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Abstract In this paper we discuss an approximately steady motion of an oscillator as a single whole with
a constant “on the average” velocity. For that purpose we analyze the position and stability of some special
points of the phase portrait. In the presence of internal excitation and nonsymmetric Coulomb dry friction, a
motion of the oscillator with a constant “on the average” velocity is possible. The algebraic equation for this
constant velocity is found. For different parameters of the model there exist at most three regimes of motion
with a constant velocity, but only one or two of them are stable. The theoretical results obtained can be used
for the design of worm-like moving robots.

Keywords Nonsymmetric dry friction · Oscillation · Locomotion

1 Introduction

A series of fundamental papers are devoted to the analysis of nonlinear oscillations of mechanical systems
[1,2,5,10–14]. Some asymptotic methods for the solution of equations of nonlinear oscillations are presented
in well-known monographs [1,2,4,5]. Nonlinear systems including discontinuous functions such as dry fric-
tion are especially considered in a series of publications [3,6,7,9,16,17,19,20]. In [19,20] the motion of two
mass points connected by a linear spring is discussed. It is supposed that this linear oscillator is under the
action of a small non-symmetric Coulomb dry friction force, i.e. the friction force is assumed to change in
magnitude depending on the direction of motion. Excitation is carried out by the action of small internal
harmonic forces. This oscillator is a mathematical model of a worm-like locomotion system. A limiting case
of nonsymmetric friction, when motion is possible in one direction only, was proposed in [15] in connection
with realistic computer animation of worms. A thorough discussion of such systems, where the point masses
can also be equipped with massless steerable runners, described via knife-edge conditions, has been given in
[18].

In this paper we consider the motion of a system of two equal mass points along a straight line under the
action of a small non symmetric Coulomb dry friction force. The mass points are connected by a non linear
spring with cubical non linearity. Excitation is carried due to the action of a small internal periodic force.
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Fig. 1 Model of the system

2 Mathematical model

2.1 The equation of motion

The motion of a system of two material points (masses m) with coordinates x1 and x2, connected by a spring
along an axis x is considered (Fig. 1).

The mass points are connected by a nonlinear spring with small cubic nonlinearity. The elastic force f (x)
in this case is

f (x) = − c(x − l0) − εm d (x − l0)
3, ε � 1. (1)

Here c > 0, d � 0 and l0 is the length of the spring in its undeformed state.
It is supposed that the mass points are under the action of a small nonsymmetric Coulomb dry frictional

force εm F(ẋ). The frictional force is taken to be different in magnitude depending on the direction of the
motion of the body. The function F(ẋ) can be specified as follows:

F(ẋ) =
⎧
⎨

⎩

F+, ẋ > 0,
F0, ẋ = 0,
−F−, ẋ < 0.

(2)

Here F− � F+ � 0 are fixed, whereas F0 may take any value in the interval (−F−, F+).
Excitation is carried out due to the action of a small internal force

G(t) = εm b cosψ, ψ = ν t. (3)

From (1)–(3), designating ω2 = c/m and replacing x2 → x2 − l0, we obtain a system of equations,
retaining the original symbols:

ẍ1 + ω2(x1 − x2) = −ε [
F(ẋ1)+ d (x1 − x2)

3 + b cos ψ
]
,

ẍ2 + ω2(x2 − x1) = −ε [
F(ẋ2)+ d (x2 − x1)

3 − b cos ψ
]
.

(4)

2.2 A comment on F0

The frictional force at rest, F0, in the expression (2) changes in order to compensate the force G(t) and the
force of the spring in the state of rest (ẋ = 0). As long as the algebraic sum of these forces does not exceed
the given maximum value of the frictional force of rest (F− or F+), the mass point stays in a static state.
Such a situation can arise not only at the beginning, but also during the movement, as one or both mass points
stay fixed over a certain time interval. This stick-slip motion under the action of dry friction is described in
a series of publications [3,11,13,14,17]. Figure 2 shows charts for the type of movement described above,
obtained by numerical integration of system (4) under the condition (2), where� = 10.0, ε = 0.01, ω = 1.0,
F+ = 8.0, F− = 9.0, b = 10.0, d = 10.0.

The horizontal fragments on the curve x1(t) or x2(t) correspond to the time intervals where one or both
mass points are fixed. In this paper we investigate the problem in the first-order approximation of the averaging
method. It can be shown that the stick–slip effect should only be examined in the higher-order approximation,
and so it is not considered in this paper.
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Fig. 2 Values of V , x1 and x2 versus time in the stick–slip case

2.3 Averaging procedure

To the system (4) we apply the procedure of averaging according to [5]. For this purpose we introduce new
variables: the velocity of the center of mass V and the deviation of the mass points relative to the center of
mass z:

V = (ẋ1 + ẋ2)
/

2, z = (x2 − x1)
/

2. (5)

We determine a value z as

z = a cos (� t + ϑ), ż = −a� sin (� t + ϑ), (6)

where ϕ = � t + ϑ,� = √
2ω.

Replacing V and z from expressions (5) and (6), system (4) can be written as

V̇ = − ε

2
[F(V + a� sin ϕ)+ F(V − a� sin ϕ)],

ȧ = − ε

2�
sin ϕ [F(V + a� sin ϕ)− F(V − a� sin ϕ) − 2 d a3 cos3 ϕ + 2b cos ψ

]
,

ϕ̇ = � − ε

2a�
cos ϕ [F(V + a� sin ϕ)− F(V − a� sin ϕ) − 2 d a3 cos3 ϕ + 2b cos ψ

]
,

ψ̇ = ν.

(7)

where V and a are slow variables.
We investigate the system (7) in the vicinity of the main resonance ν = � + ε �. For this purpose we

introduce a new slow variable, ξ = ψ − ϕ, and exclude a fast variable, ψ ; the result is the system (7) in the
form

V̇ =− ε

2
[F(V + a� sin ϕ)+ F(V − a� sin ϕ)],

ȧ =− ε

2�
sin ϕ [F(V + a� sin ϕ)− F(V − a� sin ϕ) −2 d a3 cos3 ϕ + 2b cos (ξ + ϕ)

]
,

ξ̇=ε
{

1

2a�
cos ϕ [F(V + a� sin ϕ)− F(V − a� sin ϕ) − 2 d a3 cos3 ϕ + 2b cos (ξ + ϕ)

] +�

}

,

ϕ̇=� − ε

2a�
cos ϕ [F(V + a� sin ϕ)− F(V − a� sin ϕ) − 2 d a3 cos3 ϕ + 2b cos (ξ + ϕ)

]
.

(8)
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After averaging system (8) over a fast variable ϕ we obtain:

V̇ =
{

−ε
(

F−+F+
π

arcsin V
a� − F−−F+

2

)
, if 0 � V < a�,

−ε F+, if V � a�,

ȧ =
⎧
⎨

⎩

− ε
�

(
F−+F+
π

√

1 − V 2

a2 �2 − b
2 sin ξ

)

, if 0 � V < a�,

ε b
2� sin ξ, if V � a�,

(9)

ξ̇ = ε

(
b

2 a�
cos ξ +� − 3

�
d a2

)

.

2.4 The stationary regime

We are interested in an approximately steady motion as a single whole; therefore we seek the solution V̇ = 0
of the system (9):

V = a � · sin�, � = π

2
· F− − F+

F− + F+
. (10)

Since V = const, it follows from Eq. (10) that a = const and further from system (9) that ξ = const. Then
the second and the third equations of the system can be written as follows:

b

2
sin ξ = E cos�, E = F− + F+

π
,

b

2
cos ξ = 3 a3d − a��. (11)

Eliminating ξ from Eq. (11), we get the equation for stationary amplitude a:

a
∣
∣ 3a2d − ��

∣
∣ =

√

b2

4
− E2 cos2� (12)

The necessary condition for the existence of a stationary regime is b � 2 E cos �.
To investigate the stability of stationary amplitudes defined by Eq. (12), we consider the conditions for

stability.

2.5 Conditions for stability

The variational equations for system (9) have the form:

δ V̇ = −ε E

a� cos �
· δ V + ε

E

a
tg� · δ a,

δ ȧ = ε
E

a�2 tg� · δ V − ε
E

a�2 tg� · sin � · δ a + ε

(

3
d a3

�
− � a

)

δ ξ, (13)

δ ξ̇ = − ε
(

9
a d

�
− �

a

)

δ a − ε
E

a�
cos � · δ ξ.

The characteristic polynomial P(λ) for system (13) is

P (λ) = λ 3 + λ 2 · ε 2 E

a � cos �
+ λ · ε2

[
E 2

a 2� 2

(
1 + sin2�

) + 27
a4d 2

�2 +�

(

� − 12
a 2 d

�

)]

+ ε3 E

� cos �

[

27
a 3d 2

� 2 + �

a

(

� − 12
a 2 d

�

)]

. (14)
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In order to locate all roots of the polynomial in the left half plane of the complex variable λ, the necessary
and sufficient conditions are given by the Hurwitz criterion [8]. For the polynomial given by the formula (14)
the Hurwitz criterion can be written in the form:

2 E

a� cos �
> 0,

E

� cos �

[
2E2

a3�2

(
1 + sin2�

) + 27
a3d2

�2 + �

a

(

� − 12
a2 d

�

)]

> 0, (15)

E

� cos �

[

27
a3d2

�2 + �

a

(

� − 12
a2 d

�

)]

> 0.

The conditions (15) can be reduced to a single condition:

27
d2

�2 a4 − 12
d �

�
a2 + �2 > 0. (16)

3 Analysis of the model

Let us start with the investigation of the roots of Eq. (12) and with the analysis of their stability according to
the condition (16).

3.1 The case � � 0

In this case the stability condition (16) is satisfied. We write Eq. (12) for stationary amplitudes as f (a) = 0,
where f (a) = 3a3d − a�� − L . Here the value L is determined by the expression

L =
√

b2

4
− E2 cos2� � 0. (17)

Since f (0) = −L is less than 0 and the expression for its derivative is

f ′(a) = 9a2d − ��, (18)

thus f ′(a) > 0, and f (a) is an increasing function. The equation f (a) = 0 has a single positive root.
So, for� � 0 there exists only one stable stationary amplitude a1, located in the interval 0 < a1 < a∗,

where a∗ = min

(
3
√

L
3 d , − L

��

)

, � �= 0.

The velocity corresponding to the stationary amplitude is calculated according to Eq. (10). Note that at

� = 0, a1 = 3
√

L
3 d .

3.2 The case � > 0

In this case the condition (16) leads to

0 < a <
1

3

√
��

d
, a >

√
��

3d
(19)

for stability, and

1

3

√
��

d
< a <

√
��

3 d
(20)

for instability.
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First we consider the case where 0 < a <

√
��
3 d . Then Eq. (12) for stationary amplitudes is given by

f (a) = 0, where f (a) = 3a3d − a�� + L .
The expression for the first derivative has the form of Eq. (18), and for � > 0 the function f (a) has a

minimum

amin = 1

3

√
��

d
, f (amin) = L − 2

9
·��

√
��

d
. (21)

Since f (0) = f

(√
��
3d

)

= L > 0, then if f (amin) < 0, the equation has two distinct positive roots; if

f (amin) > 0, then there are no positive roots.
Considering Eqs. (17) and (21) we obtain the condition for the existence of two distinct roots as b < M ,

and the condition for the nonexistence of roots as b > M , thereby M = 2
√

4
81 · �3�3

d + E2 cos2�.
There are two positive roots, which satisfy the conditions:

0 < a1 <
1

3

√
��

d
,

1

3

√
��

d
< a2 <

√
��

3d
. (22)

Comparing the inequalities (22) with the conditions of stability and instability (19) and (20), it follows that
the stationary amplitude corresponding to the lesser root of f (a) = 0, a1, is stable, and that the amplitude a2,
corresponding to the greater root, is unstable.

Now consider the case

a >

√
��

3 d
. (23)

In this case Eq. (12) for the stationary amplitudes is given by f (a) = 0, where f (a) = 3a3d − a�� − L .
Given f (0) = −L < 0 and the derivative in Eq. (18), f ′(a) > 0 if a satisfies condition (23). Thus f (a)
increases over the given interval, and the equation f (a) = 0 has a single positive root a3.

Since a3 satisfies the condition (23), it follows from Eq. (19) that the amplitude a3 is stable.

3.3 Investigation results

Let us now summarize the results of the investigation.
For b < 2 E cos � there is no stationary mode.
For

� < 0 and b > 2 E cos � (24)

there is only one stationary amplitude a1 : 0 < a1 < a∗, where a∗ = min

(
3
√

L
3 d , − L

��

)

, � �= 0.

For � = 0, there is a1 = 3
√

L
3 d .

For � > 0 and

2 E cos � < b < 2

√

4

81
· �

3�3

d
+ E2 cos2� (25)

there are three stationary amplitudes, a1, a2, and a3, which satisfy the conditions

0 < a1 <
1

3

√
��

d
,

1

3

√
��

d
< a2 <

√
��

3d
, a3 >

√
��

3d
.

Thereby the least amplitude a1 and the greatest amplitude a3 are stable, whereas the middle amplitude a2
is unstable.

For � > 0 and b > 2
√

4
81 · �3�3

d + E2 cos2� the only stable stationary amplitude is a3:

a3 >

√
��

3d
.

The velocity corresponding to the stationary amplitude is V = a � · sin�,� = π
2 · F−−F+

F−+F+
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4 Discussion of results and graphical illustrations

Figure 3 shows a chart for the velocity of the center of mass versus time, obtained by resolving of the
exact equations of motion (4) with the following parameters: ε = 0.01, ω = 1.0, F+ = 1.0, F− = 2.0,
b = 10.0, d = 10.0. We retain the values of these parameters in the further calculations. For the case con-
sidered we let � = −10.0 (ε � = −0.1) and the equation for stationary amplitudes (12), obtained from the
system of averaged equations (9), has only one stable solution, at a = 0.28. The corresponding value for the
velocity of the center of mass V , calculated with Eq. (10) is V = 0.20. Figure 3 shows that after completion
of the transitional process the exact velocity converges toward the value V = 0.2.

Figure 4 shows the dependence of the stationary amplitude a on the value of �, obtained from Eq. (12).
Since the frequency ν of the driving force is connected with � by formula ν = �+ ε �, the curve on the

Fig. 4 is a resonance curve.
By solving condition (25) for � and combining it with condition (24) we obtain the following conditions:

For

� <
3

�

3

√
3

4
d

(
b2

4
− E2 cos2�

)

, (26)

Fig. 3 Velocity versus time

Fig. 4 Stationary amplitude a versus value ε �
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there is only one stable stationary amplitude a1. For

� >
3

�

3

√
3

4
d

(
b2

4
− E2 cos2�

)

, (27)

there are three stationary amplitudes a1, a2, and a3 (in ascending order), of which only two are stable, the least
and the greatest.

The value� = 3
�

3

√
3
4 d

(
b2

4 − E2 cos2�
)

corresponds to the point of the vertical tangent to the resonance

curve.
Let us consider some characteristic points on the resonance curve.
We take ε � = − 0.1. Then for the parameter values set as below there is only one stable stationary

amplitude a1 = 0.28. Condition (26) is satisfied, because this point is placed left of the vertical tangent. The
next point considered corresponds to the positive value � = 10 (ε � = 0.1). Again, there is a single stable
stationary amplitude a1 = 0.8.

Now let us consider� = 15. In this case condition (27) is satisfied, because the point ε � = 0.15 is to the
right of the vertical tangent. There are three stationary amplitudes, only two of which are stable.

Figures 5, 6 and 7 show charts of the stationary velocity V , amplitude a and phase ξ for various initial
conditions.

For the curves in Fig. 5 the initial condition (V0 = 0.14, a0 = 0.2, ξ0 = 2.8) is chosen so that the motion
takes place with a stable stationary amplitude a1 = 0.27. The corresponding value of stationary velocity of
the center of mass is V1 = 0.18.

Fig. 5 Values of V , a and ξ versus time (V0 = 0.14, a0 = 0.2, ξ0 = 2.8)

Fig. 6 Values of V , a and ξ versus time (V0 = 0.4, a0 = 0.6, ξ0 = 3.0)
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Fig. 7 Values of V , a and ξ versus time (V0 = 0.71, a0 = 1.0, ξ0 = 0)

For the curves in Fig. 6 the initial condition (V0 = 0.4, a0 = 0.6, ξ0 = 3.0) for the amplitude is chosen
close to the unstable stationary amplitude a2 = 0.65.

The charts reveal that the unstable stationary velocity V2 = 0.45 corresponding to this amplitude drops
toward the stable stationary velocity V1 = 0.18.

For the curves on Fig. 7 the initial condition (V0 = 0.71, a0 = 1.0, ξ0 = 0) is set up so that the motion
occurs with the maximal stable stationary amplitude a3 = 0.95. The value of the maximal stable stationary
velocity of the center of mass is thereby V3 = 0.67.

5 Conclusions

We have considered the oscillations of a nonlinear oscillator that consists of two mass points connected by a
spring with cubic nonlinearity. The oscillator is exposed to the internal periodic force and to the nonsymmetrical
force of dry friction.

The result of the analysis of the mathematical model allows us to make the following conclusions:

1. Using the averaging method an expression for the velocity of the system as a whole and an algebraic
equation for the corresponding stationary amplitudes can be obtained.

2. There are at most three values for the stationary amplitude and accordingly for the velocity of the system
as a single whole.

3. Depending on the values of the input parameters the conditions for stability and instability of the stationary
amplitudes can be found. At most there exist two stable amplitudes.
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