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A new meshless method for steady-state heat conduction
problems in anisotropic and inhomogeneous media

H. Wang, Q.-H. Qin, Y. L. Kang

Summary A new meshless method is developed to analyze steady-state heat conduction
problems with arbitrarily spatially varying thermal conductivity in isotropic and anisotropic
materials. The analog equation is used to construct equivalent equations to the original
differential equation so that a simpler fundamental solution of the Laplacian operator can be
employed to take the place of the fundamental solutions related to the original governing
equation. Next, the particular solution is approximated by using radial basis functions, and the
corresponding homogeneous solution is solved by means of the virtual boundary collocation
method.As a result, a new method fully independent of mesh is developed. Finally, several
numerical examples are implemented to demonstrate the efficiency and accuracy of the
proposed method. The numerical results show good agreement with the actual results.

Keywords Meshless method, Heat conduction, Fundamental solution,Analog equation method,
Radial basis function, Isotropic materials,Anisotropic materials

1
Introduction
The meshless numerical method has recently become an alternative to the finite element method
(FEM) and the boundary element method (BEM) due to its property of avoiding meshing and
remeshing, effective treatment of complicated load conditions, and avoidance of mesh distortion
in large-deformation problems. The meshless method is usually divided into two main
categories: the boundary-type meshless method and the domain-type meshless method. Since
the method proposed in this paper belongs to the boundary-type meshless method,
developments corresponding to this direction only are briefly reviewed here.

Generally, BEM only involves discretization of the boundary of the structure, due to the
governing differential equation being satisfied exactly inside the domain, which leads to a
smaller system size with adequate accuracy. This is an important advantage over domain-type
solutions such as FEM or the finite difference method (FDM). This advantage exists only for
problems without body forces and having explicit fundamental solutions.When a problem
involves body forces, a domain discretization is also required, which may cause some
inconvenience in the implementation of the BEM. In order to overcome this drawback, Nowak
and Brebbia [1, 2] developed a multiple-reciprocity method (MRM), which can convert domain
integrals to boundary integrals.Additionally, the dual-reciprocity method (DRM) was
introduced by Nardini and Brebbia [3] for transferring domain integrals to boundary integrals.
Nowak and Partridge [4] compared these two methods and identified their advantages and
drawbacks. The use of the analog equation method [5] makes it possible to treat such problems
in which there are no available explicit fundamental solutions. From the discussion above it is
evident that the methods mentioned still need to divide a boundary into elements. In order to
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overcome this disadvantage, many boundary collocation methods have been proposed in the
past few decades. Sun et al. [6, 7] proposed a virtual boundary collocation method to avoid the
singularity of fundamental solutions, applying this method successfully to solve many
engineering problems. In fact, this can be viewed as a kind of method of fundamental solutions
(MFS) [8]. However, they did not include a proper process for dealing with body sources. The
appearance of radial basis functions (RBFs) provides the possibility of developing a real
meshless method. Recently, Chen and Tanaka [9] presented a boundary knot method (BKM)
based on the dual-reciprocity principle and the nonsingular general solution. Later, Chen and
Hon [10] presented numerical investigations into the convergence of the BKM. In addition, Chen
[11, 12] developed the boundary particle method (BPM), based on the multiple-reciprocity
principle and the nonsingular general solution, for the analysis of potential problems.

This paper presents a meshless method developed by combining the virtual boundary
collocation method (VBCM) [6] with RBF approximation and the analog equation method [5],
which can be used to solve isotropic and anisotropic heat conduction problems. RBFs here are
used to approximate particular solutions related to a fictitious internal source, which appears
when the analog equation method is introduced, and the VBCM is used to compute
corresponding homogeneous solutions (see Sect. 3). The analog equation method makes it
possible to use a simpler fundamental solution for the Laplacian operator to analyze
complicated problems whose fundamental solutions are probably very complicated or difficult
to obtain. To verify the performance of the method presented in the paper, several numerical
examples are considered (see Sect. 4), and the results show that they agree well with the exact
solutions. The proposed method is proven to be suitable and efficient for analyzing heat
conduction problems, and is easy to extend to more complex engineering problems such as
nonlinear problems and piezoelectric problems.

2
Formulation of steady-state heat conduction
The mathematical model for steady-state heat conduction can be represented by a generalized
Poisson’s equation. It is well known that the temperature field within a fixed configuration is
intrinsically related to a single set of well-posed thermal boundary conditions specified on the
entire surface of the domain.As such, let us consider a medium in an open-bounded domain
�⊆Rd , where d is the dimension of domain �, and assume that � is bounded by a
piecewise-smooth boundary � which may consist of several segments, each being sufficiently
smooth in the Liapunov sense. The spatial coordinate X ∈�⊆Rd is used to represent the
position of a point.

2.1
The governing equation for steady-state heat conduction in isotropic heterogeneous media
Let us consider the general heat conduction problem in isotropic media

∇ · [k(X)∇u(X)]+ ƒ(X)=k(X)∇2u+ ∇k(X) ·∇u(X)+ ƒ(X)=0 (1)

satisfying the following boundary conditions:

– Dirichlet boundary condition relating to an unknown temperature field

u(X)= ū(X) X ∈�1 (2a)

– Neumann boundary condition for the boundary heat flux

qn(X)= q̄n(X) X ∈�2 (2b)

– Convection boundary condition

qn(X)=h∞(u−u∞) X ∈�3 (2c)

where ∇2 represents the Laplacian operator, k(X) is the spatially varying thermal conductivity,
u(X) is the desired temperature field, and the boundary heat flux arising in the boundary
conditions is defined as qn =−k �u

�xi
ni; ni are the components of the unit outward normal vector n

to the boundary �. Here and after, repeated indices imply use of the Einstein summation con-
vention unless otherwise indicated. ƒ(X) denotes the internal heat source; ū and q̄n are specified
values on the boundary; the constant h∞ is the convection coefficient and u∞ is the temperature
of the environment. For a well-posed problem, �=�1 ∪�2 ∪�3. It should be mentioned
that the convection boundary condition is actually a kind of Robin mixed boundary condition.
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Equation (1) can apply to a wide range of engineering problems governed by diffusion
processes, including, for instance, groundwater flow. Equation (1) will degenerate into the
Poisson equation

k∇2u+ ƒ(X)=0 (3)

when thermal conductivity is a constant (independent of spatial variables) within the solution
domain.

2.2
The governing equation for steady-state heat conduction in anisotropic media
Unlike isotropic materials, whose thermal conductivity is a scalar function, thermal conductivity
in general anisotropic materials is represented by a second-order tensor which contains nine
components in three dimensions. Thus, the governing equation in the Cartesian coordinate
system is written, in this case, as

∇ · [K(X)∇u(X)]+ ƒ(X)= �u
�xj

�kij

�xi
+ kji

�2u
�xj�xi

+ ƒ(X)=0 (4)

with the same boundary conditions as Eqs. (2a)–(2c), where K is the thermal conductivity tensor,
whose components should obey Onsagar’s reciprocity relation kij =kji, u(X) is the temperature
field, and ƒ(X) denotes the internal heat source. The boundary heat flux qn(X) here is defined as
qn =−kij

�u
�xj

ni; ni are the components of the unit outward normal vector n to the boundary �.
In particular, we have

K =
[

k11 k12
k12 k22

]
(5)

for the case of a 2D domain.
Equation (4) can be further written as

∇ · [K(X)∇u(X)]+ ƒ(X)= �u
�xj

�kij

�xi
+ kji

�2u
�xj�xi

+ ƒ(X)=
(

�k11

�x1
+ �k12

�x2

)
�u
�x1

+
(

�k12

�x1
+ �k22

�x2

)
�u
�x2

+ 2k12
�2u

�x1�x2
+ k11

�2u

�x2
1

+ k22
�2u

�x2
2

+ ƒ(X)=0 (6)

If the coefficients kij are assumed to be independent of the space variables, Eq. (6) can be
simplified as

∇ · [K(X)∇u(X)]+ ƒ(X)=k11
�2u

�x2
1

+ k22
�2u

�x2
2

+ 2k12
�2u

�x1�x2
+ ƒ(X)=0 (7)

In heat conduction, the most significant quantity to characterize the anisotropy of a medium is
the determinant of the thermal conductivity matrix, which takes the form

∣∣kij

∣∣=k11k22 −k2
12 for

2D heat conduction. The smaller the value of
∣∣kij

∣∣, the more asymmetric the temperature fields
and the behavior of the heat flux vectors. Since the criterion

∣∣kij

∣∣>0 determines the type of
differential equation (parabolic for transient problems and elliptic for steady problems), the
smaller the value of

∣∣kij

∣∣ is, the more difficult the numerical calculation will be, see Chang et al.
[13].

3
Implementation of the proposed meshless method
Since the problem to be studied is linear, a general linear differential operator L is introduced for
the sake of convenience. Thus, Eqs. (1) and (4) can be replaced by

L [u(X)] + ƒ(X)=0 (8)

where

L=k∇2+ ∇k ·∇ (9)
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for isotropic materials and

L= �
�xj

�kij

�xi
+ kji

�2

�xi�xj
(10)

for anisotropic materials.

3.1
The analog equation method
The boundary value problems (BVPs) described by Eqs. (8) and (2a)–(2c) can be converted into
a Poisson-type equation using the analog equation method [5]. For this purpose, suppose u(X) is
the sought solution to the BVPs, which is a continuously differentiable function with up to two
orders in �. If the Laplacian operator is applied to this function, namely,

∇2u=b(X) (11)

then, Eq. (11) indicates that the solution of Eq. (8) can be established by solving this linear
equation under the same boundary conditions (2a)–(2c), if the fictitious source distribution
b(X) is known. The solution procedure is detailed here.

Since this is a linear problem, the solution to Eq. (6) can be written as a sum of the
homogeneous solution uhom and the inhomogeneous, or particular, solution upar, that is

u=uhom+ upar (12)

Accordingly, uhom and upar should, respectively, satisfy

∇2upar(X)=b(X) (13)

and


∇2uhom(X)=0 X ∈�
uhom(X)= ū−upar(X) X ∈�1

qhom
n (X)= q̄n −qpar

n (X) X ∈�2

h∞uhom(X)−qhom
n (X)=h∞u∞ −h∞upar+ qpar

n X ∈�3

(14)

3.2
The RBF approximation for the particular solution
The next step of the proposed approach is to evaluate the particular solution by RBF
approximation. To this end, the right-hand side of Eq. (13) can be approximated by

b(X)=
I+B∑
j=1

�jƒj(X) (15)

where I and B are the number of interpolation points inside the domain and on the boundary,
respectively, as shown in Fig. 1. �j are coefficients to be determined, and ƒj are a set of
approximating functions.

x

y

o
Γ

××
×

×
×××

××

Interpolation points
in the entire domain

×

× × ××
×

×× ×
×

×× ×
Ω

×

×

× ×

××

×

Fig. 1. Interpolation points inside the domain and on its
boundary
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Similarly, the particular solution upar is also approximated

upar(X)=
I+B∑
j=1

�jûj(X) (16)

where ûj are a corresponding set of particular solutions.
Correspondingly, the boundary heat flux can be expressed as

qpar
n (X)=−k

�upar

�xm
nm =−k


 I+B∑

j=1

�j
�ûj

�xm


 nm (17a)

for isotropic materials and

qpar
n (X)=−kmn

�upar

�xn
nm =−kmn


 I+B∑

j=1

�j
�ûj

�xn


 nm (17b)

for anisotropic materials.
Because the particular solutions upar satisfy Eq. (13), the key to this approximation is the

assumption of a corresponding set of approximating particular solutions ûj, which, for the case
of the Laplacian operator, satisfy

∇2ûj(X)=ƒj(X) (18)

The effectiveness and accuracy of the interpolation depends on the choice of the approximating
functions ƒj. Global interpolation functions, such as Lagrange polynomials, Fourier sine and
cosine series, or locally distributed functions, such as polynomial-type RBFs and thin plate
splines (TPS) may be used [14–16] for this purpose. In this paper, the functions ƒj in Eq. (15) are
selected to be local RBFs in terms of a power series of a distance function rj. Because even
powers of rj are not RBFs [17], and artificially created singularities may be encountered in some
cases [15], the local RBFs can be taken as:

ƒj(X)=1+ r3
j (19)

where r(X, Xj)= rj(X)= ∣∣X −Xj

∣∣ denotes the distance from the source point Xj to the field point
X. These functions in Eq. (19) have been found to be most convenient to implement into
standard computer programs.

Using Eqs. (18) and (19), the approximating particular solutions ûj can be written as

ûj =
rj

2

4
+ rj

5

25
(20)

for a 2D problem, and

ûj =
rj

2

6
+ rj

5

30
(21)

for a 3D problem. Since the inhomogeneous term b(X) is an unknown function that depends on
the unknown function u(X), the coefficients �j cannot be determined directly through solution
of Eq. (15). However, this problem can be tackled in the following way.

3.3
The virtual boundary collocation method for the homogeneous solution
To obtain a weak solution of the Laplace problem (14), N nodal points Xj(j =1, 2, · · · , N) on the
real boundary and N fictitious source points X ′

i(i =1, 2, · · · N) on the virtual boundary are
selected, respectively (see Fig. 2). Moreover, assume that, at each fictitious source point, there is a
virtual source load �i(1≤ i ≤N).

According to the superposition principle, the potential uhom and the boundary heat flux at
field points X in the domain or on the boundary can be expressed by a linear combination of
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'

x

y

o

the virtual boundary

N fictitious source points
on the virtual boundary

N nodes on the real boundary

the real boundary

Fig. 2. An illustration of a
computational domain and points
discretized on the real and virtual
boundaries

fundamental solutions in terms of fictitious sources located on the virtual boundary, respectively
[6, 8], that is

uhom(X)=
N∑

i=1

u∗(X, X ′
i)�i (22)

qhom
n (X)=−k

�uhom

�xm
nm =−k

[
N∑

i=1

�i
�u∗(X, X ′

i)

�xm

]
nm (23a)

for isotropic materials and

qhom
n (X)=−kmn

�uhom

�xn
nm =−kmn

[
N∑

i=1

�i
�u∗(X, X ′

i)

�xn

]
nm (23b)

for anisotropic materials. u∗ is the fundamental solution of the Laplacian operator,

u∗(X, Y)= 1

2�
ln

1

r(X, Y)
(24)

for a 2D problem, and

u∗(X, Y)= 1

4�r
(25)

for a 3D problem.
It should be pointed out that the number of virtual or fictitious source points is chosen to be

equal to the number of nodes on the real boundary in the proposed meshless method. This
choice is made for computing convenience.A proper number of these points exists, which can
reflect all boundary conditions and requires the minimum possible computing time.

The distance between the fictitious source points and real boundary is another interesting
issue. In order to determine the proper location of the virtual boundary, a similarity ratio
between the virtual and real boundary is introduced [6] and defined as

similarity ratio= characteristic length of the virtual boundary

characteristic length of the real boundary

From the point of view of computation, accuracy will decrease if the distance becomes very
small, in which case the similarity ratio is close to one, and problems may be caused due to the
singularity of the fundamental solutions. Conversely, round-off errors in C/Fortran
floating-point arithmetic may be a serious problem when the source points are far from the real
boundary. In that case, the coefficient matrix of the system of equations is nearly zero [6, 18].
Therefore, the similarity ratio is generally selected to be in the range of 1.8–4.0 for internal
problems and 0.6–0.8 for external problems in practical computation [6].
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3.4
The construction of solving equations
According to the above analysis, the solution u=u(X) that we are seeking for Eqs. (8) and
(2a)–(2c) can be obtained as

u=
N∑

i=1

�iu∗ (X, X ′
i)+

I+B∑
j=1

�jûj (26)

qn =−k


 N∑

i=1

�i
�u∗(X, X ′

i)

�xm
+

I+B∑
j=1

�j
�ûj

�xm


 nm (27a)

for isotropic materials and

qn =−kmn


 N∑

i=1

�i
�u∗(X, X ′

i)

�xn
+

I+B∑
j=1

�j
�ûj

�xn


 nm (27b)

for anisotropic materials.
Differentiating Eq. (26) yields

�u
�xm

=
N∑

i=1

�i
�u∗(X, X ′

i)

�xm
+

I+B∑
j=1

�j
�ûj

�xm
(28a)

�2u
�xm�xn

=
N∑

i=1

�i
�u∗(X, X ′

i)

�xm�xn
+

I+B∑
j=1

�j
�ûj

�xm�xn
(28b)

Finally, in order to determine the unknowns �j and �i, Eqs. (26) and (28) should satisfy the
governing equation (8) at I+ B interpolation points inside � and on its boundary. In addition,
Eqs. (26) and (27) should satisfy corresponding boundary conditions (2a)–(2c) at N nodal points
on the real boundary.As a result, a system of N+ I+ B linear equations can be constructed as



N∑
i=1

�i

[
k∇2u∗+ ∇k ·∇u∗]+ I+B∑

j=1
�j

[
k∇2ûj+ ∇k ·∇ûj

]=−ƒ(X)

N∑
i=1

�iu
∗+

I+B∑
j=1

�jûj = ū

N∑
i=1

�i

(
−k �u∗

�xm
nm

)
+

I+B∑
j=1

�j

(
−k �ûj

�xm
nm

)
= q̄n

N∑
i=1

�i

(
h∞u∗+ k �u∗

�xm
nm

)
+

I+B∑
j=1

�j

(
h∞ûj+ k �ûj

�xm
nm

)
=h∞u∞

(29)

for isotropic materials and



N∑
i=1

�i

(
�u∗
�xn

�kmn
�xm

+ kmn
�2u∗

�xm�xn

)
+

I+B∑
j=1

�j

(
�ûj

�xn

�kmn
�xm

+ kmn
�2ûj

�xm�xn

)
=−ƒ(X)

N∑
i=1

�iu
∗+

I+B∑
j=1

�jûj = ū

N∑
i=1

�i

(
−kmn

�u∗
�xn

nm

)
+

I+B∑
j=1

�j

(
−kmn

�ûj

�xn
nm

)
= q̄n

N∑
i=1

�i

(
h∞u∗+ kmn

�u∗
�xn

nm

)
+

I+B∑
j=1

�j

(
h∞ûj+ kmn

�ûj

�xn
nm

)
=h∞u∞

(30)

for anisotropic materials, from which the unknown coefficients �j and �i can be determined.
Once these unknown coefficients are determined, the solution u and heat flux at any field

point X inside the domain or on its boundary can be calculated using Eqs. (26) and (27).
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Fig. 3. Geometry of square region and boundary conditions

4
Numerical implementation
In order to demonstrate the efficiency and accuracy of the proposed method, several benchmark
numerical examples [19–21] are considered and their results are compared with the analytical
results.

Example 1. As the first example, let us consider a 100×100 m isotropic square region illustrated
in Fig. 3. The top and bottom boundaries are insulated. The left wall is assigned a temperature of
200◦C and the right wall is assigned a temperature of 100◦C.

The spatial variation of the thermal conductivity is taken to be cubic in the x-direction as

k(x, y)=
(
1+ x

100

)3

The problem is two dimensional, and an exact solution is readily given as

u(x, y)= 800

6

[
1(

1+ x
100

)2 + 1

2

]

To compare the different situations more clearly, we need a measurement to judge the overall
performance of each situation. Therefore, we define the maximum of the percentage relative
error between two functions ƒ and g , which represent the exact and numerical solutions,
respectively, as

maximum of relative error %= max
(x,y)∈�

∣∣∣∣ƒ − g
ƒ

∣∣∣∣×100%

where � is the domain within which both functions are defined. It is evident that the smaller the
maximum relative error, the better an approach.

In this example, Figs. 4 and 5 depict the profile of interpolation points in the square and the
virtual boundary, respectively. Different situations are analysed to demonstrate the accuracy and
efficiency of the proposed method.

Figure 6 shows the variation of the maximum of percent relative error in temperature within
the square domain when the number of interpolation points varies from 20 to 160 and the
similarity ratio is 3.0, from which we can see that the greater the number of interpolation points,
the smaller the maximum relative error.

Figure 7 depicts the variation of the maximum percentage relative error in temperature within
the square domain when the similarity ratio between the virtual and the real boundary varies
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Fig. 4. Profile of interpolation points in the square
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Fig. 5. Profile of collocation points on the real and
virtual boundaries
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Fig. 6. Variation of maximum relative
error in temperature in the square
when the number of interpolation
points varies from 20 to 160 and the
similarity ratio is 3.0
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Fig. 7. Variation of maximum of relative
error in temperature in the square when
the similarity ratio varies from 1.8 to 4,
while N =20 and I+ B=25

from 1.8 to 4, while N =20 and I+ B=25. Due to the singularity of the fundamental solutions,
accuracy will decrease when the similarity ratio approaches 1, as can be seen from Fig. 7.We also
can see that the similarity ratio can be varied within a certain range to obtain stable computing
accuracy. Generally, the similarity ratio can be selected in the range of 1.8–4.0.
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Fig. 8. Variation of maximum of
relative error in temperature in the
square when the number of virtual
source points varies from 5 to 45,
while I+ B=25 and the similarity
ratio is 3.0

Figure 8 shows the variation of the maximum of percent relative error in temperature within
the square domain when the number of fictitious source points outside the domain varies from 5
to 45 with I+ B=25 and the similarity ratio is 3.0. In this case, no increase in accuracy is evident
when the number of virtual source points exceeds 20. The reasons for this effect are the simple
boundary and the number of interpolation points.

Example 2. Consider an isotropic disc whose radius is 0.1 m. Here, the thermal conductivity is
assumed to vary bi-quadratically as

k(x, y)= (2x+ y+ 2)2

An analytical expression for the temperature field satisfying the governing heat conduction
equation can be given as

u(x, y)= 6x2 −6y2+ 20xy+ 30

2x+ y+ 2

This temperature profile is also used to impose the boundary conditions shown in Fig. 9.

This nonhomogeneous problem is solved using 36 fictitious source points outside the domain
(shown in Fig. 10) and 181 interpolation points (shown in Fig. 11). The similarity ratio is 3.0. The
distribution of temperature on the boundary of the circle inside the disc is plotted in Fig. 12,
while the boundary heat fluxes are plotted in Fig. 13. It is clear from these figures that good
agreement is achieved with relatively few collocation points.

Example 3. In order to illustrate typical numerical results, we consider a 2D anisotropic medium
with a thermal conductivity tensor given by

k11 =5.0, k22 =1.0, k12 =k21 =2.0

x

y

o

r
θ

1

1

uu

uu Fig. 9. Geometry of the domain and boundary conditions for
Example 2
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Fig. 10. Illustration of collocation points on the
virtual and real boundaries in Example 2
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Fig. 11. Illustration of interpolation points within the circular
domain in Example 2
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Fig. 12. Distribution of temperature
on the boundary of inner circle
(radius = 0.05 m) inside a disc

The Dirichlet problems are solved in the plane domain �={(x, y) :x2+ y2 <1}, i.e. the 2D disc of
radius unity. The analytical temperature distribution to be retrieved is given by

u(x, y)= x3

5
−x2y+ xy2+ y3

5

which imposes the boundary conditions.

In computation, the similarity ratio is selected to be 3.0. The number of fictitious source
points on the virtual boundary is 36 and there are 33 interpolation points to be used during the
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Fig. 13. Distribution of heat fluxes on
the outer boundary of the disc
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Fig. 14. Distribution of temperature
on the boundary of circles
(radius = 0.5 and 1.0) within a disc
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Fig. 15. Distribution of heat flux on
the boundary of a disc

RBF approximation, including 25 internal points and 8 boundary points. Figure 14 shows the
distribution of temperature at the points on the circles whose radii are equal to 0.5 and 1.0,
respectively.We can see that good agreement is obtained between the numerical results and the
exact solutions.
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Fig. 16. Hollow ellipse and imposed boundary conditions for anisotropic
materials

Fig. 17. Illustration of collocation points on the virtual
and real boundaries

Figure 15 depicts the distribution of heat flux on the boundary and we can see that the
numerical results also agree well with the exact results.

Example 4. As the latest example, let us consider an orthotropic material in a hollow ellipse
whose center is at (0, 0), with the major axis of 2 m in the y-direction and the minor axis of 1 m
in the x-direction. The ellipse then encloses a circle of radius 0.5 m whose center is also at (0, 0).
The thermal conductivity is

k(x, y)=
[

2x+ y+ 5 0
0 3x+ y+ 7

]
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Fig. 18. Illustration of interpolation points on the boundary and within the
domain
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Fig. 19. Comparison of temperature
between numerical and exact results on
the inner circular boundary

The following temperature distribution

u(x, y)=4x2+ 10xy −7y2+ 20x+ 18y

can be shown to satisfy the governing heat conduction equation with the conductivity given
above.As such, it is used to impose the boundary conditions illustrated in Fig. 16.

In computation, 24 fictitious source points on the virtual boundary and the same number of
collocation points on the real boundary are employed. The similarity ratios are equal to 3.0 and
0.6, respectively (see Fig. 17).Additionally, 108 internal points and 72 boundary points are
selected to form the RBF approximation (see Fig. 18).

The numerical results of temperature and heat flux on the outer elliptic boundary and inner
circular boundary are shown in Figs. 19–22 and comparison is made with the analytical results,
from which it can be seen that the proposed meshless method achieves high accuracy.

In addition to the results at points on the inner and outer boundaries, the distribution of
temperature at some internal points located on the ellipse, which has a semimajor axis of length
1.25 and a semiminor axis of length 0.75, is also computed and presented in Fig. 23. It can be seen
again from Fig. 23 that the proposed method has relatively high accuracy.

5
Conclusion
In this paper, a meshless method is developed to solve isotropic and anisotropic heat conduction
problems. This is accomplished by combining the VBCM with the concept of analog equation
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Fig. 20. Comparison of heat flux
between numerical and exact results
on the inner circular boundary
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Fig. 21. Comparison of temperature
between numerical and exact results
on the external elliptic boundary

0 50 100 150 200 250 300 350
-400

-300

-200

-100

0

100 

200 

300 

Angle

H
ea

t F
lu

x

Meshless
Exact

Fig. 22. Comparison of heat flux
between numerical and exact results
on the external elliptic boundary

method and RBF approximation. The proposed meshless method has some advantages
compared to general BEM:

(1) The fundamental solutions used in general BEM, given as

L∗(u∗)=�(x −�),

where L∗(·) is the adjoint operator to L(·) and �(x −�) is the Dirac delta function, are usually
complex and difficult to obtain. In contrast, the proposed meshless method requires the
fundamental solution of the standard Laplacian operator only, even in complex problems.
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Fig. 23. Comparison of temperature
between numerical and exact results
on the ellipse which has a semimajor
axis of length 1.25 and a semiminor
axis of length 0.75

(2) No boundary element is required in the method, and thus the general singular integral is
avoided.

(3) There are no extra integral equations required to compute the internal properties.
(4) The computational process is relatively simple and the theoretical basis is simple.
Finally, numerical results show clearly that the method presented can achieve very high

accuracy with a relatively small number of collocation points, and the local RBF used to
interpolate the fictitious body-force terms shows itself to be superior.
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