 8π4(−1 + 2K )}]]]/
[(−1 − 4π2 + 16π4){2pq − 2pq cos q cosh p + sin q sinh p(p2 − q2)}] (41)

h3 = −2π2[p[−q(1 + m)(−1 − 4π2 + 16π4) + q cos q{4π2(−1 + 4π2)

+m(−1 − 4π2 + 16π4)} − 2 sin q{1 + 2π2 + 8π4(−1 + 2K )}]
+p cosh p[q(m + 4π2 + 4mπ2 − 16π4 − 16mπ4) + q cos q(1 + m)(−1 − 4π2 + 16π4)

+2 sin q{1 + 2π2 + 8π4(−1 + 2K )}] + q sinh p[2 + 4π2 − 16π4 + 32Kπ4

−2 cos q{1 + 2π2 + 8π4(−1 + 2K )} + q sin q(1 + m)(−1 − 4π2 + 16π4)]]/
[(−1 − 4π2 + 16π4){2pq − 2pq cos q cosh p + sin q sinh p(p2 − q2)}] (42)

h4 = 2π2[q cosh p[2 + 4π2 − 16π4 + 32Kπ4 − 2 cos q{1 + 2π2 + 8π4(−1 + 2K )}
+q sin q(1 + m)(−1 − 4π2 + 16π4)] + q[2 + 4π2 − 16π4 + 32Kπ4

−2 cos q{1 + 2π2 + 8π4(−1 + 2K )} − q sin q(−m − 4π2 − 4mπ2 + 16π4 + 16mπ4)]
+p sinh p[q(m + 4π2 + 4mπ2 − 16π4 − 16mπ4) + q cos q(1 + m)(−1 − 4π2 + 16π4)

+2 sin q{1 + 2π2 + 8π4(−1 + 2K )}]]/
[(−1 − 4π2 + 16π4){2pq − 2pq cos q cosh p + sin q sinh p(p2 − q2)}] (43)
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