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Abstract Creep strength of welded joints can be estimated by continuum damage mechanics. In this case con-
stitutive equations are required for different constituents of the welded joint: the weld metal, the heat-affected
zone, and the parent material. The objective of this paper is to model the anisotropic creep behavior in a weld
metal produced by multipass welding. To explain the origins of anisotropic creep, a mechanical model for
a binary structure composed of fine-grained and coarse-grained constituents with different creep properties
is introduced. The results illustrate the basic features of the stress redistribution and damage growth in the
constituents of the weld metal and agree qualitatively with experimental observations. The structural analysis
of a welded joint requires a model of creep for the weld metal under multiaxial stress states. For this purpose the
engineering creep theory based on the creep potential hypothesis, the flow rule, and assumption of transverse
isotropy is applied. The outcome is a coordinate-free equation for secondary creep formulated in terms of the
Norton–Bailey–Odqvist creep potential and three invariants of the stress tensor. The material constants are
identified according to the experimental data presented in the literature.

Keywords Weld metal · Multipass welding · Anisotropic creep

1 Introduction

For many structures designed for high-temperature applications, e.g., piping systems and pressure vessels, an
important problem is the assessment of creep strength of welded joints. The lifetime of the welded structure
is primarily determined by the behavior in the local zones of welds, where time-dependent creep and damage
processes dominate. Different types of creep failure that have occurred in recent years are discussed in [29],
for example. The design of welded structures and their residual-life estimations require engineering mechanics
models that would be able to characterize creep strains, stress redistributions, and damage evolution in the
zones of welds.

A weld is usually considered as a metallurgical notch. The reason for this is the complex microstructure
in the weld metal itself and in the neighboring heat-affected zone. In recent years many research activities
have been directed to the study of welded joints. First, theoretical and experimental analyses have addressed
the welding process with the aim of predicting the formation of the microstructure of the welds and ana-
lyzing residual stresses [7]. Second, the behavior of welded joints under mechanical and thermal loadings
was investigated [21]. Here one must consider that the stress–strain response at room temperature is quite
different for the weld metal, the heat-affected zone, and the base metal (parent material), particularly if they
are loaded beyond the yield limit. At elevated temperatures quite different inelastic strain versus time curves
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Fig. 1 Typical microstructure of a welded joint and material behavior

can be obtained in different zones even in the case of a constant moderate load. Figure 1 illustrates zones with
different microstructures and the variation in material behavior within the weld.

The results of creep testing of cross-weld specimens [19,20] and specimens with a simulated microstruc-
ture [24,25,30,31] show significant variation in creep properties in different material zones within the weld.
Furthermore, they illustrate that the intercritical region of the heat-affected zone is the weakest part of the weld
with respect to creep properties. The material with the heat-affected zone microstructure usually exhibits the
highest creep rate and the shortest time to failure compared to other material zones within the weld for the
same load and temperature.

For thick and moderately thick cross sections multipass welding is usually preferred, where many stringer
beads are deposited in a defined sequence. As a result of heating and cooling cycles during the welding process,
a complex bead-type microstructure of the weld metal is formed, where every single bead consists of colum-
nar, coarse-grained, and fine-grained regions, e.g., [21]. The results of uniaxial creep tests for the weld metal
9CrMoNbV are reported in [18]. They show that the creep strain versus time curves differ significantly for
specimens removed from the weld metal in the longitudinal (welding) direction and the transverse direction.
Furthermore, different types of damage were observed for the longitudinal and the transverse specimens.

One possibility for studying the creep behavior in structures is the use of continuum damage mechanics,
e.g., [3,4,16]. The application of this approach to welded joints is discussed in [15,17,21], for example. Here
the weld is considered a heterogeneous structure composed of at least three constituents—the weld metal,
the heat-affected zone, and the parent material—with different creep properties. Constitutive and evolution
equations that are able to reflect experimental data of primary, secondary, and tertiary creep in different zones
of the welded joint are presented in [14,15,17,21,30], among others. The results of finite-element simulations
illustrate stress redistributions, creep strains, and damage evolution in different zones of the weld [14,15,17,
21]. Furthermore, they allow one to analyze the influence of numerous factors such as weld dimensions, types
of external loading, and material properties on the creep behavior of welded structures, e.g., [21]. However, as
far as we know, the anisotropic creep of multipass weld metals has not been considered.

The objective of this paper is the phenomenological modeling of the anisotropic creep behavior of a
multipass weld metal. To explain the origins of anisotropic creep, we introduce first a uniaxial model for
a binary structure composed of fine-grained and coarse-grained constituents with different creep properties.
This model illustrates the basic features of the stress redistribution and damage growth in the constituents of
the weld metal. The structural analysis of a welded joint would require a model of creep for the weld metal
under multiaxial stress states. For this purpose we apply the engineering creep theory, which is based on the
creep potential hypothesis, the flow rule, and internal state variables, e.g., [9]. The response functions and the
material constants are identified for the experimental data presented in [18].
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Fig. 2 Microstructure of the weld metal (after [21])

2 Origins of anisotropic creep

A weld bead produced by a single-pass welding has a columnar solidification microstructure. During multipass
welding many weld beads are deposited in the groove according to a defined sequence. As a subsequent weld
bead is laid, the part of the metal produced in previous cycles is subjected to local reheating and cooling. As
a result, the weld beads consist of columnar, coarse-grained, and fine-grained microstructural zones [18,21].
A sketch of the typical microstructure of a multipass weld metal is presented in Fig. 2. This microstructure
depends on many factors of the welding process, such as bead size, travel speed, build-up sequence, interpass
temperature, and type of postweld heat treatment [18]. The resulting inelastic material behavior will be appar-
ently determined by the distribution and size of columnar, coarse-grained, and fine-grained zones as well as
residual stresses in the weld metal. It is well established that creep behavior is very sensitive to the type of
microstructure and, in particular, to the grain size. Experimental data illustrating the significant influence of
grain size on creep behavior are presented for copper in [22] and for various types of steel in [24,30,31]. The
grain-size dependence is explained in materials science by two creep mechanisms: grain boundary sliding and
grain boundary diffusion. These mechanisms operate under moderate loading and within a temperature range
of 0.5 < T/Tm < 0.7, where Tm is the melting temperature, e.g., [26]. The principal damage mechanism is
the nucleation and growth of voids on grain boundaries. Many experimental observations show that the finer
the grain structure, the higher the secondary creep rate and the higher the damage rate for the same loading
and temperature conditions.

To discuss the origins of the anisotropic creep in a weld metal let us consider a uniaxial model of a binary
structure composed of constituents with different creep properties. In what follows let us term the first constit-
uent fine-grained or creep-weak and the second one coarse-grained or creep-strong. Let us describe the creep
behavior of constituents by use of the Kachanov–Rabotnov model (e.g., [23]):

ε̇cr = aσn

(1 − ω)n
, ω̇ = bσ k

(1 − ω)l
. (2.1)

Here εcr is the creep strain; σ is the stress; 0 ≤ ω < 1 is the phenomenological damage parameter; a, b, n,
k, and l are material constants; and the dot denotes the time derivative. Equations (2.1) ignore the primary
creep and describe only the secondary and tertiary creep stages. For ω = 0 the minimum creep rate equation
ε̇cr

min = aσn follows from (2.1). The material constants a and n are usually determined from experimental data
for minimum creep rate versus stress. The time integration of (2.1) provides

t∗ = 1

(l + 1)bσ k
, εcr

∗ = aσn−k

b(l + 1 − n)
, (2.2)

where t∗ is the time to fracture and εcr
∗ is the fracture strain. The material constants b, k, and l can be determined

from the long-term strength diagram, i.e., the time to fracture versus stress dependence, as well as from the
fracture strain versus stress dependence. In what follows we use the subscripts f and c for the fine-grained
and coarse-grained constituents, respectively. For the sake of simplicity we assume that the constituents have
the same value of Young’s modulus E and the same values of constants n, k, and l in (2.1). Let us introduce
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the dimensionless quantities

s = σ

σ0
, ε = ε

ε0
, εcr = εcr

ε0
, τ = t

t∗f

, (2.3)

where t∗f
is the time to fracture of the fine-grained constituent, σ0 is the reference stress, and ε0 is the elastic

strain at σ0, i.e., ε0 = σ0/E. Equations (2.1) can be formulated for two constituents as follows:






dεcr
f

dτ
= ã

sn

(1 − ωf )n

dωf

dτ
= b̃

sk

(1 − ωf )l

,






dεcr
c

dτ
= αã

sn

(1 − ωc)n

dωc

dτ
= βb̃

sk

(1 − ωc)l

, (2.4)

where

ã = ε∗f

(

1 − n

l + 1

)

, b̃ = 1

l + 1
, α = ε̇cr

minc

ε̇cr
minf

, β = t∗f

t∗c

.

Figure 3 illustrates creep curves obtained after integration of (2.4) for the cases n = 3, k = n + 1, l = n + 2,
ε∗f

= 5, α = 0.15, β = 0.25, and s = 1.
Let us consider a connection of constituents in parallel, as is usually the case for composite materials, e.g.,

[1,12]. In this case the strains and the strain rates can be assumed to be the same (isostrain concept):

ε ≡ εf = εc, ε̇ ≡ ε̇f = ε̇c. (2.5)

We assume that a constant load F = σ0A, Fig. 4, is applied to the binary structure, where A is the cross-sectional
area.

Specifying by Nf and Nc the internal forces in constituents so that Nf + Nc = F , we can write

σf Af + σcAc = σ0A, ηf σf + (1 − ηf )σc = σ0, ηf sf + (1 − ηf )sc = 1, (2.6)

where ηf = Af /A is the volume fraction of the fine-grained constituent. For the stresses we apply the following
constitutive equations

σf = E(ε − εcr
f ), σc = E(ε − εcr

c ). (2.7)

Fig. 3 Creep curves for constituents
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Fig. 4 Normalized stresses versus normalized time for connection of constituents in parallel

Based on (2.4)–(2.7) one can formulate a system of ordinary differential equations describing the stress redis-
tribution between constituents. With respect to the stress in the fine-grained constituent, the following equation
can be obtained:

dsf

dτ
= ā(1 − ηf )

[
α

(1 − ηf )n

(1 − ηf sf )n

(1 − ωc)n
− sn

f

(1 − ωf )n

]

. (2.8)

Equation (2.8) is numerically solved together with the evolution equations for damage parameters (2.4) and
initial conditions sf = 1, ωf = ωc = 0 providing the time variation of the stress sf . The stress sc can then be
computed from (2.6). The results are shown in Fig. 4 for the case ηf = 0.3. In addition, Fig. 5 presents creep
strains and the damage parameters in constituents as well as the creep strain of the composite εcr ≡ ε − 1. At
the beginning of the creep process the creep rate is higher in the fine-grained constituent, Fig. 5a. Therefore,
the stress in the fine-grained constituent relaxes while the stress in the coarse-grained constituent increases,
Fig. 4. If we neglect the influence of damage on the creep process, i.e., set ωf = ωc = 0 in (2.8), we obtain
the steady-state creep solution. The corresponding results are plotted in Fig. 4 by dotted lines. We observe that
the maximum value of sc and the minimum value of sf in the case of creep damage almost coincide with the
corresponding steady-state values. The steady-state solution for sf follows from (2.8) by setting ωf = ωc = 0

Fig. 5 Connection of constituents in parallel. a Normalized creep strains versus normalized time. b Damage parameters versus
normalized time
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and dsf /dτ = 0. The corresponding value for sc is obtained from (2.6). The results are

sfmin = α
1
n

1 − ηf (1 − α
1
n )

, scmax = 1

1 − ηf (1 − α
1
n )

.

We observe that these stress values are determined by the volume fraction of the fine-grained constituent ηf

and the ratio of minimum creep rates α. The stress value sc is higher than sf after the initial stress redistri-
bution. Therefore, the coarse-grained constituent exhibits the higher creep rate and the higher damage rate in
the final stage of the creep process, Fig. 5. The calculation predicts the failure initiation in the coarse-grained
constituent.

In the case of a connection of constituents in series (isostress approach) we assume

σ0 = σf = σc, εcr = ηf εcr
f + (1 − ηf )εcr

c .

The results can be obtained by integration (2.4) for sf = sc = 1. The corresponding plots of normalized creep
strains are presented in Fig. 3. The maximum creep and damage rates are now in the fine-grained constituent.
The lifetime of the binary structure is determined by the lifetime of the fine-grained constituent for the given
constant stress.

Figure 6 shows the creep curves obtained for the two considered cases of the binary structure under the
same constant load. The results of the presented model provide an analogy to the creep behavior of a weld
metal loaded in the longitudinal (welding) and transverse directions. The experimental creep curves for the
specimen removed from the weld metal in two directions are presented in [18]. They show that the transverse
specimens exhibit higher minimum creep rate. Furthermore, the creep curves for transverse specimens have a
much shorter tertiary stage and lower values of fracture strain compared to curves for specimens removed in
the welding direction. The times to rupture for the transverse specimens are much shorter than those for the
longitudinal specimens. From the results in Fig. 6 we observe that these effects are predicted by the mechanical
model of the binary structure. Furthermore, our results for the damage evolution qualitatively agree with the
results of microstructural damage observations presented in [18]. For the longitudinal specimens extensive
voids and cracks were observed in columnar and coarse-grained regions along the entire specimen length.
For the transverse specimen voids and cracks are localized near the fracture surface. The fracture surface has
fine-grained structure and the failure propagated through the fine-grained regions of the specimens.

Based on the presented results we may conclude that of the many different creep and damage mechanisms
that may operate and interact during the creep process an essential role is played by the stress redistribution
between the creep-weak and creep-strong constituents. For longitudinal specimens this mechanism leads to a
prolonged tertiary creep stage. The material behaves like a more ductile material, although the damage and
failure occur in the more-brittle creep-strong constituent.

Fig. 6 Creep curves for the binary structure in the cases of parallel and series connections of the constituents
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3 Secondary creep under multiaxial stress states

For the analysis of welded structures, a model that is able to reflect anisotropic creep in a weld metal under
multiaxial stress states must be developed. Three-dimensional models for binary or multicomponent media are
discussed within the framework of continuum mechanics (e.g., [6]). A generalization of the composite model
developed in the previous section to the multiaxial stress states would, however, require the knowledge of
creep properties of constituents under multiaxial stress states. Furthermore, creep mechanisms of interaction
between constituents, like frictional sliding, should be taken into account.

In what follows we assume the weld metal to be a quasihomogeneous anisotropic material. For a description
of creep we prefer the engineering creep mechanics approach, where the creep potential hypothesis, the repre-
sentation of tensor functions, and internal state variables, e.g., [9], are incorporated. The resulting constitutive
equations are compatible with the finite-element method and can be used in standard finite-element codes for
structural analysis purposes.

Examples of anisotropic creep behavior and related constitutive equations are presented for single-crystal
alloys in [8] and for fiber-reinforced materials in [28]. One problem of anisotropic creep modeling is that
the assumed material symmetries (microstructure symmetries) are difficult to verify in creep tests due to the
relatively large scatter of experimental data. Furthermore, the material may lose some or even all symmetries
during the creep as a consequence of hardening and damage processes. In our case the material symmetries can
be established according to the arrangement of the weld beads in the weld metal. For the structure presented
in Fig. 2 one can assume the reflection QQQ1 = III − 2mmm ⊗ mmm, the rotation QQQ2 = 2lll ⊗ lll − III , and the reflection
QQQ3 = QQQ1 ··· QQQ2 = III − 2kkk ⊗ kkk to be the elements of the material symmetry group, where III is the second rank
unit tensor and kkk, lll, and mmm are orthogonal unit vectors.

However, this material symmetry group is poor for the modeling of creep. Indeed, based on the model
discussed in the previous section, we can assume that the same creep mechanisms will operate by loading
the weld metal in the kkk- or lll-directions. Although the experimental data presented in [18] are available only
for specimens removed in the mmm- and kkk-directions, one may assume that the difference between experimental
creep curves by loading in the kkk- and lll-directions will be nonessential with respect to the usual scatter of
experimental data. Here we assume transversely isotropic creep, where the plane spanned on the vectors kkk and
lll is the quasi-isotropy plane.

Following the creep theory proposed by Odqvist [27], the creep rate tensor ε̇εεcr is defined by the creep
potential W and the flow rule

ε̇εεcr = ∂W

∂σσσ
, W = W(σσσ, T ), (3.1)

where σσσ is the Cauchy stress tensor and T is the absolute temperature. In what follows, the dependence on the
temperature will be dropped for the sake of brevity. According to the assumed symmetries, the creep potential
must satisfy the following restriction:

W
(
QQQ(ϕmmm) ··· σσσ ··· QQQT(ϕmmm)

) = W(σσσ), Q(ϕmmm) = mmm ⊗ mmm + cos ϕ(III − mmm ⊗ mmm) + sin ϕmmm × III . (3.2)

In (3.2) Q(ϕmmm) is the assumed symmetry transformation, where mmm is the constant unit vector and ϕ is the
arbitrary angle of rotation about mmm. Taking the derivative of the first equation (3.2) with respect to ϕ we obtain

dW

dϕ
= dσσσ ′

dϕ
· ·

(
∂W

∂σσσ ′

)T

= 0, σσσ ′ ≡ QQQ(ϕmmm) ··· σσσ ··· QQQT(ϕmmm). (3.3)

The derivative of σσσ ′ with respect to ϕ can be calculated by the following rules:

dσσσ ′(ϕ) = dQQQ(ϕmmm) ··· σσσ ··· QQQT(ϕmmm) + QQQ(ϕmmm) ··· σσσ ··· dQQQT(ϕmmm),

dQQQ(ϕmmm) = mmm × QQQ(ϕmmm)dϕ ⇒ dQQQT(ϕmmm) = −QQQT(ϕmmm) × mmmdϕ.
(3.4)

By inserting (3.4) into (3.3) the following partial differential equation can be obtained:

(mmm × σσσ − σσσ × mmm) · ·
(

∂W

∂σσσ

)T

= 0. (3.5)
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The set of integrals of this equation is the set of functionally independent scalar-valued arguments of the
potential W . They represent the invariants of σσσ with respect to the assumed symmetry transformation. The
characteristic system of (3.5) is the system of ordinary differential equations

dσσσ

ds
= (mmm × σσσ − σσσ × mmm). (3.6)

Any system of n linear ordinary differential equations has no more than n−1 functionally independent integrals
[13]. Since σσσ is symmetric, (3.6) is the system of six ordinary differential equations and has no more than five
functionally independent integrals. One may prove that the integrals of (3.6) are [5]

Ik = tr (σσσ k), k = 1, 2, 3, I4 = mmm ··· σσσ ··· mmm, I5 = mmm ··· σσσ 2 ··· mmm, I6 = mmm ··· σσσ 2 ··· (mmm × σσσ ········· mmm). (3.7)

The invariants with respect to different symmetry transformations are discussed in [11] (see also relevant
references therein). For the case of the transverse isotropy, the authors derived six invariants applying another
approach. In this sense our result coincides with the result given in [11]. However, from our approach it follows
that only five invariants listed in (3.7) are functionally independent. The relation between the invariants can
be formulated as follows [5]:

I2
6 = det




1 I4 I5

I4 I5 mmm ··· σσσ 3 ··· mmm
I5 mmm ··· σσσ 3 ··· mmm mmm ··· σσσ 4 ··· mmm



 . (3.8)

It can be verified that mmm ···σσσ 3 ···mmm and mmm ···σσσ 4 ···mmm are transversely isotropic invariants too. However, applying the
Cayley–Hamilton theorem, e.g., [9], they can be expressed by I1, I2, . . . , I5.

Assuming that the rotation QQQ(πlll) = 2lll ⊗ lll − III , lll ···mmm = 0 belongs to the symmetry group of the transverse
isotropy, the last invariant I6 can be omitted [5] and W(σσσ) = W(I1, I2, I3, I4, I5). The invariants I1, I2, . . . , I5
are widely used in constitutive equations for transversely isotropic media, e.g., [9,10,28]. In what follows we
prefer another set of invariants that can be related to (3.7) and has a clearer mechanical interpretation. Let us
decompose the stress tensor as follows:

σσσ = ammmm ⊗ mmm + σσσp + τττm ⊗ mmm + mmm ⊗ τττm (3.9)

with the projections

am = mmm ··· σσσ ··· mmm, σσσp = (III − mmm ⊗ mmm) ··· σσσ ··· (III − mmm ⊗ mmm), τττm = mmm ··· σσσ ··· (III − mmm ⊗ mmm). (3.10)

In (3.9) am is the normal stress acting in the plane with the unit normal mmm, and σσσp stands for the plane part of
the stress tensor representing the stress state in the isotropy plane. τττm is the transverse shear stress vector in
the plane with the unit normal mmm. For the orthonormal basis kkk, lll, and mmm the projections are (Fig. 7)

σmm = am, τττm = τmkkkk + τmllll, σσσp = σkkkkk ⊗ kkk + σlllll ⊗ lll + τkl(kkk ⊗ lll + lll ⊗ kkk).

The plane part of the stress tensor can be further decomposed as follows:

σσσp = sssp + ap(III − mmm ⊗ mmm), tr sssp = 0 ⇒ ap = 1

2
tr σσσp. (3.11)

Now instead of (3.7) we can introduce the following set of transversely isotropic invariants:

I1m = mmm ··· σσσ ··· mmm, I2m = tr σσσp, I3m = 1

2
tr sss2

p,

I4m = τττmmm ··· τττmmm, I5m = τττmmm ··· sssp ··· τττmmm, I6m = mmm ··· (τττmmm ··· sssp × τττmmm).
(3.12)

It is shown in [5] that the invariants above are integrals of (3.5). Only five of them are functionally independent
due to the relation I 2

6m = I3mI 2
4m − I 2

5m. In what follows we assume QQQ(πlll) to be the additional symmetry
transformation. In this case I6m can be omitted [5].

I5m is the cubic invariant. Cubic invariants of the stress tensor are considered to describe nonclassical
and second-order effects like different creep rates by tension and compression or elongation rate under shear
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Fig. 7 Stress state in a transversely isotropic medium and corresponding projections σmm, σσσp , and τττm

stress [2,9]. Here we neglect such effects. The creep potential is then a function of four arguments, i.e.,
W(σσσ) = W(I1m, I2m, I3m, I4m). The flow rule (3.1) results in the following creep equation:

ε̇εεcr = ∂W

∂I1m

mmm ⊗ mmm + ∂W

∂I2m

(III − mmm ⊗ mmm) + ∂W

∂I3m

sssp + ∂W

∂I4m

(τττmmm ⊗ mmm + mmm ⊗ τττmmm). (3.13)

The next assumption usually employed in the creep theory is the zero volumetric creep rate [27]. Setting the
trace of (3.13) to zero we obtain

tr ε̇εεcr = ∂W

∂I1m

+ 2
∂W

∂I2m

= 0 ⇒ W = W

(

I1m − 1

2
I2m, I3m, I4m

)

. (3.14)

Introducing the notation Jm ≡ I1m − 1
2I2m the creep equation (3.13) takes the form

ε̇εεcr = 1

2

∂W

∂Jm

(3mmm ⊗ mmm − III ) + ∂W

∂I3m

sssp + ∂W

∂I4m

(τττmmm ⊗ mmm + mmm ⊗ τττmmm). (3.15)

By analogy to the case of isotropic creep [27] we introduce the equivalent stress as follows:

σ 2
eq = α1J

2
m + 3α2I3m + 3α3I4m = α1

(

mmm ··· σσσ ··· mmm − 1

2
tr σσσp

)2

+ 3

2
α2tr sss2

p + 3α3τ
2
mmm. (3.16)

The positive definiteness of the quadratic form (3.16) is provided by the conditions αi > 0, i = 1, 2, 3. With
the equivalent stress (3.16) the final form of the creep equation is

ε̇εεcr = 3

2

ε̇eq

σeq

[

α1Jm

(

mmm ⊗ mmm − 1

3
III

)

+ α2sssp + α3(τττm ⊗ mmm + mmm ⊗ τττm)

]

, ε̇eq ≡ ∂W

∂σeq
. (3.17)

The advantage of the introduced invariants (3.12) over (3.7) is that they can be specified independently of
each other. For example, set the second invariant in (3.7) equal to zero, i.e., tr σσσ 2 = σσσ ······ σσσ = 0. From this it
follows that σσσ = 000 and consequently all other invariants listed in (3.7) are simultaneously equal to zero. In
addition, the introduced invariants can be related to typical stress states that should be realized in creep tests
for the identification of constitutive functions and material constants.

The deviatoric part sss of the stress tensor and its second principal invariant are computed by

sss = Jm

(

mmm ⊗ mmm − 1

3
III

)

+ sssp + τττm ⊗ mmm + mmm ⊗ τττm, tr sss2 = 2

3
J 2

m + tr sss2
p + 2τ 2

mmm. (3.18)
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Setting in (3.16) and (3.17) α1 = α2 = α3 = 1 and taking into account (3.18) we obtain the Norton–Bailey–
Odqvist constitutive equation for isotropic secondary creep [27]:

ε̇εεcr = 3

2

ε̇eq

σvM

sss, σ 2
vM = 3

2
tr sss2,

where σvM is the von Mises equivalent stress.

4 Identification of material constants and constitutive functions

In the equivalent stress expression (3.16) αi plays the role of dimensionless factors. Three independent uniform
stress states should be realized in order to determine αi . The relevant stress states are

– Uniaxial tension in the direction mmm (longitudinal tension test). In this case σσσ = σ0mmm ⊗mmm, where σ0 > 0 is
the magnitude of the applied stress. From (3.16) and (3.17) it follows that

Jm = σ0, I3m = I4m = 0, σeq = σ0
√

α1, ε̇εεcr = √
α1ε̇eq

[

mmm ⊗ mmm − 1

2
(III − mmm ⊗ mmm)

]

. (4.1)

– Uniaxial tension in the direction kkk (transverse tension test), i.e., σσσ = σ0kkk ⊗ kkk, σ0 > 0. From (3.16) and
(3.17) we obtain

sssp = 1

2
σ0(kkk ⊗ kkk − lll ⊗ lll), Jm = −1

2
σ0, I3m = 1

4
σ 2

0 , I4m = 0, σeq = 1

2
σ0

√
α1 + 3α2,

ε̇εεcr = ε̇eq

2
√

α1 + 3α2
[(α1 + 3α2)kkk ⊗ kkk + (α1 − 3α2)lll ⊗ lll − 2α1mmm ⊗ mmm] .

(4.2)

– Uniform shear in the plane spanned on mmm and kkk, i.e., σσσ = τ0(mmm ⊗ kkk + kkk ⊗ mmm), τ0 > 0. From (3.16) and
(3.17) we get

Jm = I3m = 0, I4m = τ 2
0 , ε̇εεcr =

√
3α3

2
ε̇eq(mmm ⊗ kkk + kkk ⊗ mmm). (4.3)

The next step is the form of the creep potential W(σeq) or the form of the creep rate versus stress depen-
dence in the steady-state range. The criteria for the choice of a suitable function are the type of the deformation
mechanisms operating for the given stress and temperature range as well as the best fitting of the experi-
mentally obtained strain versus time curves. Experimental data for the weld metal 9CrMoNbV are presented
in [18] for the stress range 87–100 MPa and constant temperature 650◦C. The authors of [18] used a power
law to fit experimental data for secondary creep of longitudinal and transverse specimens. In this case the
Norton–Bailey–Odqvist creep potential can be applied [27]:

W(σeq) = a

n + 1
σn+1

eq , ε̇eq = aσn
eq, (4.4)

where a and n are material constants. For the longitudinal direction from (4.1) and (4.4) follows

ε̇cr
L ≡ mmm ··· ε̇εεcrmmm = aLσn

0 , aL ≡ aα
n+1

2
1 . (4.5)

Taking the longitudinal direction to be the “reference” direction, we set in (4.5) α1 = 1. From (4.2) and (4.4)
we obtain for the transverse direction

ε̇cr
T ≡ kkk ··· ε̇εεcr ··· kkk = aT σn

0 , aT ≡ a

(
1 + 3α2

4

) n+1
2

. (4.6)

In [18] the values for material constants are presented. However, the exponent n is found to be different for lon-
gitudinal and transverse directions. Different values for n contradict the creep potential hypothesis employed
in the previous section. Here we compute the values for aL, aT , and n based on the following functional:

F(ãL, ãT , n) =
k∑

i=1

(ãL + nσ̃i − ˜̇εLi
)2 +

k∑

i=1

(ãT + nσ̃i − ˜̇εTi
)2,

ãL ≡ log aL, ãT ≡ log aT , σ̃ ≡ log σ0, ˜̇εL ≡ log ε̇L, ˜̇εT ≡ log ε̇T ,

(4.7)
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Fig. 8 Minimum creep rates versus stress (experimental data after [18])

where k is the number of experimental data points. Setting the first variation of F equal to zero leads to the
system of three algebraic equations with respect to ãL, ãT , and n. As the result we obtain the following set of
material constants:

aL = 1.377 × 10−21MPa−n/h, aT = 2.023 × 10−21MPa−n/h n = 8.12. (4.8)

Figure 8 shows the experimental data presented in [18] and numerical predictions by use of (4.5), (4.6), and
(4.8).

Finally, let us summarize the constitutive equation for secondary creep and the set of identified material
constants as follows:

ε̇εεcr = 3

2
aσn−1

eq

[

Jm

(

mmm ⊗ mmm − 1

3
III

)

+ α2sssp + α3(τττm ⊗ mmm + mmm ⊗ τττm)

]

,

σ 2
eq =

(

mmm ··· σσσ ··· mmm − 1

2
tr σσσp

)2

+ 3

2
α2tr sss2

p + 3α3τ
2
mmm,

a = 1.377 × 10−21MPa−n/h, n = 8.12, α2 = 1.117.

(4.9)

5 Conclusions

Creep and damage behaviors of a multipass weld are primarily determined by the arrangement of columnar,
coarse-grained, and fine-grained zones within the weld beads. The anisotropic creep of the weld metal is related
to different mechanisms of the stress redistribution between the constituents for different loading directions.
The results of the uniaxial model developed for binary media confirm this fact and agree qualitatively with
experimental observations.

To develop a model for secondary creep under multiaxial stress states, the weld metal is assumed to behave
as a quasihomogeneous transversely isotropic solid. The outcome is the coordinate-free equation for secondary
creep (4.9) formulated in terms of the Norton–Bailey–Odqvist creep potential and three invariants of the stress
deviator. Based on the experimental data presented in [18], the material constants are identified. The weighting
factor α3, which stands for the influence of the transverse shear stress, remains undetermined in (4.9). Future
work should be directed toward the understanding of creep and damage mechanisms in weld metals and related
testing under stress states with nonzero vector τττm.

The model (4.9) is limited only to secondary creep behavior and allows one to reproduce only the secondary
part of the creep curves presented in [18]. For the description of the whole creep process including the primary
and tertiary creep stages, the model (4.9) must be modified by use of hardening and damage variables. The
extension and validation of the model will be discussed in a forthcoming paper.
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