
Arch Appl Mech (2005) 74: 762–772
DOI 10.1007/s00419-005-0413-6

ORIGINAL

A. Hachemi · S. Mouhtamid · D. Weichert

Progress in shakedown analysis with applications
to composites

Received: 3 March 2005 / Accepted: 27 May 2005 / Published online: 25 November 2005
© Springer-Verlag 2005

Abstract This paper reports on recent developments in the field of direct methods, in particular shakedown
analysis (SA) from theoretical and numerical points of view. Emphasis is placed on problems connected with
the failure of fibre-reinforced periodic composites under variable loads where special attention is paid to the
problem of interface debonding between fibre and matrix materials. The approach is based on a local SA in a
representative volume element of the composite and the use of averaging techniques to study the influence of
each component (matrix, fibre and interface) on the macroscopic response of such composite. For numerical
applications, the interior-point difference-of-convex-functions algorithm (IPDCA) is proposed as an efficient
method for solving large-scale problems.

Keywords Shakedown analysis · Averaging techniques · Non-linear optimisation · Interfacial damage

1 Introduction

Guaranteeing the integrity of structures or structural elements as a necessary condition for safe functioning has
always been one of the most important tasks for mechanical and civil engineers. Consequently, the develop-
ment of practical methods to predict whether under specific service conditions failure would occur or not was
necessary, even in times when computers and modern numerical methods did not yet exist. One of the most
powerful and successfully applied branches of engineering was limit analysis (LA), which stemmed from the
combination of classical plasticity in the form of Tresca or von Mises yield conditions and the assumption of
validity of the normality rule for plastic flow, the satisfaction of equilibrium conditions (in the case of static
approaches), specific kinematical conditions related to the type of structure being considered (beam, plate,
etc.) and guesses at the collapse mechanisms (in the case of kinematical approaches). From a methodological
point of view it is important that in this context plasticity conditions did not complicate but helped to simplify
the specific problems considered. Whilst LA aims at monotonous loading processes, shakedown analysis (SA)
considers mechanical systems under variable, nondeterministic loads within deterministic bounds [1,2]. Obvi-
ously, this problem is more complicated than the problem of LA, and analytical solutions are more difficult to
find, although the theoretical foundations of SA had been established before those of LA. (SA and LA were
developed independently; today we know that LA can be considered as a particular case of SA. The reader
interested in the fundamentals of LA and SA and their historical development is referred to [3–8]).

What is characteristic of LA and SA is the fact that information, regardless of whether or not failure occurs,
is obtained directly, without solving an evolutionary problem. Therefore, LA and SA are often called direct
methods in contrast to step-by-step methods. It is important to understand that the theoretical core of SA and
LA is the same: (1) active failure mechanisms are dissipative and irreversible; (2) locally sustainable dissipation
is bounded; (3) in a safe state, no dissipation occurs in a structure.
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Classical plasticity as the framework within which the fundamental theorems of SA and LA were formulated
satisfies these conditions. But it is interesting to note that other material phenomena leading to failure fit within
the same concept: it has been shown that different classes of material hardening, material damage and, under
certain restrictive conditions, crack propagation can be addressed within the same theoretical framework, and
many papers have been devoted to the extension of the classical theorems to these types of material phenomena
(see [9] and references therein).

A rather new area of application with a strong practical impact is the study of structured materials, basi-
cally composites with at least one ductile phase. These materials can be considered as mechanical structures by
themselves and therefore treated with the same methods as mechanical structures taken in the usual sense. The
present paper, a continuation of earlier work by the authors [10,11], focuses on the contribution of dissipative
effects in the interface between matrix materials (here considered as metal type) and reinforcing fibres. Exper-
imental and numerical observations show that the global behaviour of fibre-reinforced composites depends on
the local interfacial damage. Following Carrère et al. [12] two domains can be evidenced as a function of the
applied stress. Below the critical stress, interfaces remain undamaged, and above, interfaces are totally debond-
ing. In this paper, the process of debonding is modelled within the framework of interface damage mechanics,
where the displacement discontinuities during the progressive decohesion are related to constitutive equations
extended by an anisotropic damage model [13,14].

The presented work is based on a two-scale approach. On the macroscopic scale, the global response of the
composite is analysed. On the microscopic scale, the influence of each component (matrix, fibre and interface)
on the behaviour of the composite is investigated. The methods used are an averaging technique, in particular
the homogenisation technique [15], combined with SA [1], applied to a representative volume element on the
micro-level. This allows us, under the assumption of periodicity of the composite, to link the results of the SA
on the micro-level to the overall material properties on the macro-level.

2 Definitions and general assumptions

A periodic medium can be defined by a unit cell (representative volume element) and three vectors (in 3D) of a
translation invariance. Although the unit cell is not uniquely defined, the effective behaviour of the composite
computed from different unit cells that generate the same microstructure should coincide (since the physical
effective properties of the composite are well defined independently of the choice of the unit cell) [16]. The
choice of the unit cell is often motivated by the differences in geometrical symmetries, which can be used to
simplify the numerical solution of the local problem. We consider the problem of ductile (metal-type) matrix
materials reinforced by straight fibres. In the case of transverse loading, this justifies the hypothesis of a plane
state of strains. Thus, the problem is reduced to a 2D case with periodicity in the fibre section plane. (Note
that this restriction is not essential for the theory developed in the sequel). The macroscopic behaviour of
this heterogeneous material is observed on scale x and the mesoscopic behaviour on scale y. A significant
characteristic of fibre-reinforced composites is the limited strength of the interface between the fibres and the
matrix. The micromechanical representative element of total surface � presented herein includes the fibre
phase, the matrix phase occupying the domains �+ and �−, respectively, and the cohesive zone represented
by the band-shaped domain �δ of width δ << 1(� = �− ∪ �+ ∪ �δ), as illustrated in Fig. 1, defined by

�δ =
[

y = y0 + εn | ∀y0 ∈ �, − δ

2
≤ ε ≤ δ

2

]
. (1)

The strain field corresponding to the displacement field is derived as

ε = ∇su + ([[u]] ⊗s nδR), ∀y ∈ �, (2)

where u is the continuous displacement field and [[u]] the displacement jump vector, i.e. [[u]] = u+ −u−. Here,
u+ and u− are the displacement vectors at the interior and the exterior borders of the interface zone, n is the
unit vector and δR is the Dirac delta function defined by

δR =




0 if y ∈ �,
1
δ

if y ∈ �δ,

0 if y ∈ �+.

(3)
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Fig. 1 Discontinuity interface �

Restricting our considerations to geometrically linear theory, the total strains ε(y) can be split into purely
elastic εe and purely inelastic εin parts, respectively:

ε(y) = εe(y) + εin(y), ∀y ∈ �. (4)

Consequently, the total strain field ε can be decomposed independently into a continuous strain field ε and a
regularised strain field εδ within the interface in the following way:

ε(y) = ε(y) + εδ(y), ∀y ∈ �, (5)

with

ε(y) = εe(y) + εin(y), ∀y ∈ �− ∪ �+, (6)

εδ(y) = εe
δ(y) + εin

δ (y), ∀y ∈ �δ. (7)

For the considered unit cell �, we adopt the usual homogenisation assumption for the local displacement field
u at position y

u = E · y + uper, (8)

where E is the macroscopic strain tensor and uper is a displacement field satisfying the periodicity conditions.
Then, the Hill relationship holds [17]:

� : E =< σ : ε >= 1

|�|
∫
�

σ : ε d�, (9)

where

�(x) =<σ (y)>= 1

|�|
∫
�

σ (y)d� (10)

and

E(x) =<ε(y)>= 1

|�|
∫
∂�

(u ⊗s n)dS. (11)

Here, σ and ε are mesoscopic stresses and strains that also satisfy the periodicity condition. Within the unit
cell, ε and σ fulfil compatibility and equilibrium conditions, respectively.

For the plastic part of the matrix and/or fibre behaviour, we assume the validity of the generalised normality
rule for plastic flow in subdifferential form, such that

ε̇in ∈ δϕ(σ ), (12)
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where δϕ(σ ) denotes the subgradient of the plastic potential ϕ(σ ), which is the indicator function of a convex
domain F(y) of all plastically admissible stress states. Here and in the sequel, superposed dots denote the rate
of the considered quantity. Then we have

σ (y) ∈ F(y), ∀y ∈ �− ∪ �+, (13)

where F(y) is defined by means of a yield function f (σ , y),

F(y) = [
σ |f (σ , y) ≤ 0, ∀y ∈ �− ∪ �+

]
. (14)

The convexity of f (σ , y) and the validity of the generalised normality rule can be expressed by the maximum
plastic work inequality

(σ − σ (s)) : ε̇in > 0, ∀σ (s)(y) ∈ F̄(y), (15)

where σ (s) is any safe state of stresses defined by

F̄(y) = [
σ (s) | f (σ (s), y) < 0, ∀y ∈ �− ∪ �+

]
. (16)

3 Interfacial constitutive equations

The mechanical response of the interface is described by the relation between the normal and tangential rela-
tive displacements [[un]] and [[ut ]] and their respective normal and tangential tractions τn and τt . The relative
displacement across the interface [[u]] is decomposed into an elastic part [[ue]] and an inelastic part [[uin]]

[[u]] = [[ue]] + [[uin]] (17)

At each point of the interface, we define

un = n · [[u]], ut = t · [[u]] (18)

and

τn = n · τ , τt = t · τ , (19)

where n and t form a right-hand coordinate system. The crack initiation and crack propagation between fibre
and matrix is simulated by using a strain-based anisotropic damage model in the sense of Ju [18]. To this end,
we separately introduce a normal damage variable dn and a tangential damage variable dt . To describe the
interface constitutive equations, we introduce a thermodynamical potential

� = 1

2
[[ue]]T · Q̃δ · [[ue]] (20)

with

[[ue]] = [[ue
n]]n + [[ue

t ]]t and Q̃δ = (I − d)Qδ = (1 − dn)Qδnn ⊗s n + (1 − dt)Qδt t ⊗s t, (21)

where Qδ represents the interface stiffness, i.e. Qδ = n · C · n/δ. Here, C denotes the fourth-order elasticity ten-
sor. This leads us to define, respectively, the traction forces as functions of elastic displacement discontinuities
and damage variables and the thermodynamic forces associated with damage variables (see e.g. [13]):

τ = ∂�

∂[[ue]]
= Q̃δ·[[ue]] and Y = −∂�

∂d
= 1

2
[[ue]]T· Qδ ·[[ue]]. (22)

In the sequel a superposed tilde indicates quantities related to the damaged state of the cohesive zone. It is
assumed that both debonding and damage processes are irreversible with no cross-healing effect. Then we
impose that the second principle of thermodynamics is satisfied in the restricted form of the Clausius–Duhem
inequality

τ ·[[u̇in]] ≥ 0 and Y · ḋ ≥ 0 (23)
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or, in index notation,

τn[[u̇in
n ]] + τt[[u̇

in
t ]] ≥ 0 and

1

2
Qδn[[ue

n]]2ḋn + 1

2
Qδt [[u

e
t ]]2ḋt ≥ 0, (24)

where the two inequalities are independent.
The inelastic parts of the displacement jump are expressed by the normality rule

[[u̇in
n ]] = λ̇

∂g

∂τn
, [[u̇in

t ]] = λ̇
∂g

∂τt
, (25)

where (λ̇) is the plastic multiplier and g the inelastic gap potential defined by

g(τ , d, y) =
[(

τn

1 − dn

)2

+ 1

β2

(
τt

1 − dt

)2
]1/2

− σmax ≤ 0, ∀y ∈ �δ, (26)

which is a positive convex and differentiable function. The maximum plastic work inequality is valid, i.e.

(τ − τ (s)) · [[u̇in]] > 0, ∀τ (s)(y) ∈ Ḡ(y), (27)

where

Ḡ(y) = [
τ (s) | g(τ (s), d, y) < 0, ∀y ∈ �δ

]
. (28)

Here, σmax is a measure of the bond strength of the cohesive zone and β is the interface shear-to-normal strength
ratio.

As an example of a simple explicit form of (24), we cite the equations for the damage variables proposed
by Bazant and Prat [19]:

dn = 1 − exp

[
−

(
κn

an

)n]
, dt = 1 − exp

[
−

(
κt

at

)t]
, (29)

where the constants (n, an) and (t, at) are material parameters to be determined from experiment. The history
parameters κn and κt are the damage thresholds at the current time t . They memorise the maximum values
attained by [[un]] and [[ut]] in the following way:

κn = max

[
κn0 , max

t∈[0,T ]
[[un]]

]
; κt = max

[
κt0 , max

t∈[0,T ]
[[ut]]

]
, (30)

where κn0 and κt0 are the initial damage thresholds before any loading is applied.

4 Formulation of the shakedown problem

Adopting these definitions and hypotheses, the statical shakedown theorems can be stated as follows: if there

exist a real number α > 1, a time-independent field of periodic residual stresses
◦
σ (r), a time-independent vector

of traction forces
◦
τ (r) at the interface and an admissible domain P of macroscopic states of stress �:

P = [
� | ∃σ (s), ∃τ (s), σ (s)(y) ∈ F̄(y), τ (s)(y) ∈ Ḡ(y)

]
, (31)

then the fibre-reinforced composite material shakes down to the given domain of loading. Safe states of stresses
σ (s) and traction forces τ (s) are defined, respectively, by

σ (s) = ασ (c) + ◦
σ (r), τ (s) = ατ (c) + ◦

τ (r) (32)

such that

F̄(y) = {σ (s)
∣∣f (σ (s), y) < 0, ∀y ∈ �− ∪ �+ } (33)
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and

Ḡ(y) = [
τ (s)

∣∣g(τ (s), d, y) < 0, ∀y ∈ �δ

]
. (34)

Here, σ (c) and τ (c) are, respectively, the stress field and the traction forces in a purely elastic representative
volume element (RVE) under the same boundary conditions as for the RVE of the original problem such that
the following relations hold:

Div σ (c) = 0 in �, (35)

[[σ (c)]] · n� = 0 on �, (36)

u(c) − E · y periodic on ∂�, (37)

σ (c) · n antiperiodic on ∂�, (38)

σ (c) = C : (ε(uper) + E) in �. (39)

However, the field of the residual stresses
◦
σ (r) satisfies

Div
◦
σ (r) = 0 in �, (40)

[[
◦
σ (r)]] · n� = 0 on �, (41)

◦
σ (r) · n antiperiodic on ∂�, (42)

<
◦
σ (r)>= 0 in � (43)

and additionally

< σ (s)(y) >= �(x), (44)

where n� is the normal unit vector at any point of �. For the proof, which follows due to the specific structure
of the potentials (20) and (26) and the corresponding evolution laws of the classical argument, we refer the
reader to [11].

5 Relative displacement bounding

As in the presented approach the damage d is a function of damage threshold κ (29), bounds for damage can be
given in this special case by bounding the relative displacement [[u]] which can be estimated from the extremal
values of [[u(c)]] and [[uR]]

Max[[u]] ≤ Max]]u(c)]] + Max]]uR]]. (45)

Bounds to [[u(c)]] are obtained in a straightforward manner due to linearity in terms of the load multipliers. To
evaluate bounds to [[uR]], we use the reciprocal relation of elasticity extended to the case of noncompatible
strains, which are identified here with the plastic strains

∫
∂�

P̂ · u dS =
∫

�

σ̂ : ε d�, (46)

where σ̂ (y, y0) stands for the purely elastic stress field in the RVE(c) loaded by the concentrated force (P̂) at
point y0. Using relation (46), we deduce then

∫
�

P̂ · [[u]] dS =
∫

�δ

σ̂ : εδ d�, (47)

or in detail∫
�

P̂ · [[u(c)]] dS +
∫

�

P̂ · [[uR]] dS =
∫

�δ

σ̂ : ε
(c)
δ d� +

∫
�δ

σ̂ : ε
(r)
δ d� +

∫
�δ

σ̂ : εin
δ d�. (48)
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Using a Betti–Maxwell relation, ∫
�δ

σ̂ : ε
(r)
δ d� =

∫
�δ

σ
(r)
δ : ε̂ d� = 0, (49)

we obtain ∫
�

P̂ · [[u(c)]]dS =
∫

�δ

σ̂ : ε
(c)
δ d� (50)

and ∫
�

P̂ · [[uR]]dS =
∫

�δ

σ̂ : εin
δ d�. (51)

If the yield surface contains the origin of the coordinate system and the material is initially virgin, then there
exist two constants ζ and ξ such that

ζ ||ε̇in
δ || ≤ σ δ : ε̇in

δ ≤ ξ ||ε̇in
δ ||, (52)

where

ζ = inf
σ δ : ε̇in

δ

(ε̇in
δ : ε̇in

δ )1/2
, ξ = sup

σ δ : ε̇in
δ

(ε̇in
δ : ε̇in

δ )1/2
, (53)

and

||ε̇in
δ || = (ε̇in

δ : ε̇in
δ )1/2 =

(
[[u̇in

n ]]2 + [[u̇in
t ]]2

)1/2

. (54)

For initially virgin material, according to Dorosz [20], we have

||εin
δ || ≤

∫ t

0
||ε̇in

δ ||dt. (55)

This allows us to bound the relative residual displacement by∣∣∣∣
∫

�

P̂ ·[[uR]]dS

∣∣∣∣ =
∣∣∣∣
∫

�δ

σ̂ : εin
δ d�

∣∣∣∣
≤

∫
�δ

||σ̂ || ||εin
δ ||d�

≤
∫

�δ

||σ̂ || 1

ζ

(∫ t

0
σ : ε̇in

δ dt

)
d�. (56)

Thus inequality (55) leads us to estimate the maximum relative residual displacement as

∣∣[[uR]]
∣∣ ≤ max

�

( ||σ̂ (y, y0)||
ζ

)
α

α − 1

∫
�δ

∫ t

0

◦
σ (r)

δ : C−1 :
◦
σ (r)

δd�dt. (57)

The proposed shakedown condition for the determination of the macroscopic admissible domain P against
failure due to interfacial damage or unlimited accumulation of inelastic deformations can then be expressed
by the following optimisation problem:

Find

αSD = max
◦
τ (r),

◦
σ (r),d

α, (58)

subject to (40)–(43) and

τ (s)(y) ∈ Ḡ(y), ∀y ∈ �δ (59)

σ (s)(y) ∈ F̄(y), ∀y ∈ �+ ∪ �−, (60)

< σ (s) > = �, (61)
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such that

σ (s) = ασ (c) + ◦
σ (r), τ (s) = ατ (c) + ◦

τ (r). (62)

Condition (59) is considered as a failure criterion of the interface and assures that there is not complete
debonding between matrix and fibre, and condition (60) assures that the safe state of stresses is plastically
admissible. The problem to be solved is a convex optimisation problem with linear and nonlinear constraints.
Due to the usual techniques of discretisation in engineering, the number of unknowns and subsidiary conditions
is in general very large and not to be solved efficiently by classical optimisation algorithms.

6 A new optimisation algorithm

To overcome the problem of prohibitive time consumption for numerical calculations, a new, specially problem-
adapted optimisation algorithm has been developed (IPDCA; interior-point difference-of-convex-functions
algorithm). It is based on the interior-point method combined with the method of difference of convex functions
(DC). The algorithm can be formulated as follows [21,22]:

Find a Karush-Kuhu-Tucker (KKT) point of the following nonlinear programming problem:

(P1)




min f (x),
Ax − b = 0,
c(x) ≥ 0,
x ∈ R

n,

(63)

where f and c : (R)n → (R)mI are two twice-continuous differentiable functions and c is supposed to be
concave. A ∈ (R)mE×n is a surjective matrix and b ∈ (R)mE a vector. We assume that we have a constraints
qualification in the sense presented in (58)–(61).

The first step in the chosen interior-point approach is to add slack variables to each of the inequality
constraints in (PI ) and to add linear constraints to handle free variable x. The problem (PI ) is then transformed
into

(Pm)




min f (x),
Ax − b = 0,
c(x) − w = 0,
x − y + z = 0,
w ≥ 0, y ≥ 0, z ≥ 0.

(64)

The second step is to consider the problem with the barrier objective function

(Pm)




min f̄µ(w, x, y, z),
Ax − b = 0,
c(x) − w = 0,
x − y + z = 0,
w > 0, y > 0, z > 0,

(65)

with

f̄µ(w, x, y, z) = f (x) − µ

m1∑
i=1

log(wi) − µ

n∑
j=1

log(yj ) − µ

n∑
j=1

log(zj ). (66)

IPDCA requires a DC decomposition of f = g − h, where g and h are two convex functions. By linearising
the concave component of the objective function, IPDCA solves approximately the problem:

(DCk)




min ḡk(x),
Ax − b = 0,
c(x) − w = 0,
x − y + z = 0,
w ≥ 0, y ≥ 0, z ≥ 0,

(67)

where ḡk(x) = g(x) − ∇T h(xk)x.
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The problem is then transformed into a sequence of problems with the logarithmic barrier function

(DCµ)




min gµ(w, x, y, z) − ∇Th(xk)x,
Ax − b = 0,
c(x) − w = 0,
x − y + z = 0,

(68)

with

gµ(w, x, y, z) = g(x) − µ

m1∑
i=1

log(wi) − µ

n∑
j=1

log(yj ) − µ

n∑
j=1

log(zj ), (69)

hµ(w, x, y, z) = h(x).

7 Numerical example

To illustrate the presented method, we consider a square unit cell assuming perfect bonding between fibre and
metal matrix. The unit cell is discretized in space by 3D finite elements using the software package Ansys [23].
Geometry and the adopted mesh are shown in Fig. 3a. Here, SOLID45 is used, where each element is defined
by eight nodes having 3 degrees of freedom at each node. For symmetry reasons, only a quarter of the unit
cell is considered where the geometry and the adopted mesh are shown in Fig. 2. Note that the progressive
decohesion is not taken into account in this example.

The adopted mechanical characteristics for the matrix and the fibres are given in Table 1.
To satisfy the boundary and symmetry conditions, the unit cell is subjected to biaxial uniform macroscopic

strains at the edges. The following loading cases are studied:

(1) The strains E11 and E22 increase proportionally, which corresponds to the LA problem:

E11 = µE0
11 and E22 = µE0

22 with 0 ≤ µ ≤ µ+.

(2) The displacements E11 and E22 vary independently, which corresponds to the SA problem:

E11 = µ1E
0
11 and E22 = µ2E

0
22 with 0 ≤ µ1 ≤ µ+

1 and 0 ≤ µ2 ≤ µ+
2 .

Fig. 2 Geometry and discretisation of unit cell
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Fig. 3 Admissible domains of macroscopic strains

Table 1 Mechanical characteristics of fibre-reinforced composite

Matrix Fibre

Young’s modulus E (GPa) 210 2.1
Poisson’s ratio ν 0.3 0.2
Yield stress σY (MPa) 280 140

It should be noted that fictitious mechanical characteristics have been chosen for matrix and fibres in order to
point out the interaction between fibre and matrix. Figure 3 presents the admissible domains in the space of
macroscopic strains (E11, E22), where the results obtained by Schwabe [24] using 2D triangular isoparametric
elements with six nodes are taken for comparison. These bounds are obtained for the ratio of diameter D of
the fibre and length L of the unit cell D/L = 0.3. The influence of patterns of periodicity, the size of the unit
cell and the type of loading on the macroscopic domains can be found in Schwabe [24] by considering 2D
analysis.

8 Conclusions

The presented formulation allows us to apply the lower-bound direct method more realistically to predict the
long-time behaviour of periodic composite materials. In this paper, we address in particular the mechanisms
of unlimited accumulation of the inelastic deformation in the matrix and decohesion between fibre and matrix.
The numerical method is based on a finite-element analysis and mathematical programming, where a new algo-
rithm is introduced in order to reduce computing time drastically. We observe that this algorithm is about 100
times faster than a standard optimisation code like Lancelot [25]. In future, frictional sliding and progressive
decohesion between matrix and fibres will have to be included in the numerical scheme.
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