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Abstract The viscoelastic behavior of carbon-black-filled rubber under small oscillatory loads superimposed
on large static deformation is dealt with. In this class of problems, as the strain amplitudes of the load increase,
the dynamic stiffness decreases, and this phenomenon is known as the Payne effect. Besides the effects of the
static deformation and the frequencies of the superimposed dynamic load, the Payne effect is considered in this
study. Influence factors are introduced in this model in order to consider the influence of static predeformation,
the dynamic-strain-dependent properties, and frequency-dependent properties. For simplicity, separation of
the three dominant variables, frequency, prestatic deformation, and dynamic amplitude of strain, is assumed.
The Kraus model is used for describing the Payne effect. Dynamic tension tests are executed to obtain the
model parameters and also for the verification of the proposed model. The suggested constitutive equation
shows reasonable agreement with test data.

Keywords Rubbers · Viscoelasticity · Constitutive equation · Finite prestrain · Payne effect

1 Introduction

Many rubber components are used in machinery, buildings, and large civil structures for vibration isolation.
Thanks to the large damping and small stiffness of rubber, rubber isolators reduce the mechanical vibrations
and transmitted forces from vibrating structures and thus prevent the fatal breakdowns of systems. On the other
hand, the rubber isolators need to have a large enough degree of static stiffness because they should support
the vibrating structures. Isolators generally endure small-amplitude dynamic loads on top of the large static
loads caused by the self-weight of target structures. A good example is the engine mounts in automobiles and
aircraft. It experiences static dead load and low-frequency forces coming from maneuvering conditions.

For large static deformations, rubber shows nonlinear elastic and nearly incompressible behavior. The non-
linear elastic behavior of rubbers can be modeled by various hyperelastic models, such as the Mooney–Rivlin
form of strain energy potential. Meanwhile, rubber in vibration isolators experiences small oscillatory loads
superimposed on large static deformations. Generally most of the dynamic behaviors of rubber isolators can
be described by a linearized steady-state viscoelastic model. Considering the nonlinear behaviors of rubbers
under large deformation, it is evident that even linearized dynamic properties depend heavily on prestrain.
Morman’s model is widely used to describe viscoelastic behaviors of rubbers that are under small oscillatory
loads superimposed on large static deformation [1–5]. Morman’s model was derived from the assumption that
the time and large prestrain effects are separable. It has been observed from experiments that the separability
assumption is applicable only to unfilled rubbers [1,6]; however, in filled rubbers, the relaxation function is a
function of prestrain [6]. Recently Kim and Youn [7] have proposed a new viscoelastic model considering the
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effects of prestrain in the constitutive theory of small viscoelastic motion superimposed on large static defor-
mation in filled rubbers. This K–Y model was derived by the linearization of simo’s finite-strain viscoelastic
model [8] and the introduction of the static deformation influence factor; the K–Y model was then verified for
a three-dimensional problem using finite-element analysis [9].

In general, carbon black-reinforced rubber has fairly weak frequency dependence in conjunction with
pronounced amplitude dependence. If the strain amplitude increases, the storage modulus lessens and the dis-
sipation modulus shows a more or less pronounced sigmoidal behavior, which is the well-known Payne effect
[10–13]. A first model to represent and understand the Payne effect on a physical level is the so-called Kraus
model [14,15]. The fundamental idea is that during sinusoidal deformations there is always breakage and
recovery of weak physical bonds of the polymer chains. The rate of breakage is assumed to be an increasing
function of the strain amplitude and the rate of recovery a decreasing function. Under stationary conditions,
which are characterized by constant strain and stress amplitudes, there is a dynamic equilibrium between the
rate of breakage and recovery. The storage modulus is assumed to be proportional to the total number of
intact bonds and the dissipation modulus to the rate of breakage per unit of time. Some minor modifications
to represent experimental data with increased accuracy have been proposed by Ulmer [15].

The purpose of this paper is to propose a viscoelastic constitutive equation of filled rubber that is under
small oscillatory loads superimposed on large static deformation considering the Payne effect as well as the
effects of prestrain and frequency. Influence factors are introduced to the K–Y model for this purpose. The
proposed constitutive model is compared with the results from dynamic tension tests.

2 Viscoelastic constitutive equation

The K–Y model [7] is a viscoelastic constitutive equation for rubber under small oscillatory load superim-
posed on large static deformation. However, in the model the Payne effect is not considered. The K–Y model
is the linearized Simo’s viscoelastic model (LSVM) with a static deformation influence factor (SDIF). LSVM
was derived through linearization of Simo’s model and reference transformation. The SDIF was introduced
empirically to take into account the influence of prestrain on the relaxation function. It has been observed that
the K–Y model agrees well with the results of dynamic compression tests [7]. In this section, we review the
K–Y model. Then the modified K–Y model considering the Payne effect will be proposed.

2.1 Notation

A small deformation superimposed on a large static deformation is depicted in Fig. 1. Let �ξ denote the con-
figuration of the body B at instant ξ . The �t ′ , �t0 , and �t refer respectively to the undeformed, the statically
deformed, and the current configurations. The ξ T(η) represents a kinematical tensor T at time η with respect
to configuration �ξ . For convenience the following simplified notations are also used :

T(η) = t ′ T(η), ξ T0 = ξ T(t0), 0T(ξ) = t0 T(ξ), ξ T = ξ T(t).

1X

2X

3X

t′t =

t0t =
tt =

Static

Deformaion

Φt0

Φt

Φ t′

Fig. 1 Small dynamic deformation superimposed on large static deformation



A viscoelastic constitutive model of rubber 277

The deformation gradient tensor and the volume-preserving deformation gradient tensor are respectively
denoted by

(
ξ F(t)

)
ij

=
(

∂xi(t)

∂Xj (ξ)

)
and ξ F̄ = J−1/3

ξ F,

where J is det
(
ξ F
)
. Left and right Cauchy–Green tensors corresponding to ξ F̄ and ξ F are, respectively,

ξ C = ξ FT
ξ F, ξ C̄ = ξ F̄T

ξ F̄ and

ξ B = ξ Fξ FT , ξ B̄ = ξ F̄ξ F̄T ,

and Green Strain tensors are defined by, respectively,

ξ E = 1

2

(
ξ C − I

)
and ξ Ē = 1

2

(
ξ C̄ − I

)
,

where I is the identity tensor.

2.2 K–Y steady-state viscoelastic model

The K–Y steady-state viscoelastic model can be derived by the linearization of Simo’s finite-strain viscoelastic
model and the introduction of the static deformation influence factor. Simo proposed a finitely deformable
viscoelastic model [8] from the generalization of a standard linear solid. The characteristics of Simo’s model
are decoupled bulk and deviatoric responses over any range of deformations and a linear rate constitutive
equation. Simo’s nonlinear viscoelastic constitutive model is written as follows:

S = JC−1 ∂U

∂J
+ J−2/3 DEV

[(
∂�

∂Ē

)]

+J−2/3 DEV

[∫ t

0
g(t − ξ)

∂

∂ξ
DEV

(
∂�

∂Ē

)
dξ

]
, (1)

where DEV [•] = (•) − 1
3 [C : (•)]C−1, and U and � are the volumetric and deviatoric parts of the elastic

free energy function. The relaxation function g(t) is connected with the shear relaxation modulus of linear
viscoelasticity, G(t), by

g(t) = G(t)

G∞
− 1

where G∞ = lim
t→∞ G (t).

From this model static stress is given as

σ 0 = P0I + dev
[

�
σ 0

]
, (2)

where P0 = ∂U
∂J

,
�
σ 0 = 1

J
F̄0

∂�

∂Ē
F̄T

0 , and dev [•] = (•) − 1
3 [I : (•)]I. We know from the above equation that the

static behavior of Simo’s model is exactly equal to that of hyperelastic material, for which free energy is defined
as �̂ = U + �. The static stress caused by prestrain is determined only by the last state of static deformation,
not by the deformation history. Because of the fading memory hypothesis [16,17] of the viscoelastic material,
the effects of the deformation history are relaxed out. Thus we can consider that viscoelastic effects depend
only on superimposed small vibratory deformation.

A linearized constitutive equation that specifies the behavior of rubber under small oscillatory load super-
imposed on large static deformation can be derived from the assumption that the superimposed motion is
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small. Repeated applications of the chain rule to Eq. (1) and a reference configuration transformation yield the
relation between the stress increment �0S and superposed strain increment ε [7].

�0S =
(

J
∂2U

∂J 2
+ P

)
εkkI − 2Pε

−2

3

[
dev

(
�
σ 0

)
⊗ I + I ⊗ dev

(
�
σ 0

)]
: ε + C : ε +

∫ t

0
g(t − ξ)C : ε̇dξ (3)

The superposed strain increment is defined by the displacement increments with the following equation:

εij = 1

2

[
∂�ui

∂xj

+ ∂�uj

∂xi

]
.

In Eq. (3), the Truesdell elasticity tensor is given as

C = 2

3

(
�
σ : I

)(
Î − 1

3
I ⊗ I

)

+F − 1

3
[(F : I) ⊗ I + I ⊗ (F : I)] + 1

9
(I : F : I)I ⊗ I,

where Fijk	 = 1
J
F̄iI F̄jJ F̄kKF̄lL

(
∂2�

∂Ē2

)

IJKL
and Î is the fourth-order identity tensor.

The relation between the Cauchy stress increment, �σ , and �0S is written as follows: [21]

�σ = −εkkσ 0 + ε · σ 0 + σ 0 · ε + ω · σ 0 − σ 0 · ω + �0S,

where ωij = 1
2

(
∂�uj

∂xi
− ∂�ui

∂xj

)
.

When viscoelastic material is incompressible, we can write a modified form of the linearized Simo model:

Tr
�σ = �σ − ε · σ 0 − σ 0 · ε − ω · σ 0 + σ 0 · ω = −�P I + C : ε +

∫ t

0
g(t − ξ)C : ε̇dξ, (4)

where the pressure increment �P = −�σ kk is determined by boundary conditions.
Let us suppose that superimposed deformation is steady-state harmonic such as ε = ε∗eiωt . Then the

complex constitutive relation is extracted from Eq. (3):

�0S∗ =
(

J
∂2U

∂J 2
+ P

)
ε∗
kkI − 2Pε∗

−2

3

[
dev

(
�
σ
)

⊗ I + I ⊗ dev
(

�
σ
)]

: ε∗ + (
1 + iωg∗)C : ε∗, (5)

where g∗ is the Fourier transform of g (t), i.e., g∗ (ω) = ∫ ∞
0 g (t) e−iωtdt . The relation between g∗ and complex

shear modulus G∗ = G′ + iG′′ is as follows:

ωg∗ = G′′

G∞
+
(

1 − G′

G∞

)
i.

Thus far it has been assumed that g (t), which represents the time effects, is not affected by static deformation.
This separability assumption is suitable for rubbers that do not contain filler such as carbon black [6]. But for
filled rubber it is known from experiments that g (t) depends on the static deformation [6]. Unfilled rubber is
seldom used for engineering applications. In order to describe the nonseparability nature of filled rubber, a static
deformation influence factor c∗(B0) is introduced into the constitutive equation and the frequency-dependent
term 1 + iωg∗ is corrected as follows:

�∗
g = (

1 + iωg∗)c∗(B0),

where c∗(B0) is a complex valued function that depends on the static deformation. The static deformation
influence factors can be depicted by the modulus and argument of c∗:

c∗(B0) = ceiθ . (6)
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To define c∗ in a specific form, the static deformation measure should be described by the left Cauchy–Green
tensor B0. It is observed that the generalized octahedral shear strain performs well as a static deformation
measure. The generalized octahedral shear strain [18] is defined as

Īγ = 1

6

(
2Ī 2

1 − 6Ī2
)1/2

,

where Ī1 and Ī2 are first and second invariants of the right Cauchy–Green tensor C̄. The Īγ is an invariant of
B0 and represents the octahedral shear strain under infinitesimal deformation. Since the value of c∗ is unity
without the static deformation, the following polynomial forms can serve as the static deformation influence
factors:

c∗
γ

(
Īγ

) = cγ eiθγ ,

cγ

(
Īγ

) = 1 + zγ1 Īγ + zγ2 Ī
2
γ , (7)

θγ

(
Īγ

) = θ zγ Īγ ,

where zγ1 , zγ2 , and θzγ are material constants. The material constants can be easily determined by the results
of a uniaxial tension test.

2.3 Viscoelastic constitutive model considering the Payne effect

Until now, g (t), which represents the time effects, has been considered to be affected by static deformation
and frequency only. But the behavior of carbon-black-filled elastomers under dynamic deformation is strongly
dependent on the dynamic amplitude [10–13]. Therefore the effects on g (t) due to static deformation and
dynamic amplitude must be considered in order to develop a realistic viscoelastic constitutive model.

In order to describe the effects of frequency, prestrain, and dynamic amplitude, we empirically introduce
three factors to the constitutive equation. In this paper the separation of each factor is assumed. The verification
will be carried out by comparing the results of a tension test with those of the proposed constitutive equation.
If the separation of variables is assumed, we can define g̃∗, which is the correction of 1 + iωg∗ in Eq. (4):

g̃∗(ω, ε, B0) = g̃∗
ω(ω)g̃∗

ε (ε)c∗(B0), (8)

where g̃ε(ε) is a dynamic amplitude influence factor (DAIF), g̃ω(ω) a frequency influence factor (FIF), and
c∗(B0) a static deformation influence factor (SDIF). In this paper, a polynomial function of log frequency is
used for the type of g̃ω(ω). And Kraus model is used for g̃ε(ε). Finally, c∗(B0) is a static deformation influence
factor used in the K–Y model.

For simplicity, g̃ω(ω) is considered to be unity at reference frequency ωref . The following polynomial forms
can serve as FIFs:

g̃ω(ω) =
(

1 +
n∑

i=1

ai

(
ω
/
ωref

)i
)

+ i

(
m∑

i=1

bi

(
ω
/
ωref

)i
)

. (9)

Now we will review the Kraus model in more detail. Kraus [14] suggested a phenomenological model to
describe the dynamic strain dependence of carbon-black-filled rubbers. He assumed that aggregate–aggregate
contacts (van der Waals interactions) were continuously broken and reformed under a periodic sinusoidal
strain, γ = γ0 sin(ωt), at fixed frequency and temperature. γ0 is the magnitude of a sinusoidal strain. There-
fore, in filled rubbers above the percolation threshold, the carbon black aggregates form a temporary secondary
network within the rubbery polymer network. A deagglomeration rate (breakage rate) Rd is assumed to be
proportional to the number of consisting contacts N and to some power m of the amplitude of the strain, γ m

0 .
The reagglomeration rate Rr is assumed to be proportional to the difference between the number of possible
(elastically effective) contacts at zero deformation N0 and the number of existing contacts N . Furthermore, Rr

is assumed to be proportional to γ −m
0 . Then we have the following:

Deagglomeration rate: Rd = kdγ
m
0 N .

Reagglomeration rate: Rr = krγ
−m
0 (N0 − N), where kd and kr are the rate constants.
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Deagglomeration and reagglomeration rates are equal at the rate equilibrium, that is, Rd = Rr . Then we
obtain

N = N0

1 + (γ0
/
γc)

,

where γc is a characteristic strain amplitude.
Assuming that the excess modulus of the agglomeration network is proportional to the number of currently

existing contacts, one obtains

G′ − G′
∞ ∝ N.

And thus,

G′ − G′
∞

G′
0 − G′∞

= N

N0
= 1

1 + (γ0/γc)2m
, (10)

where G′
0 is the storage modulus for zero deformation and G′

∞ is the corresponding modulus for large defor-
mations (plateau value at large strains). From Eq. (10), G′ is written as follows:

G′(γa) = G′
∞ + (G′

0 − G′
∞)

1 + (γ0/γc)2m
. (11)

This phenomenological formula for the strain dependency has been successfully applied to carbon-black-filled
vulcanizates.

The four parameters of Eq. (11) have the following physical meanings: G′
∞ is the storage modulus of

the pure rubber matrix increased by the hydrodynamic filler effect and specific filler-matrix interactions,
�G′(= G′

0 − G′
∞) is the excess storage modulus of the temporary secondary filler network (which will be

destroyed with increasing strain amplitude), and γc is a characteristic strain amplitude, determined mainly
from the ratio of the rate constants. The loss modulus maximum is at γc. The m exponent has been intro-
duced by Kraus as an empirical parameter. This exponent can be related to the connectivity of the filler
network and can be determined from the fractal dimension of the percolation clusters. The study of different
carbon-black-filled rubber compounds yields an exponent m of about 0.6. Obviously, within a certain range the
amount of m is nearly independent of temperature, frequency, and carbon black loading. However, m depends
on the embedding polymer matrix.

Formulas for G′′ and tan δ can be obtained in a similar manner, for example,

G′′(γ ) = G′′
∞ + 2(G′′

m − G′′
∞)(γ0/γc)

m

1 + (γ0/γc)2m
. (12)

Some minor modifications to Eq. (12) to represent experimental data with increased accuracy have been
proposed by Ulmer [15]:

G′′(γ ) = G′′
∞ + 2(G′′

m − G′′
∞)(γ0/γc)

m

1 + (γ0/γc)2m
+ �G′′

2e−γ /γ2 . (13)

In this paper, (11) and (13) are used as a fitting function for describing the influence of the dynamic amplitude
of strain. G′

0, G
′
∞, γc, m, G′′

m, G′′
∞, �G′′

2, and γ2 are material constants, which can be easily determined by the
results of uniaxial dynamic tension tests.

3 Material test

3.1 Dynamic tension test

A dynamic tension test is carried out in order to verify the proposed constitutive model and to observe the
viscoelastic behavior of the rubber. The rubber specimen recipe is shown in Table 1. The specimen is a rect-
angular parallelepiped-shaped rubber element whose width, depth, and height are, respectively, 20, 20, and
160 mm. Aluminum plates are bonded to both ends of the rubber specimen by quick-set adhesive, and each
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Table 1 Recipe of specimen (unit: phr)

Rubber ZnO Stearic acid 3C RD SUNOC 315 Carbon black SRF 0005C NBS DM

SMR-10 5 1 1 1 2 50 4.4 1 0.3

plate is bolted to the test machine. The tests are performed at room temperature (20◦C) using a servohydraulic
rubber tester (Instron-5802).

To subject the specimen to small dynamic motion superimposed on finite static deformation, experiments
were conducted in two steps. Finite prestrain was applied to each specimen, with 20 min of relaxation time in
order to achieve the static equilibrium. Then the dynamic load was superimposed on the static deformation. The
stretch values of the static tension were 1, 1.05, 1.10, 1.15, 1.2, 1.25, and 1.3. The dynamic strain amplitude
values, which are 34 different points between 0.01% and 1.0% with respect to deformed specimen length,
were superimposed on static deformation in the 1–100 Hz frequency range. Initial conditioning was applied
for 12 h in advance before the experiment. For the initial conditioning, each test specimen was exposed to
the highest strain and frequency in the test series in order to remove irreversible material structures [19]. The
measurement was made after 50 cycles of dynamic loading. When the test was executed using the displace-
ment-control mode, the dynamic displacements and the corresponding dynamic driving forces were measured
as the experimental data. From these test data the dynamic modulus and stiffness were calculated considering
the size of specimens.

3.2 Calculation using constitutive equation

3.2.1 Constitutive equation under uniaxial deformation

In the calculation the rubber is treated as incompressible Mooney–Rivlin material. Under this assumption the
free energy function is defined as

� = c1(I1 − 3) + c2(I2 − 3), (14)

where c1 and c2 are determined by curve fitting the static axial force of the experiment. In the case of uniaxial
deformation, the static stress, Finger strain tensor, incremental strain, and incremental rotation are, respectively,
given as follows:






σ 011

σ 022

σ 033





=





2c1
(
λ2 − λ−1

)+ 2c2
(
λ − λ−2

)

0
0





,

B0 =



λ2 0 0
0 λ−1 0
0 0 λ−1



,

ε =



εx 0 0
0 − εx

2 0
0 0 − εx

2



,

ω = 0,

where λ is stretch. The above equations and boundary conditions, σ 22 = σ 33 = 0, lead to a one-dimensional
form of a linearized Simo model. From Eq. (4) we obtain

�σ 11 = (
2c1
(
λ2 − λ−1

)+ 2c2
(
λ − λ−2

))
εx + C	εx +

∫ t

0
g(t − ξ)C	 ε̇xdξ, (15)
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where Cl = 2c1
(
λ2 + 2λ−1

)+6c2λ
−2. When the superimposed loading is steady-state harmonic, the following

complex one-dimensional constitutive model can be derived using Eq. (15) and influence factors:

�σ ∗
11 = (

2c1
(
λ2 − λ−1

)+ 2c2
(
λ − λ−2

))
ε∗
x + g̃∗C	 ε∗

x, (16)

where g̃∗ is defined by Eq. (8). Also g̃∗ is represented by complex shear modulus and influence factors as
shown in Eqs. (6), 7), (9), (11) and (13).

3.2.2 Determination of the parameters in constitutive equation

To predict the behavior of a rubber specimen using a constitutive equation, we need to determine the material
characteristic functions (c1, c2, g̃

∗). c1 and c2 are determined by curve fitting the axial force from a simple
static tension test.

The constants of g̃∗ are determined by curve fitting from dynamic tension tests. At first, the constants of
g̃ε(ε) can be derived from the results of the tension test at zero static deformation and at reference frequency.
If there is no static deformation, c∗(B0) is unity. Thus the constitutive equation is:

�σ ∗
11 = 6g̃∗(ω,ε,B0)(c1+ c2)ε∗

x = 3G∞g̃ω(ω)g̃ε(ε)ε∗
x.

Because g̃∗
ω(ω) is set to unity at reference frequency ωref , i.e., g̃∗

ω(ωref) = 1, g̃ε(ε) at reference frequency is
written as follows:

g̃ε(ε) = �σ 11

∣∣
ω=ωref

3G∞ε∗
x

= 1

3G∞

�F ∗ ∣∣
ω=ωref

A0ε∗
x

,

where �F ∗ is the amplitude of the measured dynamic force and A0 the cross-section area of the specimen at
undeformed state. g̃ε(ε) is calculated at fixed reference frequency (ωref = 1 Hz) with zero static deformation
with changing dynamic amplitudes. The constants g̃ε(ε) are determined by least-square curve fitting.

The constants g̃ω(ω) can be derived from the results of a tension test at zero static deformation and at
reference dynamic amplitude. From Eq. (16), g̃ω(ω) is written as follows:

�σ ∗
11 = 3G∞g̃ω(ω)g̃ε(ε

∗
ref)ε

∗
ref .

g̃ω(ω) = �σ ∗
11

∣∣
ε=εref

3G∞g̃ε(ε
∗
ref)ε

∗
ref

= 1

3G∞

�F ∗ ∣∣
ε=εref

A0g̃ε(ε
∗
ref)ε

∗
ref

In the same manner as for g̃ε(ε), g̃ω(ω) is calculated at a fixed reference dynamic amplitude (εref=0.5%) and
zero static deformation with changing frequencies. The constants g̃ω(ω) are determined by curve fitting using
polynomial functions. In this paper, real part of g̃ω(ω) is curve-fitted by a fourth-order polynomial function of
log frequency. And the imaginary part of g̃ω(ω) is curve-fitted by a first-order polynomial function.

Then c∗(B0) is calculated at fixed reference dynamic amplitude and fixed reference frequency with changing
magnitudes of static deformation. The constants c∗(B0) are determined by least-square curve fitting:

c∗(B0) = �F ∗

ε∗
ref

λ

A0g̃ω(ωref)g̃ε(ε
∗
ref)C	

.

The determined constants are listed in Table 2. Figures 2–4 show the results of the curve fitting.

3.3 Results and discussion

The experimental data of the dynamic moduli E′ and E′′ for zero static deformation are plotted in Figs. 5 and 6
against the strain amplitude for different frequencies. In each figure, ε∗ is the dynamic strain and E∗ = E′+iE′′
is the complex Young’s modulus. E∗ is calculated from the measured force and displacement amplitude using
the following relation:

E∗ = �σ ∗
11

ε∗
x

=
(

�F ∗

A0ε∗
x

+ F0

A0

)
λ,
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Table 2 Identified material constants

G′
0 1.8472

G′
∞ 1.0833

γc 0.025

m 0.5

G′′
m 0.08022

G′′
∞ 0.01388

�G′′
2 0.02777

γ2 0.001

ωref 1 Hz

a1 −0.01509

a2 0.16868

a3 −0.21523

a4 0.09712

b1 0.01056

zγ1 −2.92256

zγ2 10.5632

θ zγ 2.513537

c1[Mpa] 0.56

c2[Mpa] 0.04

G∞[Mpa] 1.2

ρ[kg/m3] 1119
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Fig. 2 Frequency influence factor part of relaxation function

where �F ∗ is the dynamic force amplitude, F0 the static force, and A0 the cross-section area of a specimen in
an undeformed state.

We observe a pronounced decrease in the storage modulus and a sigmoidal behavior of the loss modu-
lus with increasing strain amplitudes [10–13]. Since the storage modulus is a measure of the stiffness of the
material, it is proportional to the number of intact physical bonds that can transfer forces on the microscopic
scale. Its monotonic decline is caused by a decrease in the number of intact bonds with increasing amplitudes.
As we know, the loss modulus is proportional to the breakage rate of the bonds. Since the rate of breakage is
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proportional to the number of intact bonds and increases with increasing amplitudes, we observe a sigmoidal
behavior: on the ascending side of the curves, the energy loss increases with the amplitude because there are
enough intact bonds; on the descending side of the curves the energy loss decreases with the amplitude because
the number of intact bonds has considerably decreased. As we observe in the plots, the frequency dependency
is monotonic in both cases. That is, increasing frequencies lead to an increase in stiffness and an increase in
energy loss per cycle. The increase in dynamic modulus at higher frequencies reflects the reduced molecular
motions of the elastomer chains [20].

Comparing the experimental data with those of the proposed model shown in Figs. 5 and 6, it can be seen
that the model produces results comparable to the experimental data. And the parameters of g̃ε(ε) used in
Figs. 5 and 6 are determined by the values at 1 Hz. Figures 5 and 6 show that the value of g̃ε(ε) determined
at 1 Hz is also effective at other frequencies. The responses at different frequencies could be equally well
predicted. This confirms the author’s assumption that g̃ε(ε) and g̃ω(ω) are separable.
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Fig. 5 Storage modulus belonging to no static deformation against dynamic strain amplitude for different frequencies in uniaxial
tension test
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Fig. 6 Loss modulus belonging to no static deformation against dynamic strain amplitude for different frequencies in uniaxial
tension test

In Figs. 7 and 8, the experimental data of the dynamic moduli E′ and E′′ for 0.5% dynamic strain are
plotted against the static deformation for different frequencies. In these figures, we observe the initial decrease
in storage and loss moduli and the subsequent increase at higher strain [6,7]. The initial decrease in storage
and loss moduli is due to the disruption of the filler network, and the subsequent increase at higher strain is
attributed to the limited extensibility of the elastomer chains [6]. For the explanation of this effect, a static
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Fig. 7 Storage modulus belonging to 0.5% dynamic strain against static deformation for different frequencies in uniaxial tension
test
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Fig. 8 Loss modulus belonging to 0.5% dynamic strain against static deformation for different frequencies in uniaxial tension
test

deformation influence factor c∗ was introduced in the K–Y model [7]. As is the case in the K–Y model, this
constitutive equation with a static deformation influence factor shows good agreement with test results. The
value of c∗ used in Figs. 7 and 8 is determined by the values at 10 Hz and 0.5% dynamic strain. Figures 7 and
8 show that the value of c∗ determined at 10 Hz is also valid at other frequencies. With the static deformation
influence factor determined at one frequency, the responses at different frequencies could be equally well
predicted. This confirms the author’s assumption that c∗ is only a function of static deformation.

Finally, the relation between SDIF and DAIF will be discussed. In Fig. 9, the calculated storage modulus
is compared with the experimental results. The experimental data of the storage modulus at 10 Hz are plotted
against the static deformation for different dynamic strains. In the case of prestrain and dynamic amplitude,
however, the correlation between two factors cannot be entirely ignored. The proposed model also shows this.
The same statement holds for the representation of the loss modulus shown in Fig. 10. The correlation between
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Fig. 9 Storage modulus belonging to 10 Hz frequency against static deformation for different dynamic strains in uniaxial tension
test
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Fig. 10 Loss modulus belonging to 10 Hz frequency against static deformation for different dynamic strains in uniaxial tension
test

prestrain and dynamic amplitude must be carefully studied.A study of the coupling of these two factors remains
a future endeavour.

4 Conclusion

An effective and practical viscoelastic constitutive equation of filled rubber considering the Payne effect as
well as the effects of large static prestrain and frequency is proposed. The proposed constitutive model is
based on the linearization of Simo’s finite viscoelastic model and reference configuration transformation.
Influence factors are introduced in this model in order to consider the influence of static predeformation, the
dynamic-strain-dependent properties, and frequency-dependent properties. For simplicity, the separation of
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variables—frequency, predeformation, and dynamic strain—is assumed. The Kraus model is used for describ-
ing the dynamic-strain-dependent properties.

Dynamic tension tests are executed to obtain the model parameters and also for the verification of the
model. The suggested constitutive equation shows good agreement with test values. Separability among the
three factors is assumed in the model. However, in the case of prestrain and dynamic amplitude, the correlation
between the two factors cannot be entirely ignored. A study of this coupling effect remains a future endeavour.
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