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Abstract In this contribution we present a phenomenological mesoscopic thermodynamically consistent
model for the description of switching processes in ferroelectric materials that is able to describe the fun-
damental electromechanical hysteresis effects. The main goal is to develop a representation using the set of
independent variables, the strains and the electric field, in a coordinate-invariant setting. This formulation is
particularly suitable for the treatment of a variety of complex boundary-value problems (BVP) with regard to
the essential boundary conditions. Here we restrict ourselves to transversely isotropic solids. The anisotropic
behavior is governed by isotropic tensor functions that depend on a finite set of invariants. Thus the material
symmetry requirements are automatically fulfilled.

Keywords Invariant theory · Ferroelectrics · Polarization · Butterfly hysteresis · Dielectric hysteresis

1 Introduction

The microscopic structure of ferroelectric materials has of a crystalline nature. Typical materials that exhibit
useful electromechanical coupling effects, like the typical Perovskite-type ferroelectric ceramics BaTiO3 or
PZT, are not produced as ideal single crystals but as polycrystals. Polycrystalline materials consist of a large
number of crystals (grains), these crystals being subdivided into domains separated by the domain walls. Each
stable domain has an individual polarization direction. Therefore, on the macroscale we consider a polycrystal,
on the mesoscale domains with equal polarization directions are taken into account, whereas the microscale is
defined by the underlying unit cells of the ceramic. In the following discussion we will focus on single domains
consisting of single crystals with equal polarizations, which constitutes our mesoscopic scale by definition.
Thus, the polycrystalline behavior could be obtained via a homogenization procedure applied to the mesoscale,
which is not the focus of this paper. The main characteristics of these materials, below the Curie temperature
ϑC , are the appearance of the so-called dielectric hysteresis loops and the butterfly hysteresis loops under
applied oscillating electric fields. On the mesoscopic level we observe a switching of the polarization vector
due to electrical and mechanical loads; the electrical loading can induce a 180◦ or 90◦ (ferroelectricity) and a
mechanical loading can induce a 90◦ domain switching (ferroelasticity). In the ferroelectric phase a relative
displacement of the centers of gravity of the positive and negative charge carriers at the microscopic level
gives rise to polarization. Thus the ferroelectric ceramics possess a so-called remanent polarization P r even
when no external electrical field is applied. In some materials there could exist a striking difference between
the spontaneous Ps and the remanent polarization, see Fig. 1, in contrast to ideal perfect crystals (they would
possess Ps = P r ) or materials with free dipoles (e.g., water). This difference is the outcome of defects such
as dislocations and impurities.
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Fig. 1 Characteristic behavior in the ferroelectric phase ϑ < ϑc

In recent years a variety of microscopically and thermodynamically motivated constitutive models for
the description of ferroelectric ceramics have been proposed in the literature. A general framework of the
electrodynamics of continua within the scope of finite strains is presented in detail in [10] and [11]; in this
context see also the extensive list of references therein. Chen and Tucker [8] proposed a one-dimensional
(1D) model for the calculation of the typical hysteresis loop as a consequence of domain switching due to
applied oscillating electric fields, neglecting cross-couplings between polar and lateral effects. The essential
ingredient is a rate law for the effective number of aligned dipoles, depending on the external electric field
(and the mechanical strains). In this context see also [7]. A framework for the development of phenomenolog-
ical constitutive laws at the macroscopic scale is presented in [27]. Experimental results of polarization and
depolarization of lead lanthanum zirconate titanate (PLZT) can be found, e.g., in [12]. The authors propose a
heuristic hysteresis model, applicable for ferroelectric and ferroelastic switching, and perform a Reuss-type
averaging technique in order to approximate the overall behavior of a polycrystalline specimen.

A three-dimensional (3D) switching model for the simulation of polycrystalline ferroelectric ceramics is
proposed in [13]. In the latter works an energy-based switching criterion with combined electrical and mechan-
ical contributions is used. An expansion of these works, suitable for finite-element calculations, is given in
[14,15]. A 1D phenomenological constitutive model for ferroelectric materials has been proposed in [17],
which has been extended to a 3D model in [18]. A thermodynamically consistent formulation of the electro-
mechanical hysteresis can be found in [1–4]. In these contributions concepts of phenomenological plasticity
theory, including yield surfaces and isotropic and kinematic hardening based on the Helmholtz free energy,
are used. Based on these concepts several approaches for thermodynamically motivated constitutive laws of
ferroelectric ceramics have been developed.

A constitutive model based on microscopically motivated internal variables is proposed in [20], where
depolarization effects have also been taken into account. A multiaxial thermodynamically consistent reali-
zation of the description of ferroelectric ceramics is presented in [21] (see also [9]), where the postulated
switching surfaces and associated flow rules guarantee a positive dissipation during switching. A simplified
formulation of this approach, which reduces the number of the internal variables, can be found in [28]. An
overview concerning the development of the modeling of ferroelectrics can be found in [19]. Furthermore,
the physical background, physical observations, and aspects of the complex behavior of ferroelectrics as well
as the fatigue in such ceramics is reported in the review article [26]. It should be remarked that for some
rate-independent ferroelectric models quite general conditions, which guarantee the existence of solutions,
have recently been provided in [29].

In this contribution we describe the complex electromechanical behavior of ferroelectric materials with
an oriented internal structure and with tensor-valued functions governed by basic and mixed invariants based
on the concept of structural tensors. The advantage of such formulations is that general invariant forms of
the constitutive equations lead to rational strategies for the modeling of the complex anisotropic response
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functions. In addition, an efficient framework qualified for the implementation of arbitrary nonlinear response
functions is obtained. Here we are mainly interested in the formulation of a mesoscopic model, where the ori-
entations of the assumed transversely isotropic unit cells have to be taken into account. Therefore, we present
a thermodynamically consistent model for transversely isotropic ferroelectric materials within the framework
of the invariant theory, based on the coordinate-invariant formulations proposed in [31]. The invariant forms
of the stress response function and the electric displacement function are derived from a scalar-valued free
electromechanical enthalpy function. The proposed formulation can be applied to a variety of model problems
for the simulation of the material behavior with irreversible (nonlinear) characteristics. These invariant forms
satisfy the symmetry relationships of the considered body for the mechanical and electrical quantities a priori,
i.e., they are automatically invariant under coordinate transformations of elements of the material symmetry
group.

2 Governing equations of electromechanical BVP

2.1 Strong forms of electromechanical BVP

Let B ⊂ IR3 be the body of interest that is parameterized in x. Furthermore, let u be the displacement field.
The basic variables are the linear strain tensor, which is defined by the symmetric part of the displacement
gradient, and the electric field vector E, given by the negative gradient of the scalar potential φ:

ε(x) := 1
2 (grad[u] + gradT [u]) and E(x) := −grad[φ] . (1)

The governing field equations for the quasistatic case are the equation of equilibrium and the Gauss equation

div[σ ] + f̄ = 0 and div[D] = ρf , (2)

respectively. Here σ represents the symmetric Cauchy stress tensor, f̄ is the given body force, D is the vector
of electric displacements, and ρf denotes the given density of free charge carriers. The surface of the body is
decomposed into mechanical ∂B = ∂Bu

⋃
∂Bσ and electrical parts ∂B = ∂Bφ

⋃
∂BD , with ∂Bu

⋂
∂Bσ = ∅

and ∂Bφ

⋂
∂BD = ∅. An illustration of this decomposition is depicted in Fig. 2a, b, where the vector a should

suggest that there exists a preferred direction of the material due to its anisotropic behavior, see Sect. 3.1.
The boundary conditions for the displacements, the surface tractions t̄ , the electric potential, and the electric

surface charge q̄ are defined by

u = ū on ∂Bu and t = t̄ = σ · n on ∂Bσ ,

φ = φ̄ on ∂Bφ and − q = −q̄ = D · n on ∂BD ,
(3)

where n is a unit vector normal to the surface directed outward from the volume.

Fig. 2 Decomposition of the surface of the considered body ∂B into a mechanical ∂Bu

⋃
∂Bσ and b electrical ∂Bφ

⋃
∂BD parts
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2.2 Weak forms of electromechanical BVP

In this section we summarize the basic steps for the derivation of the discrete weak forms needed for the numer-
ical treatment of the coupled field equations within the Finite Element Method. This leads in the proposed
framework to a symmetric formulation with no principal restrictions due to possible nonlinearities formulated
in terms of the polynomial basis. The central field equations for electromechanical coupled solids are the bal-
ance of momentum (2)1 and the Gauss law (2)2. The boundary conditions for the displacements, the surface
tractions, the electric potential, and the electric charge are defined in (3). A standard Galerkin procedure yields
the weak forms of the governing field equations. The required test functions are denoted by δu and δφ. They
satisfy the homogeneous boundary conditions, i.e. δu = 0 on ∂Bu and δφ = 0 on ∂Bφ . Furthermore, we
introduce the fields δε := 1

2 (grad[δu] + gradT [δu]) and δE := grad[δφ]. With these definitions we arrive at
the weak forms

Gu := Gint
u − Gext

u = 0 with Gint
u :=

∫

B
δε : σ dv ,

Gφ := Gint
φ − Gext

φ = 0 with Gint
φ :=

∫

B
δE · D dv .

(4)

The external parts Gext
u and Gext

φ contain the given body force, the surface tractions, and the electric surface
charge at the boundary, i.e.

Gext
u :=

∫

∂Bσ

δu · t̄ da +
∫

B
δu · f̄ dv and Gext

φ := −
∫

∂BD

δφ q̄ da . (5)

A spatial discretization of the body with nele finite elements, i.e. B ≈ ⋃n
e=1 Be, leads to Gu ≈ ⋃n

e=1 Ge
u and

Gφ ≈ ⋃n
e=1 Ge

φ , where Ge
u,φ represents the weak forms of the associated balance laws for a typical finite ele-

ment Be. A standard approximation of the actual and virtual displacement fields uh = Nde and δuh = Nδde

yields

εh := Bede and δεh := Beδde , (6)

where N denotes the matrix representation of the ansatz functions and {de, δde} denote the actual and vir-
tual node displacements of a typical element. Furthermore, for the individual electrical fields we obtain with
φh = N�e and δφh = Nδ�e the expressions

Eh := −B̃
e
�e and δEh := B̃

e
δ�e , (7)

where {�e, δ�e} denote the actual and virtual nodal electric potentials of an element. The matrices Be and
B̃

e
contain the positive derivatives of the ansatz functions associated to the strains and the electric field,

respectively. With the above approximation we obtain the discrete forms

Ge,int,h
u := δde,T

∫

Be

Be,T σ dv , Ge,ext,h
u := δde,T

[∫

∂Be
σ

NT t̄ da +
∫

Be

NT f̄ dv

]

,

G
e,int,h
φ := δ�e,T

∫

Be

B̃
e,T

D dv , G
ext,h
φ := δ�e,T

∫

∂Be
D

−NT q̄ da .

(8)

For the solution of the discrete counterparts of the coupled, nonlinear weak forms we apply a Newton itera-
tion scheme. This results in rather lengthy expressions that are not within the scope of this contribution. An
alternative approach based on a vector-potential formulation of the electric displacements is given in [22].

3 Coordinate-invariant thermodynamic formulation

3.1 Concept of structural tensors

Let us now assume the existence of a thermodynamic potential that acts as an electric enthalpy function H . For
the explicit formulation of coordinate-invariant constitutive equations the representations of isotropic tensor
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functions are used. The governing equations have to represent the material (geometrical and physical) symme-
tries of the ceramic; the material symmetry group is denoted by Gt i . Thus, the values of the enthalpy function
have to be scalar invariants under all transformations Q ∈ Gt i of the set of tensor variables involved in the
scalar-valued function, i.e.,

Ĥ (ε, E, ξ) = Ĥ (QεQT , QE, Q ∗ ξ) ∀ Q ∈ Gt i , (9)

where ξ denotes the set of internal tensor-, vector-, and scalar-valued internal variables. The operator (Q∗)
characterizes the transformation of these variables. Let T be a tensor of second order, v a vector, and α a scalar;
then we get Q ∗ T = QT QT and Q ∗ v = Qv, as well as Q ∗ α = α, respectively. The transformation
of higher-order tensorial quantities is self-explanatory. The invariance group Gt i of the electromechanically
coupled solid can be obtained by the so-called principle of the superposition of symmetries, also known as the
Curie symmetry principle, see Fig. 3. The principle states that the overall symmetry group of several objects
is the highest common symmetry subgroup of these objects under consideration of the mutual orientations of
their individual symmetry elements. It is given by

Gt i = {Q ∈ O(3), Qa = a} , (10)

see [24] and [31]. The main idea of the invariant theory is the extension of the Gt i-invariant functions (9)
to functions that are invariant under a larger group of transformations, particularly under all elements of the
orthogonal group O(3). For the invariant formulation of the thermodynamic potential we introduce an addi-
tional tensor, the preferred direction a, which can be interpreted as a first-order structural tensor. Using the
so-called principle of isotropy of space, see e.g., [5], we get the representation

Ĥ (ε, E, ξ , a) = Ĥ (QεQT , QE, Q ∗ ξ , Qa) ∀ Q ∈ O(3) . (11)

Equation (11) is the definition of an isotropic tensor function with respect to the whole set of tensorial argu-
ments {ε, E, ξ , a} and has to be interpreted as an anisotropic function with respect to the arguments {ε, E, ξ},
i.e.

Ĥ (ε, E, ξ , a) = Ĥ (QεQT , QE, Q ∗ ξ , a) ∀ Q ∈ Gt i . (12)

The enthalpy function can be formulated in the basic and mixed invariants of the whole argument list because
(11) is an isotropic tensor function. For the derivation of an integrity basis, the minimal number of independent
invariants, we refer the reader to [5,24,34–37] and the references cited therein.

It should be noted that the relation between the symmetry of a crystal and the symmetry of its physical
properties is established by Neumann’s principle, i.e. the symmetry elements of any physical property of a
crystal must include the symmetry elements of the point group of the crystal. As a consequence of the chosen
material symmetry group, see (10), the polarization direction is fixed in our model and no ferroelasticity and
mechanical depolarization can occur. Due to the chosen anisotropy class, which is characterized by only one
preferred direction a, the proposed mesoscopic model cannot describe the behavior of a polycrystal.

α

_

_

Fig. 3 Illustration of the principle of superposition of symmetries. a Invariance of the mechanical part with respect to ±a.
b Polarization of the electrical part due to the distance between the centers of gravity of the positively and negatively charged
particles within a unit cell constitutes invariance with respect to +a
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3.2 Additive decomposition of strains and electric displacements

One of the basic assumptions in the proposed model is the often-used additive decomposition of the strain
tensor ε and the vector of electric displacements D into their reversible {εe, De} and remanent parts {εr , P r}:

ε = εe + εr and D = De + P r . (13)

Consequently, we choose for the set of internal variables in (11) the remanent quantities, i.e. ξ := {εr , P r} →
Q ∗ ξ = {QεrQT , QP r}. The observable variables are the total strains ε and the electric field E, whereas
the remanent quantities describe the internal state of the material and a reflects the internal orientation of the
polarized material. Disregarding thermal effects the second law of thermodynamics yields

D = σ : ε̇ − D · Ė − Ḣ ≥ 0 . (14)

The evaluation of the dissipation inequality leads to the expression

D = (σ − ∂εH) : ε̇ − (D + ∂EH) · Ė − ∂εr H : ε̇r − ∂P
r H · Ṗ

r ≥ 0 . (15)

This inequality has to be fulfilled for all possible thermodynamic processes; thus we obtain the following
constitutive equations for the stresses and electric displacements:

σ = ∂εH and D = −∂EH , (16)

respectively. For the thermodynamic forces associated to the remanent quantities we introduce the abbreviations

σ̃ := −∂εr H and Ẽ := −∂P
r H , (17)

which lead to the reduced dissipation inequality

D = σ̃ : ε̇r + Ẽ · Ṗ
r ≥ 0 . (18)

To describe the evolution of the remanent variables, the existence of a dissipation potential is assumed. This
is expressed as a continuous, convex scalar-valued function of the flux variables ε̇r and Ṗ

r
, in this context see

e.g., [23,21,28]. Applying a Legendre–Fenchel transformation leads to a corresponding potential that can be
formulated in terms of the dual quantities. Let us now introduce a switching surface � in terms of the dual
variables σ̃ and Ẽ, with

�(σ̃ , Ẽ) ≤ 0 . (19)

Applying the principle of maximum remanent dissipation, a generalization of the principle of maximum dis-
sipation, we construct the Lagrangian functional

L(σ̃ , Ẽ, λ) = −D(σ̃ , Ẽ) + λ�(σ̃ , Ẽ) , (20)

with the Lagrange multiplier λ. The optimization conditions, see e.g., [25],

∂σ̃ L = 0 , ∂
Ẽ

L = 0 , ∂λL = 0 , (21)

lead to the associated flow rules of the remanent variables

ε̇r = λ∂σ̃ �(σ̃ , Ẽ) and Ṗ
r = λ∂

Ẽ
�(σ̃ , Ẽ) (22)

and the loading/unloading conditions λ ≥ 0, �(σ̃ , Ẽ) ≤ 0, and λ�(σ̃ , Ẽ) = 0. It should be noted that the
normality rule is sufficient to satisfy the second law of thermodynamics.
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4 Model problem: transversely isotropic ferroelectric crystal

4.1 Polynomial basis

Hilbert’s theorem postulates that, for a finite set of vectors and tensors, an integrity basis consisting of a finite
number of invariants exists. In order to formulate the electric enthalpy function, we need this finite set of
invariants, which builds the so-called polynomial basis. In the following discussion we are not interested in
the derivation of the whole basis and refer the reader to [5] and [6] and references therein for an introduction
to the invariant formulation of anisotropic constitutive equations and the representations for tensor functions.
For detailed representations of scalar- and tensor-valued functions we refer to [36] and [37] and to the works
[32,33]; see also [34,35]. In the context of electromechanical coupled systems see [31]. The finite set of
vectors and tensors is given by the symmetric tensors ε, εr , the vectors E, P r and the preferred direction a
with ||a|| = 1. With the normalization condition for a, which induces trace[(a ⊗ a)n] = 1 for n = 1, 2, 3, the
basic and mixed invariants of interest in the proposed model are

I1 := trace[ε − εr ], I2 := trace[(ε − εr )2], I4 := trace[(ε − εr )(a ⊗ a)],

I5 := trace[(ε − εr )2(a ⊗ a)], J1 := trace[(E ⊗ E)], J2 := trace[(E ⊗ a)],

K1 := trace[(ε − εr )(E ⊗ a)], N̄P := trace[(P r ⊗ a)] .

(23)

Here J2 represents the projection of the electric field and K1 the projection of (ε − εr ) · E onto the preferred
direction. For a graphical interpretation of this invariants, see Fig. 4.

The enthalpy function H is formulated in terms of the elements of the polynomial basis

H = H(I1, I2, I4, I5, J1, J2, K1, N̄
P ) =: H(Li |i = 1, . . . 8) , (24)

which is invariant under all transformations Q ∈ O(3). Of course, polynomial functions in elements of the
polynomial basis are also invariant under these transformations.

4.2 Thermodynamic potential

In the framework discussed above we now construct a specific model problem. In this model the underlying
thermodynamic potential is divided into five parts and given by

H = H1(ε, εr ) + H2(E) + H3(ε, εr , E, N̄P ) + H4(E, N̄P ) + H5(N̄
P ) . (25)

The first one is a pure mechanical part and therefore expressed by the basic and mixed invariants in ε, εr , and
a. Here we choose a quadratic function in the basic and mixed invariants associated to the mechanical strains
because we are interested in a linear relation between the stresses and the reversible strains; thus we obtain

H1 = 1

2
λI 2

1 + µI2 + α1I5 + α2I
2
4 + α3I1I4 , (26)

Fig. 4 Graphical interpretation of invariants a J2 and b K1
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where the set of coefficients {λ, µ, α1, α2, α3} specifies the mechanical material properties. A pure electrical
part with the corresponding material properties {γ1, γ2} is given by

H2 = γ1J1 + γ2J
2
2 , (27)

which represents a quadratic function in the electric field strength, in order to reflect a linear constitutive
relation for the electric displacements and the electric field for the dielectric part. The coupling between the
mechanical and electrical part, known as piezoelectricity, is defined by

H3 = [β1I1J2 + β2I4J2 + β3K1]
1

Ps

N̄P =: ω N̄P , (28)

with the piezoelectric material properties {β1, β2, β3}. In order to arrive at a comprehensive notation in (28)
we introduce the abbreviation ω. Here the bracketed term characterizes the linear piezoelectric response. In
experiments we observe a so-called poling process in which the spontaneous polarization vectors of the unp-
oled specimen are more or less aligned. This process is governed by the evolution of the remanent polarization.
Thus, it becomes apparent that this coupling effect is assumed to be increasing with an increasing remanent
polarization until a saturation value, given by the maximum achievable polarization Ps , is reached. The terms
H4 and H5 with

H4 = −J2 N̄P and H5 = f (N̄P ) (29)

take into account the remanent polarization of the material, where the function f (N̄P ) governs the form of
the dielectric hysteresis curve. This function f (N̄P ) is the antiderivative of a function representing the depen-
dency between the polarization and the effective electric field. Motivated by fundamental concepts of statistical
mechanics in combination with self-consistency schemes, for some remarks see e.g., [38], we choose

f (N̄P ) = 1

c

[

N̄P Artanh

(
N̄P

Ps

)

+ 1

2
Ps ln

(

1 −
(

N̄P

Ps

)2
)]

. (30)

Based on the constitutive expressions given in (16) the explicit form of the stresses and electric displacements
appear with

σ = ∂εĤ =
8∑

i=1

∂Ĥ

∂Li

∂Li

∂ε
and D = −∂EĤ = −

8∑

i=1

∂Ĥ

∂Li

∂Li

∂E
(31)

for the specific model problem (25) as follows:

σ = (λI1 + α3I4)1 + 2µε + α1[a ⊗ εa + aε ⊗ a] + (2α2I4 + α3I1)a ⊗ a

+[β1J21 + β2J2a ⊗ a + 1

2
β3(E ⊗ a + a ⊗ E)]

1

Ps

N̄P ,

D = −2γ1E − 2γ2J2a − [(β1I1 + β2I4)a + β3aε]
1

Ps

N̄P + P r .

(32)

Here P r = −∂H4/∂E = N̄P a is the remanent polarization with respect to the polarization axis. For the
corresponding moduli in the linear piezoelectric range, where H4 and H5 are neglected and N̄P is set to the
maximum value of polarization Ps , we introduce the abbreviations

C := ∂εσ , e := ∂εD = −(∂Eσ )T and ε := ∂ED . (33)

An identification of the material parameters that are used in this coordinate-independent formulation is given in
the Appendix, where the classical representation of the parameters is compared with the invariant formulation
taking into account the aforementioned restrictions for the piezoelectric range.
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4.3 Switching surface

The time derivative of the thermodynamic potential (25) yields

Ḣ = ∂εH : ε̇ + ∂εr H : ε̇r + ∂EH · Ė + ∂N̄P H · ˙̄NP

= (∂εH1 + ∂εH3) : ε̇ + (∂εr H1 + ∂εr H3) : ε̇r

+(∂EH2 + ∂EH3 + ∂EH4) · Ė + (∂N̄P H3 + ∂N̄P H4 + ∂N̄P H5) · ˙̄NP ,

(34)

and the evaluation of the second law of thermodynamics leads, for the specific model problem (25) with (32),
to the reduced dissipation inequality

−(∂εr H1 + ∂εr H3)︸ ︷︷ ︸

σ̃

: ε̇r −(∂N̄P H3 + ∂N̄P H4 + ∂N̄P H5)︸ ︷︷ ︸

Ẽ

· ˙̄NP ≥ 0 . (35)

We recast this formulation according to (17) in σ̃ : ε̇r + Ẽ · ˙̄NP ≥ 0. Following [28] we use the constitutive
relation

εr = εr
a

P 2
s

dev(P r ⊗ P r ) , (36)

where εr
a characterizes the maximum achievable remanent strain due to polarization in the direction of the

polarization axis. This quadratic relationship between the remanent polarization and strains is a commonly
reasonable assumption, when the electric fields are strong and the stresses are small, see e.g., [16]. Thus, the
reduced dissipation inequality appears in the form

Ẽ · ˙̄NP ≥ 0 , (37)

and the remaining evolution equation for the internal variable N̄P , following the outline in Sect. 3.2, is

˙̄NP = λ∂Ẽφ = λñ . (38)

As a simple choice for the switching criterion we specify

� = Ẽ2 − E2
c ≤ 0 , (39)

with the coercive field strength Ec. The quantity Ẽ is decomposed into Ẽ = E − EB , with

E := −∂N̄P H4 = J2 and EB := ∂N̄P H3 + ∂N̄P H5 , (40)

the projection of the electric field in the preferred direction and the so-called back electric field, respectively.
Now the switching criterion appears in the explicit form

� = (E − EB)2 − E2
c = (J2 − EB)2 − E2

c ≤ 0 . (41)

Let us now consider a typical time interval [tn, tn+1] and denote the quantities (•) at time tn+1 with (•)n+1 and
at time tn with (•)n. Due to the given variational formulation of the finite element in the basic quantities E
(and ε), J2,n+1 is fixed in the actual iteration step. Thus, for the loading case � = 0, (41) can be solved with
respect to the back electric field, i.e.

EB
n+1 = J2,n+1 + Ec if J2,n+1 < J2,n

EB
n+1 = J2,n+1 − Ec otherwise .

(42)

Taking into account the definition of EB given in (40) and the entering terms (25)–(30), we obtain an implicit
function for the projection of the remanent polarization in the preferred direction

EB
n+1 = ω + f ′ (N̄P

n+1

)
with f ′(N̄P

n+1) = 1

c
Artanh(

N̄P
n+1

Ps

) . (43)

Applying a backward Euler approximation scheme to the evolution Eq. (38) yields the update formula

N̄P
n+1 = N̄P

n + �λñn+1 with �λ := �t λ (44)

and �t = tn+1 − tn. The unknown parameter �λ can be obtained by solving (43)1, where the left-hand side is
given by (42). This straightforward procedure for the calculation of the remanent polarization N̄P results from
the fact that the switching criterion is formulated in the basic variable E := −grad[φ] of the finite-element
approximation.
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5 Numerical examples

5.1 Homogeneous bar

In this example we point out the characteristic hysteresis loops for a ferroelectric crystal. We consider a simply
supported bar of length l = 2 mm and height h = 1 mm that is discretized with two four-node standard
displacement/electric potential elements. At the left edge the electric potential is set to zero, whereas a time-
varying electric potential φ(t) at the right edge is prescribed. In Fig. 5a the system with the corresponding
boundary conditions and the relative distribution of the electric potential is given for φ(t) = 0. Figure 5b
depicts the variation of the electric field versus time.

The material parameters used in this example are chosen in accordance with that found in [16] for single-
crystal barium titanate. The material parameters for the elastic stiffness tensor are set to

C11 = 166 , C12 = 76.6 , C13 = 77.5 , C33 = 162 , C44 = 42.9 (45)

in units of 103 N/mm2. The components of the piezoelectric tensor are chosen to be

e31 = −4.4 , e33 = 18.6 , e15 = 11.6 (46)

in units of 10−3 N/Vmm. The parameters for the dielectric tensor are set to

κ11 = 1260 · ε0 = 1.12 , κ33 = 1420 · ε0 = 1.26 (47)

in units of 10−11 C/Vmm, where ε0 = 8.854 × 10−15C/Vmm is the permittivity of free space. The conversion
of the elastic (45), piezoelectric (46), and dielectric (47) parameters into those used for the coordinate-invariant
formulation are given in the Appendix. At a temperature of approximately 25◦C one can find the following
corresponding values for the maximum achievable polarization Ps and the coercive field Ec:

Ps = 26 × 10−8C/mm2 ; Ec = 1000 V/mm . (48)

For the maximum remanent strain along the polarization direction that is introduced in (36) we choose εr
a =

0.001, where the preferred direction a points along the center line of the bar from the fixed to the mobile
boundary. Once the switching criterion (39) is identically fulfilled, i.e. the coercive field Ec is reached and
therefore � = 0, the evolution of the remanent quantities P r and εr is initiated, controlled by function (30).
The maximum value of the remanent polarization is Ps , and the slope of the hysteresis curves is governed by
the parameter c. The calculated hysteresis loops for a simply supported bar under a cyclic varying electric field,
see Fig. 5, are given in Fig. 6, for different parameters c. It is observable that, with an increasing parameter c,
the hysteresis loops are similar to hysteresis loops exhibited by an ideal crystal, see e.g., [38].

a

b

Fig. 5 a Boundary conditions and relative distribution of the electric potential, and b variation of electric field versus time
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a

b

c

Fig. 6 Hysteresis curves for a c = 0.002, b c = 0.008, and c c = 0.04

5.2 Square plate with a notch

In the following example we consider a square plate, with dimensions of 20 × 20 mm and a centered notch,
length 12 mm and a maximum height of 0.4 mm in the middle. Due to the symmetry of the plate, only a
quarter of the specimen is discretized with 1960 four-node standard displacement/electric potential elements.
The unreleased regions of the right and lower edge of the specimen are fixed in an upright direction to the
corresponding edge, whereas at the lower edge the electric potential is additionally set to zero, see Fig. 7. At the
upper edge we prescribe a time-varying electric potential φ(t) similar to the loading depicted in Fig. 5b. For the
maximum value of φ(t = 1 s) = −φ(t = 3 s) we choose −100 kV. The vector a points in the vertical direction
and the parameter c is set to 0.0002. For the mechanical, dielectric, and piezoelectric material parameters as
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Fig. 7 Square plate with a notch, geometry and boundary conditions

a b

dc

Fig. 8 Distribution of φ(t) for a t = 1.0 s and c t = 3.0 s. Distribution of P r · a/Ps for b t = 1.0 s and d t = 3.0 s

well as for the saturation value of polarization and the coercive field strength, we choose the same values as in
the first example. The distribution of φ and the associated normalized values of the remanent polarization in
the preferred direction are depicted in Fig. 8 for t = 1 s and t = 3 s, respectively.
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6 Conclusions

We have proposed a fully electromechanical coupled formulation for an assumed transversely isotropic ceramic
suitable for the modeling of the characteristic dielectric and butterfly hysteresis loops. Based on tensor represen-
tation theorems and applying the concept of isotropy of space, the thermodynamic potential acts as an isotropic
tensor function. This has been formulated in terms of basic and mixed invariants of the total strains, remanent
strains, electric field, remanent polarization, and a first-order structural tensor. In this coordinate-invariant set-
ting the constitutive laws fulfill automatically the material symmetry requirements of the anisotropic material.
Evaluating the second law of thermodynamics leads to constitutive expressions for the stresses and electric
displacements. Furthermore, the reduced dissipation inequality is enforced by the assumed switching surface,
which yields, applying the postulate of maximum remanent dissipation, associated flow rules for the remanent
quantities. For the remanent strains we have chosen the often-used constitutive assumption—in the case of
strong electric fields and small stresses—that this quantity is proportional to the deviatoric part of the dyadic
product of the remanent polarization. The evolution of the remanent polarization is governed by a quadratic
switching surface, and the slope of the hysteresis curves are described by an implicit function. The underlying
computational framework allows a straightforward (simple) calculation of the remanent polarization vector
because the basic electrical field quantity of the finite-element approximation and that entering the switching
surface are the same.

A Identification of material parameters

The classical constitutive equations for the stress tensor σ and the electric displacement field D of a piezo-
electric solid are given by

σ = C : ε − eT · E and D = e : ε + ε · E , (49)

see, e.g. [30]. Here C denotes the fourth-order elasticity tensor, e the third-order tensor of piezoelectric moduli,
and ε the second-order tensor of dielectric moduli. In the considered case of transverse isotropy there exist
five elastic constants, three piezoelectric constants, and two dielectric constants, due to the restrictions on the
linearly independent constants, induced by the symmetry group. If the preferred direction a coincides with the
x3-axis, the coordinate-dependent representation of the mechanical moduli in the case of transverse isotropy
is given by

C =










C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 1

2 (C11 − C12) 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44










, (50)

with five independent constants. The matrix notation follows from the index arrangement for the stresses
σ := (σ11, σ22, σ33, σ12, σ23, σ13)

T and the arrangement for the strains ε := (ε11, ε22, ε33, 2ε12, 2ε23, 2ε13)
T .

Furthermore, the matrix representation for the piezoelectric and dielectric constants yields

e =



0 0 0 0 0 e15
0 0 0 0 e15 0

e31 e31 e33 0 0 0



 and ε =



ε11 0 0
0 ε11 0
0 0 ε33



 , (51)

with three independent piezoelectric and two independent dielectric constants. A comparison of the parameters
used for the invariant formulation (32) with the coordinate-dependent formulation given above leads for the
mechanical properties to

λ = C12 , µ = 1
2 (C11 − C12) , α1 = 2C44 + C12 − C11 ,

α2 = 1
2 (C11 + C33) − 2C44 − C13 , α3 = C13 − C12 ,

(52)
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for the piezoelectric properties to

β1 = −e31 , β2 = −e33 + 2e15 + e31 , β3 = −2e15 (53)

and for the dielectric properties to

γ1 = −ε11/2 , γ2 = 1
2 (ε11 − ε33) . (54)

For more details we refer the reader to [31].
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