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Abstract The boundary element method (BEM) is developed for nonhomogeneous bodies.The static or steady-
state response of such bodies leads to boundary value problems for partial differential equations (PDEs) of
elliptic type with variable coefficients. The conventional BEM can be employed only if the fundamental solu-
tion of the governing equation is known or can be established. This is, however, out of question for differential
equations with variable coefficients. The presented method uses simple, known fundamental solutions for
homogeneous isotropic bodies to establish the integral equation. An additional field function is introduced,
which is determined from a supplementary domain integral boundary equation. The latter is converted to a
boundary integral by employing a domain meshless technique based on global approximation by radial basis
function series. Then the solution is evaluated from its integral representation based on the known fundamental
solution. The presented method maintains the pure boundary character of the BEM, since the discretization into
elements and the integrations are limited only to the boundary. Without restricting its generality, the method
is illustrated for problems described by second-order differential equations. Therefore, the employed funda-
mental solution is that of the Laplace equation. Several problems are studied. The obtained numerical results
demonstrate the effectiveness and accuracy of the method. A significant advantage of the proposed method is
that the same computer program is utilized to obtain numerical results regardless of the specific form of the
governing differential operator.

Keywords Boundary element method · Nonhomogeneous bodies · Meshless · Partial differential equations ·
Analog equation

1 Introduction

The boundary element method (BEM) has emerged as a powerful alternative to the so-called domain methods,
such as the finite difference method (FDM) and finite element method (FEM), particularly in cases where better
accuracy is required or the domain methods are inefficient, for example, infinite domains. The most important
feature of the BEM, however, is that it requires discretization of the boundary rather than the domain. Hence
BEM computer codes are easier to use. This advantage is particularly important for design, since the pro-
cess involves shape modifications and thus complete remeshing, which are difficult to carry out using FEM.
To implement BEM for a given problem the integral representation of its solution is required, which can be
derived if the fundamental solution of the governing differential equation is known or can be established. For
many differential equations the fundamental solution is known and interesting engineering problems have been
successfully solved using the BEM. Difficulties arise when the fundamental solution cannot be determined
or it is too complicated and thus impractical to evaluate numerically. These difficulties become practically
insurmountable when we come across problems pertaining to nonhomogeneous bodies where the coefficients
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of the differential equations are variable, whose fundamental solution, except for special problems [3], can-
not be established. Therefore, effort has been given to simplify BEM formulations using simple fundamental
solutions. The so-called domain boundary element methods (D/BEMs) belong to these formulations. Although
these methods utilize simple fundamental solutions and maintain the boundary features of the BEM, they do
require domain discretization, which spoils the pure boundary character. The dual reciprocity method (DRM)
[9] appeared as the most promising method that overcomes these difficulties. Even this method is subject to
a major limitation. Namely, for a given nonstandard differential operator, a dominant operator with known
fundamental solution must be extracted, which is not always feasible, especially for differential equations with
variable coefficients. The DRM is problem-dependent [1,10]. The method presented in this investigation is
valid without any limitations. It is based on the concept of the analog equation [4,6–8], which converts the
original problem to an equivalent one described by an equation having a simple known fundamental solution,
for example, the general second-order equation is replaced by the Poisson equation. Actually, the proposed
method introduces an additional unknown domain function, which represents the source of the substitute
problem. This function is determined from a supplementary domain integral equation, which is converted
to a boundary integral equation using a meshless technique based on global approximation by a radial basis
function series. Thus, the pure boundary character of the method is maintained, since the discretization into
elements and the integrations are limited only to the boundary. Once this source is established, the solution of
the problem is obtained from the integral representation of the solution of the substitute problem, which is used
as a mathematical formula. Without restricting the generality with regard to the degree of the partial differential
equation (PDE), the method is illustrated for problems described by second-order PDEs. Several problems are
studied. The numerical results obtained demonstrate the effectiveness and accuracy of the method.

2 Problem statement

The static or steady-state response of a nonhomogeneous body occupying the two-dimensional domain � in
the xy-plane is governed by the boundary value problem

L(u) = g(x) in x ∈ � (1)

β1(x)u + β2(x)q = β3(x) on x ∈ �, (2)

where u = u(x), x{x, y} is the unknown field function, q = u,n its normal derivative on � and

L(u) = A(x) u,xx +2B(x) u,xy +C(x) u,yy +D(x) u,x

+E(x) u,y +F(x) u, (3)

is the general second-order elliptic differential operator defined in �; � = ∪i=K
i=0 �i is the boundary, where

�i (i = 0, 1, 2, . . . , K) are K +1 nonintersecting closed contours surrounded by the contour �0 (see Fig. 1).
Moreover, βi = βi(x), i = 1, 2, 3 are functions specified on � and A(x), B(x), . . . , F (x) position-dependent
coefficients satisfying the ellipticity condition B2 − AC < 0 at all points in � ∪ �.

Generally, conventional BEM cannot be applied for the problem (1)–(3), because it requires the establish-
ment of the fundamental solution of the governing operator L(u), which in general is not feasible. The BEM
solution presented in this paper is based on the concept of the analog equation, which converts the original
problem to an equivalent problem described by the Poisson equation with a fictitious source under the same
boundary condition. This procedure is presented in the following section.

Fig. 1 Two-dimensional domain � occupied by the nonhomogeneous body
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3 The solution procedure

Let u = u(x) be the sought solution to the problem (1)–(2). This function is twice continuously differentiable
in �. Thus, if the Laplace operator is applied to it, we have

∇2u = b(x), (4)

where b(x) represents an unknown fictitious source.
Equation (4) indicates that the solution of Eq. (1) could be established by solving this equation under the

boundary condition (2), if b(x) is first established. This is accomplished following the procedure below.
We write the solution of Eq. (4) in integral form. Thus, we have [5]

εu(x) =
∫

�

u∗b d� −
∫

�

(u∗q − q∗u)ds x ∈ � ∪ �, (5)

in which u∗ = �nr/2π is the fundamental solution to Eq. (4) and q∗ = u,∗n is its derivative normal to the bound-
ary with r = |ξ − x| = [(ξ − x)2 + (y − η)2]1/2 being the distance between any two points x{x, y} ∈ � ∪ �
and ξ ∈ �; ε is a constant which takes the values ε = 1 if x ∈ � and ε = α/2π if x ∈ �; α is the interior angle
between the tangents of boundary at point x. Note that it is ε = 1/2 for points where the boundary is smooth.

Equation (5), when applied to boundary points, yields the boundary integral Eq. [5]

1

2
u(x) =

∫

�

u∗b d� −
∫

�

(u∗q − q∗u)ds x ∈ �. (6)

In the conventional BEM, the source b(x) is known and Eq. (6) is combined with Eq. (2) to yield the
unknown boundary quantities u and q. This, however, cannot be done here, because b(x) is unknown. For this
purpose, an additional integral equation is derived, which permits the establishment of the additional unknown
field function b(x). This equation results by applying the operator L( ) to Eq. (5) for points x ∈ �, (ε = 1).
Thus we have

∫

�

L
(
u∗) b d� −

∫

�

[
L

(
u∗) q − L

(
q∗) u

]
ds = g(x), x ∈ � (7)

Equations (2), (6) and (7) can be combined and solved to yield all three unknown quantities, namely, u, q, b.
Equations (6) and (7) are domain-boundary integral equations and could be solved using domain discretization
to approximate the domain integrals. This, however, would spoil the advantages of the BEM over the domain
methods. We can maintain the pure boundary character of the method by converting the domain integrals to
boundary line integrals. This can be accomplished as follows.

We set

b =
M∑

j=1

αjfj (8)

where fj = fj (r), r = ∣∣x − xj

∣∣, is a set of radial basis approximating functions; xj are collocation points in
� and αj are coefficients to be determined. Using Green’s reciprocal identity [5] the domain integral in Eq. (6)
becomes

∫

�

u∗(x, y)b(y)d�y =
M∑

j=1

aj

∫

�

u∗(x, y)fj (y, xj )d�y

=
M∑

j=1

aj




1

2
ûj (x) +

∫

�

[
u∗(x, ξ)q̂j (ξ) − q∗(x, ξ)ûj (ξ)

]
ds




′

x, y ∈ �, ξ ∈ � (9)
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in which ûj (x) is a particular solution of the equation

∇2ûj = fj j = 1, 2, . . . , M (10)

A particular solution of Eq. (10) can always be determined, if fj is specified [5]. Hence, Eqs. (6) and (7)
become

1

2
u(x) =

M∑
j=1

aj


1

2
ûj (x) +

∫

�

(
u∗q̂j −q∗ûj

)
ds


−

∫

�

(u∗q − uq∗)ds, x ∈ � (11)

M∑
j=1

aj


L

(
ûj (x)

) +
∫

�

[
L

(
u∗) q̂j − L(q∗)ûj

]
ds




−
∫

�

[
L

(
u∗) q − L

(
q∗) u

]
ds = g, x ∈ �, (12)

which can be combined with Eq. (2) and solved numerically to yield the boundary quantities u, q and the
coefficients aj . Then the solution of the problem at any point inside � will be evaluated from Eq. (5), which
by virtue of Eq. (9) becomes

u(x) =
M∑

j=1

aj


ûj (x) +

∫

�

(
u∗q̂j − q∗ûj

)
ds


 −

∫

�

(u∗q − uq∗)ds, x ∈ � (13)

4 Numerical implementation

The BEM with constant elements is used to approximate the boundary integrals in Eqs. (11) and (12). If N is
the number of the boundary nodal points (see Fig. 2), then for node i Eq. (11) is written as

1

2
ui =

M∑
j=1

Kija
j +

N∑
k=1

H̃iku
k −

N∑
k=1

Gikq
k, i = 1, 2, . . . , N (14)

where

H̃ik =
∫

k

q∗(rik)ds (15)

Gik =
∫

k

u∗(rik)ds (16)

Kij = 1

2
ûi

j −
N∑

k=1

H̃ikû
k
j +

N∑
k=1

Gikq̂
k
j (17)

Fig. 2 Boundary discretization and domain nodal points
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where
∫
k

indicates integration on element j and ûi
j = ûj (rji), ûk

j = ûj (rjk).

Applying Eq. (14) to all boundary nodal points and using matrix notation yields

Hu − Gq + Ka = 0, (18)

where a is the vector of the M coefficients aj ; u, q are the vectors of the N boundary nodal values of u and q,
respectively, and

H = H̃ − 1

2
I (19)

with I being the unit matrix.
Similarly, using the same boundary discretization for Eq. (12) and applying it to M nodal points inside �

yields

M∑
j=1

Tij a
j +

N∑
k=1

Siku
k −

N∑
k=1

Rikq
k = gi, i = 1, 2, . . . , M, (20)

where

Sik =
∫

k

L
(
q∗(rik)

)
ds (21)

Rik =
∫

k

L
(
u∗(rik)

)
ds (22)

Tij = L
(
ûi

j

) −
N∑

k=1

Sikû
k
j +

N∑
k=1

Rikq̂
k
j , (23)

or in matrix notation

Su − Rq + Ta = g, (24)

where g is the vector of values of g(x) at the M interior nodal points.
The boundary condition (2), when applied to the N boundary nodal points, yields

β1u + β2q = β3, (25)

where β1, β2 are N × N diagonal matrices and β3 N × 1 vector including the values of βi, i = 1, 2, 3 at
the N boundary nodal points.

Equations (18), (24) and (25) constitute the following system of 2N + M unknowns

QX = p, (26)

where

Q =

 H −G K

β1 β2 0
S −R T


 , X =




u
q
a


 , p =




0
β3
g


 , (27)

which can be solved to obtain the boundary quantities u and q as well as the coefficients a.
The matrices R, S and T are evaluated from the expressions

R = AGxx + 2BGxy + CGyy + DGx + EGy + FG (28)

S = AH̃xx + 2BH̃xy + CH̃yy + DH̃x + EH̃y + FH̃ (29)

T = AÛxx + 2BÛxy + CÛyy + DÛx + EÛy + FÛ − SÛ + RQ̂, (30)
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where A, B, . . . ,F are M × M diagonal matrices including the values of the coefficients of Eq. (1) at the M
nodal points inside �. The matrices G, Gx, Gy, . . . , Gyy, H̃, H̃x, H̃y, . . . , H̃yy, Û, Ûx, Ûy, . . . , Ûyy refer to
the domain nodal points and result from direct differentiation of Eqs. (15), (16) and Û = Ûk

j , for example,(
Gxy

)
ik

= ∫
k

u,∗xy(rik)ds. Subsequently, the solution at any point x ∈ � is evaluated from the discretized

counterpart of Eq. (13), that is,

u(x) =
M∑

j=1

Kxj a
j +

N∑
k=1

H̃xku
k −

N∑
k=1

Gxkq
k, (31)

where now

Kxj = ûj (x) −
N∑

k=1

H̃xkû
k
j +

N∑
k=1

Gxkq̂
k
j (32)

because point x is inside �.
The above solution procedure is implemented adhering to the following steps:

1. Formulate G, H, K for the boundary points using Eqs. (15), (16), (17) and (19).
2. Formulate β1, β2, β3 for the boundary points.
3. Formulate G, Gx , Gy , . . . ,Gyy , H̃, H̃x , H̃y , . . . ,H̃yy , Û, Ûx , Ûy , . . . ,Ûyy for the interior points.
4. Formulate R, S and T using Eqs. (28), (29) and (30)
5. Solve the simultaneous equation (26) to obtain the boundary nodal values u, q and the coefficients a.
6. For a given point x ∈ � evaluate the row matrices G, H̃, U,Gx , H̃x , Ux , . . . ,Gyy , H̃yy , Uyy and compute

the solution and its derivatives from

u,st (x) = Ksta + H̃stu − Gstq, s, t = 0, x, y

Note that the above notation defines u,00 (x) = u(x), u,x0 (x) = u,x (x), G00 = G, Gx0 = Gx etc.

5 Examples

On the basis of the procedure presented in previous sections a FORTRAN code has been written for the solution
of the boundary value problem (1)–(2). The employed radial basis functions fj are the multiquadrics, which
are defined as

fj =
√

r2 + c2, (33)

where c is the shape parameter and

r =
√

(x − xj )2 + (y − yj )2 (j = 1, 2, . . . , M), (34)

with (xj , yj ) ∈ � being the collocation point inside. The particular solution of Eq. (10) for fj given by Eq. (33)
is obtained as

ûj = −c3

3
�u(c

√
r2 + c2 + c2) + 1

9
(r2 + 4c2)

√
r2 + c2. (35)

Certain example problems are presented which demonstrate the efficiency and accuracy of the proposed
method.

Example 1

As a first example we consider a benchmark problem [2]. This problem is governed by the Poisson equation

∇2u = −106

52
in �, u = 0 on � (36)

where � = {(x, y) : −0.3 ≤ x ≤ 0.3, −0.2 ≤ y ≤ 0.2}. The exact value of u at the center is u(0, 0) =
310.10. The solution has been obtained using N constant boundary elements and M domain nodal points
uniformly distributed on a rectangular domain. The obtained results for various values of N , M and c are
shown in Table 1. The solution converges for N = 140.
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Table 1 Dependence of the solution u(0,0) on N, M and c in Example 1

N c = 1 c = 1.5 c = 3

M = 25 M = 55 M = 25 M = 25

20 312.71 312.69 312.71 312.67
40 310.65 310.64 310.65 310.64
80 310.19 310.19 310.19 310.19
140 310.10 310.10 310.10 310.10

Example 2

As a second example we obtain the solution of the following boundary value problem for the complete sec-
ond-order equation

y2uxx + 2xyuxy + 2x2uyy + xux − yuy + u = 7x2 + y2 in � (37)

u = x2 + y2 on � (38)

where � is the ellipse with semi-axes a = 1.5, b = 1.0.
The exact solution is

u = x2 + y2. (39)

The obtained results for the solution and its derivatives are shown in Table 2. In all cases the error is less
than 10−3. It is worth noting that this method ensures great accuracy, not only for the solution, but also for its
derivatives, a fact that is not guaranteed by other numerical methods, for example, FEM.

Example 3

As a third example we study the thermal distribution in a plane body having the irregular shape of Fig. 3. The
thermal conductivity is taken to vary according to the law

k(x, y) = (2x + y + 2)2 (40)

The flux qn = −kT ,n hence the normal derivative T ,n, is prescribed along the sides AB and CD as
T ,n (x, 0) = − 17+20x−15

2(1+x)2 , T ,n (0.5, y) = −45+46y+32y2

(3+y)2 , while the temperature on the remaining part of the

boundary is Tb(x, y) = 6x2−6y2+20xy+30
2x+y+2 + 100.

The temperature T (x, y) will be obtained as a solution of the following boundary value problem

T ,xx +T ,yy + (ln k) ,x T ,x + (ln k) ,y T ,y = 0, in � (41)

Table 2 Comparison of analytical and numerical results for u and its derivative in Example 2. (N = 100, M = 82, c = 1). Upper
value: computed; lower value: exact

x y u ux uy uxx uyy uxy

0.5000 0.0000 0.2496 0.9993 0.0000 1.9992 2.0014 0.0000
0.2500 1.0000 0.0000 2.0000 2.0000 0.0000

0.4619 0.1275 0.2289 0.9225 0.2548 2.0065 2.0049 −0.0080
0.2297 0.9239 0.2551 2.0000 2.0000 0.0000

0.3535 0.2357 0.1802 0.7049 0.4719 2.0037 2.0067 −0.0043
0.1806 0.7071 0.4714 2.0000 2.0000 0.0000

0.1913 0.3079 0.1312 0.3828 0.6149 1.9970 2.0002 0.0012
0.1314 0.3827 0.6159 2.0000 2.0000 0.0000

0.0000 0.3333 0.1104 0.0023 0.6646 2.0004 2.0041 0.0041
0.1111 0.0000 0.6667 2.0000 2.0000 0.0000
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Fig. 3 Irregularly shaped plane body of Example 3

T ,n = T ,n (x, 0) on AB, T ,n = T ,n (0.5, y) on CD, (42a)

T = Tb(x, y) on BC, DE, EF and FA (42b)

The exact solution is

T (x, y) = 6x2 − 6y2 + 20xy + 30

2x + y + 2
+ 100. (43)

The obtained results for the temperature and the fluxes qx = −kT ,x , qy = −kT ,y are given in Table 3 and
compared with the exact ones. Moreover, the temperature distribution and its relative error are shown in Fig. 4.

6 Conclusions

From the presented analysis and the numerical examples the following main conclusions can be drawn.

Table 3 Comparison of analytical and numerical results for temperature and fluxes in Example 3. (N = 130, M = 82, c = 0.1).
Upper value: computed; lower value: exact

x y T qx qy

0.25 111.356 40.783 26.081
111.364 40.500 25.750

0.3125 111.138 37.437 27.979
111.147 36.687 27.836

0.375 110.914 33.577 30.035
110.924 32.625 29.968

0.4375 110.684 29.299 32.149
110.694 28.312 32.148

0.500 110.449 24.702 34.195
110.458 23.750 34.375

0.25 0.5625 110.209 19.769 36.427
110.217 18.937 36.648

0.625 109.963 14.476 38.876
109.970 13.875 38.968

0.6875 109.712 9.020 41.236
109.718 8.5625 41.336

0.750 109.456 3.381 43.589
109.462 3.000 43.750

0.8125 109.196 −2.431 45.907
109.200 −2.812 46.210

0.875 108.932 −8.558 48.423
108.935 −8.875 48.720
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Fig. 4 Temperature and error distribution in Example 3

(1) As the method is limited to the boundary, it has all the advantages of the BEM, that is, the discretization
and integration are performed only on the boundary.

(2) Simple, known fundamental solutions are employed. They depend only on the order of the differential
equation and not on the specific differential operator which governs the problem under consideration.

(3) The computer program is the same and depends only on the order of the differential equation and not on
the specific differential operator which governs the problem under consideration.

(4) The solution and its derivatives are computed at any point using the respective integral representation as
mathematical formulas.

(5) Accurate numerical results are obtained using radial basis functions of multiquadric type with a relatively
small number of domain collocation points.

(6) The concept of the analog equation in conjunction with radial basis functions approximation of the ficti-
tious sources renders BEM a versatile computational method for solving difficult engineering problems
for nonhomogeneous bodies.
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