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Abstract The propagation of plane waves in a fibre-reinforced, anisotropic, generalized thermoelastic media
is discussed. The governing equations in x–y plane are solved to obtain a cubic equation in phase velocity.
Three coupled waves, namely quasi-P, quasi-SV and quasi-thermal waves are shown to exist. The propagation
of Rayleigh waves in stress free thermally insulated and transversely isotropic fibre-reinforced thermoelastic
solid half-space is also investigated. The frequency equation is obtained for these waves. The velocities of the
plane waves are shown graphically with the angle of propagation. The numerical results are also compared to
those without thermal disturbances and anisotropy parameters.
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1 Introduction

Fibre-reinforced composites are used in a variety of structures due to their low weight and high strength. The
analysis of stress and deformation of fiber-reinforced composite materials has been an important subject of solid
mechanics for last three decades. Spencer [1], Pipkin [2] and Rogers [3,4] did pioneer works on the subject.
Sengupta and Nath [5] discussed the problem of surface waves in fibre-reinforced anisotropic elastic media.
Recently, Singh and Singh [6] discussed the reflection of plane waves at the free surface of a fibre-reiforced
elastic half-space.

Lord and Shulman [7] introduced a theory of generalized thermoelasticity with one relaxation time for an
isotropic body. The theory was extended for anisotropic body by Dhaliwal and Sherief [8]. In this theory, a
modified law of heat conduction including both the heat flux and its time derivatives replaces the conventional
Fourier’s Law. The heat equation associated with this theory is hyperbolic and hence eliminates the paradox of
infinite speeds of propagation inherent in both coupled and uncoupled theories of thermoelasticity. Erdem [9]
derived heat conduction equation for a composite rigid material containing an arbitrary distribution of fibers.

The impact of earthquakes on the artificial structures is of great concern to engineers and architects. During
an earthquake and similar disturbances, a structure is excited into a more or less violent vibration, with resulting
oscillatory stresses, which depend upon both ground vibration and physical properties of the structure. Most
concrete constructions need steel reinforcing to some extent. The study of plane and surface wave propagation
in thermally conducting fibre-reinforced composites has applications in civil engineering and geophysics.

Chadwick and Seet [10] and Singh and Sharma [11] have discussed the propagation of plane harmonic
waves in anisotropic thermoelastic materials. Singh [12] studied a problem on wave propagation in an aniso-
tropic generalized thermoelastic solid and obtained a cubic equation, which gives the dimensional velocities
of various plane waves.
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Chadwick [13] and Nayfeh and Nasser [14] have discussed the propagation of surface waves in homoge-
neous thermoelastic media. Chadwick and Windle [15] studied the effect of heat conduction on the propagation
of Rayleigh waves in the semi-infinite media (i) when the surface is maintained at constant temperature and
(ii) when the surface is thermally insulated. Sharma and Singh [16] have studied thermoelastic surface waves
in a transversely isotropic half-space. In the present paper, the governing equations of thermally conducting,
linear fiber-reinforced rigid bodies are generalized by using the theory of Dhaliwal and Sherief [8]. The govern-
ing equations in x–y plane are solved analytically to obtain a cubic equation which gives the phase velocities
of three coupled waves, namely, quasi-P, quasi-SV and quasi-thermal waves. The dependence of velocities of
these plane waves upon the angle of propagation are shown graphically. The propagation of Rayleigh waves
in stress free thermally insulated and transversely isotropic fibre-reinforced thermoelastic solid half-space is
also investigated.

2 Basic Equations

The linear equations governing thermoelastic interactions in homogeneous anisotropic solid are

(a) Strain–displacement relations

eij = ui,j + uj,i

2
, i, j = 1, 2, 3. (1)

(b) Stress-strain-temperature relations

tij = cijklekl − βijT , i, j, k, l = 1, 2, 3. (2)

(c) Equation of motion

tij,j + ρFi = ρüi, i, j = 1, 2, 3. (3)

(d) Heat conduction equation

KijT,ij = T0βij u̇i,j + ρCeṪ , i, j = 1, 2, 3. (4)

where ρ is the mass density, ui the mechanical displacement, eij the strain tensor, tij the stress tensor, T the
temperature change of a material particle, T0 the reference uniform temperature of the body, Kij the heat
conduction tensor, cijkl the isothermal elastic parameters tensor, βij the thermal elastic coupling tensor, Ce

the specific heat at constant strain. The comma notation is used for spatial derivatives and superimposed dot
represents time differentiation.

3 Formulation of the Problem

Consider a homogeneous thermally conducting transversely isotropic fibre-reinforced medium in the unde-
formed state at uniform temperature T0. The medium is assumed transversely isotropic in such a way that
planes of isotropy are perpendicular to y-axis.

The origin is taken on the thermally insulated and stress-free plane surface and y-axis pointing vertically
downward into the half-space which is represented by y ≥ 0. The fibre direction is assumed parallel to x-axis.
The geometry of the problem is given in Fig. 1. The body forces and heat sources are assumed absent. Following
Dhaliwal and Sherief [8], the linear governing equations for generalized thermoelasticity of fibre-reinforced
elastic material in x-y plane are expressed as

c11u1,11 + (c13 + c0)u2,12 + c0u1,22 − β1T,1 = ρü1, (5)

c33u2,22 + (c13 + c0)u1,12 + c0u2,11 − β2T,2 = ρü2, (6)

K1T,11 + K2T,22 − ρCe(Ṫ + τ0T̈ ) = T0[β1(u̇1,1 + τ0ü1,1) + β2(u̇2,2 + τ0ü2,2)], (7)

where β1 = (c11 + c13)α1 + c13α2, β2 = (c13 + c33 − c55)α1 + c33α2, c11 = λ+ 2α + 4µL − 2µT +β, c13 =
c12 = λ + α, c33 = c22 = λ + 2µT , c0 = c44/2, c44 = c66 = 2µL, c55 = 2µT , c23 = c33 − c55, and λ, α, β,
µL, µT are material constants, K1, K2 are coefficients of thermal conductivity, α1, α2 are coefficients of linear
thermal expansion, τ0 is thermal relaxation time, u1, u2 are the components of displacement vector.
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Fig. 1 Geometry of the problem

4 Analytical solution

Solutions of the Eqs. (5)–(7) are now sought in the form of the harmonic traveling wave

{u1, u2, T } = {Ad1,Ad2, kB} exp{ik(xp1 + yp2 − vt)}, (8)

where k is the wave number, A, B are arbitrary constants, d1, d2 are components of unit displacement vector
and p1, p2 are components of unit propagation vector.

Making use of Eq. (8), Eqs. (5)–(7) take the form

(D1 − ζ )Ad1 + L1p1p2Ad2 + iβ1p1B = 0, (9)

L1p1p2Ad1 + (D2 − ζ )Ad2 + iβ2p2B = 0, (10)

β1p1Ad1 + β2p2Ad2 + i
(
ρ Ce

T0

) [(
D0

Ceτζ

)
− 1

]
B = 0, (11)

where ζ = ρv2,

D1 = (λ + 2α + 4µL − 2µT + β)p2
1 + µLp2

2,

D2 = µLp2
1 + (λ + 2µT )p2

2, D0 = (K1p
2
1 + K2p

2
2),

L1 = λ + α + µL, τ = τ0 +
(

i

ω

)
.

The homogeneous system of Eqs. (9)–(11) admits nontrivial solution and enables to conclude that ζ satisfies
the cubic equation

(D3 − L2ζ )[(D1 − ζ )(D2 − ζ ) − L2
1p

2
1p

2
2] − ζ [(D1 − ζ )γ 2p2

2 + (D2 − ζ )p2
1 − 2L1γp2

1p
2
2] = 0, (12)

where D3 = D0/εCeτv2
0, L2 = 1/εv2

0, γ = β2/β1, v2
0 = (λ + 2α + 4µL − 2µT + β)/ρ, ε = T0β

2
1/ρCev

2
0 .

The Eq. (12) may be expressed as

ζ 3 + Lζ 2 + Mζ + N = 0, (13)

where L = −[D1 + D2 + εv2
0(D3 + p2

1 + γ 2p2
2)], M = D1D2 − L2

1p
2
1p

2
2 + εv2

0(D1D3 + D2D3 + D1γ
2p2

2 +
D2p

2
1 − 2L1γp2

1p
2
2), N = −εv2

0D3[D1D2 − L2
1p

2
1p

2
2].
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The Eq. (13) gives three values of ζ . Each value of ζ corresponds to a wave if v2 is real and positive. Hence,
three positive values of v will be the velocities of propagation of three possible waves. The expressions for
velocities of these waves may be obtained from Eq. (13) by using Cardan’s method. Equation (13) takes form


3 + 3H
 + G = 0, (14)

where 
 = ζ + L
3 , H = 3M−L2

9 , G = 27N−9LM+2L3

27 .
For all the three roots of Eq. (14) to be real, �0(= G2 + 4H 3) should be negative. Assuming the �0 to be

negative, we obtain the three roots of Eq. (14) as


n = 2(−H)1/2 cos

[
φ + 2π(n − 1)

3

]
, n = 1, 2, 3. (15)

where

φ = tan−1{(|�0|)1/2/(−G)}. (16)

Hence,

vn =
{

(
n − L/3)

ρ

}1/2

, n = 1, 2, 3 (17)

are velocities of propagation of the three possible quasi waves. The waves with velocities v1, v2and v3 may
be called as quasi-P (qP) wave, quasi-Shear Vertical (qSV) wave and quasi-Thermal (qT) wave, respectively.
This fact may be verified, when we solve the Eq. (13) by using a computer program of Cardan’s method.
The velocities of these plane waves are found to depend upon angle of propagation and various other thermal
parameters.

The Eq. (12) may be rewritten as a cubic equation in p2

p6
2 − Up4

2 + Vp2
2 − W = 0, (18)

where p1 = sin θ and p2 is unknown parameter, and U = [L2
1p

2
1K0 −K0(c0 +c33)−a0c0c33 +γ 2ζc0]/K0c0c33,

V = [b0d0K0+a0(c0+c33)−a0L
2
1p

2
1−b0γ

2ζ−c33ζp
2
1+2L1γ ζp2

1]/K0c0c33, W = [d0ζp
2
1−a0b0d0]/K0c0c33,

and a0 = (K1/εCeτv2
0)p

2
1 − L2ζ, b0 = c11p

2
1 − ζ, d0 = c0p

2
1 − ζ, K0 = K1/εCeτv2

0 .
The characteristic Eq. (18) is cubic in p2

2 and hence possesses three roots m2
i , i = 1, 2, 3. For surface

waves, it is essential that motion is confined to free surface y = 0 of the half-space so that the characteristic
roots m2

i must satisfy the radiation condition Im (mi) ≥ 0. Then the formal solution for displacements and
temperature change is written as

u1 = (A1e−m1y + A2e−m2y + A3e−m3y)ei(kx−ωt), (19)

u2 = (a1A1e−m1y + a2A2e−m2y + a3A3e−m3y)ei(kx−ωt), (20)

T = (b1A1e−m1y + b2A2e−m2y + b3A3e−m3y)ei(kx−ωt), (21)

where aj and bj (j = 1, 2, 3) are given as

aj = {mj(L1β1p
2
1 − β2Mj)}

{p1(L1β2m
2
j − β1Nj)}

, (22)

bj = ik{L1p
2
1m

2
j − MjNj)}

{p1(L1β2m
2
j − β1Nj)}

, (23)

where Mj = c11p
2
1 + c0m

2
j − ζ, Nj = c0p

2
1 + c33m

2
j − ζ .
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5 Frequency equation

The boundary conditions at the thermally insulated surface y = 0 are given by

tyy = 0, txy = 0,
∂T

∂y
= 0, (24)

where tyy = c13u1,1 + c33u2,2 − β2T , txy = c0(u1,2 + u2,1).
Substituting u1, u2 and T from Eqs. (19)–(21) in boundary conditions (24), we get

(ikc13 − a1m1c33 − β2b1)A1 + (ikc13 − a2m2c33 − β2b2)A2 + (ikc13 − a3m3c33 − β2b3)A3 = 0,

(25)

(ika1 − m1)A1 + (ika2 − m2)A2 + (ika3 − m3)A3 = 0, (26)

m1b1A1 + m2b2A2 + m3b3A3 = 0, (27)

The linear homogeneous system of Eqs. (25)–(27) will have a nontrivial solution for Aj, j = 1, 2, 3, only if
the determinant of their coefficients vanishes, that is

(m1a1c33 − ikc13 + β2b1){m3b3(m2 − ika2) − m2b2(m3 − ika3)}
+(m2a2c33 − ikc13 + β2b2){m1b1(m3 − ika3) − m3b3(m1 − ika1)}
+(m3a3c33 − ikc13 + β2b3){m2b2(m1 − ika1) − m1b1(m2 − ika2)} = 0, (28)

The Eq. (28) is the frequency equation which depends on wave number k and phase velocity v.

6 Discussion of roots of Eq. (12)

(a) Fibre-reinforced elastic case
In absence of thermal disturbances, the Eq. (12) reduces to

(D1 − ζ )(D2 − ζ ) − L2
1p

2
1p

2
2 = 0, (29)

which gives the expressions for velocities of qP and qSV waves in fibre-reinforced media as

2ρv2 = [(D1 + D2) ± {(D1 − D2)
2 + 4L2

1p
2
1p

2
2}1/2]. (30)

(b) Isotropic elastic case
For µL = µT = µ and α = β = 0, the Eq. (30) gives the velocities of P and SV waves in an isotropic elastic
solid as {(λ + 2µ)/ρ}1/2 and {µ/ρ}1/2, respectively.

7 Discussion of the frequency Eq. (28)

Equation (28) contains the complete information about the phase velocity, wavenumber and attenuation coeffi-
cient of the surface waves in a fibre-reinforced thermoelastic half-space. In general, wavenumber and hence the
phase velocities of the waves are complex quantities, therefore the waves are attenuated in space. If we write

v−1 = V −1 + iω−1Q (31)

so that k = R+iQ, where R = ω/V and V, Q are real numbers.Also the roots of characteristic Eq. (18) are, in
general complex and hence we assume that mj = αj + iβj , (j = 1, 2, 3) so that the exponent in solutions (19)
to (21) become −R[(Q/R)xp1 +mI

jy]−iR{xp1 −mR
j y−V t}, where mR

j = αj −βjQ/R, mI
j = βj +αjQ/R.

This shows that V is the propagation velocity and Q is the attenuation coefficient of the wave. Using (31) in
frequency Eq. (28), the values of propagation speed V and attenuation coefficient Q may be obtained.

(a) Fibre-reinforced elastic case
In absence of thermal disturbances, the Eq. (28) reduces to
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(a1
′ − a2

′)(n1n2c33 + k2c13) + ikc13(n1 − n2)(1 − a1
′a2

′) = 0, (32)

where n2
1, n2

2 are roots of equation

c0c33x
2 + (c11c33p

2
1 + c2

0p
2
1 − L2

1p
2
1 − c0ζ − c33ζ )x + (ζ 2 − ζc11p

2
1 − ζc0p

2
1 + c0c11p

4
1) = 0, (33)

and a1
′, a2

′ are given by

aj
′ = − Mj

L1p1nj

, j = 1, 2. (34)

The Eq. (32) represents the Rayleigh type of waves in the fibre-reinforced elastic medium. Sengupta and Nath
[5] also obtain a similar equation by assuming the displacements in terms of potentials. Singh [17] showed
that, for wave propagation in fibre-reinforced anisotropic media, the decoupling can not be achieved by the
introduction of displacement potentials. Equation (32) is obtained by the method suggested by Singh [17].

(b) Isotropic elastic case
For µL = µT = µ and α = β = 0, the Eq. (32) reduce to

(a1
∗ − a2

∗)[n1
∗n2

∗(λ + 2µ) + k2λ] + ikλ(n1
∗ − n2

∗)(1 − a1
∗a2

∗) = 0, (35)

where a1
∗ = n1

∗/p1, a2
∗ = −p1/n2

∗, n1
∗ = [(ζ/(λ + 2µ)) − p2

1]1/2, n2
∗ = [(ζ/µ) − p2

1]1/2. (36)

8 Numerical example

For the purpose of numerical computations, the unit propagation vector (p1, p2, 0) is taken as (sin θ, cos θ , 0),
where θ is the angle of propagation with the vertical axis. Using FORTRAN PROGRAM of Cardan’s method,
Eq. (6) is solved. The numerical values of the velocities of the plane waves at each angle of propagation are
computed with the following physical constants for generalized fibre-reinforced thermoelastic materials.

ρ = 2, 660 kg/m3, λ = 5.65 × 1010 N/m2, µT = 2.46 × 1010 N/m2,

µL = 5.66 × 1010 N/m2, α = −1.28 × 1010 N/m2, β = 220.90 × 1010 N/m2,

K1 = 0.0921 × 103 J m−1 deg−1 s−1, K2 = 0.0963 × 103 J m−1deg−1 s−1, α1 = 0.017 × 104 deg−1,

α1 = 0.015 × 104 deg−1, Ce = 0.787 × 103 J kg−1 deg−1, T0 = 293K, t0 = 0.05 s, ω = 2 s−1.
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Fig. 2 Velocity of quasi-P wave as a function of angle between direction of propagation and vertical axis
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The numerical results are shown by plotting the graphs of velocities of plane waves with the angle of propaga-
tion. Figure 2 shows the comparison of velocity of quasi-P wave. The solid curve shows the velocity of quasi-P
wave in a generalized fibre-reinforced thermoelastic media. The velocity of this wave increases sharply with the
angle of propagation. After neglecting thermal effects, the solid curve reduces to dotted curve in Figure 1. The
dotted curve with center symbols represents the velocity of P wave in an isotropic media. Similarly, the curves
in Fig. 3 shows the velocity of quasi-SV wave. The anisotropy effect on quasi-SV wave is found considerable,
whereas the thermal effect is negligible. The velocity of quasi-thermal wave with angle of propagation is also
shown in Fig. 4. It first decreases sharply and then very slowly.

From theoretical as well as numerical analysis, the following points are observed

1. Three types of plane waves, quasi-P, quasi-SV and quasi-thermal waves are shown to exist in a two-dimen-
sional model of a generalized fibre-reinforced thermoelastic media.

2. The velocities of these plane waves are function of angle between direction of propagation and vertical
axis.
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Fig. 3 Velocity of quasi-SV wave as a function of angle between direction of propagation and vertical axis
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Fig. 4 Velocity of thermal wave as a function of angle between direction of propagation and vertical axis
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3. The velocities of these plane waves are affected by presence of anisotropy and thermal disturbances.
4. The frequency equation is obtained which contains all information regarding phase velocity and wave

number of the Rayleigh waves.

The research work is supposed to be useful in further studies, both theoretical and observational, of wave
propagation in the more realistic models of the thermoelastic solids present in the earth’s crust.
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