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Summary The static and dynamic responses of anisotropic spherical shells under a uniformly
distributed transverse load are investigated. Analytical solutions using the mixed variational
formulation are presented for spherical shells subjected to various boundary conditions.
Numerical results of a refined mixed first-order shear deformation theory for natural fre-
quencies, critical buckling, center deflections and stresses are compared with those obtained
using the classical shell theory. A variety of simply-supported and clamped boundary condi-
tions are considered and comparisons with the existing literature are made. The sample
numerical results presented herein for global structural behaviour of monoclinic spherical
shells should serve as references for future comparisons.
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1
Introduction
A wide application of anisotropic materials in modern technology enhanced a particular
interest among researchers regarding the theory of anisotropic shells. Shells are widely used as
structural elements in modern construction engineering, aircraft construction, shipbuilding,
rocket construction, etc.

The static and dynamic analyses of shells have been studied for a long time. Shell structures
can be subjected to external loads and displacements or to internal strains. These effects may
cause large displacement responses with or without structural instabilities, both in the static
and/or in the dynamic regime. Many shell theories have been developed over the last century,
as well as methods to solve their governing equations [1–4]. Two-dimensional shell theories,
such as the classical, first-order, and higher-order shear deformation theories, are mechanics-
of-materials and applied elasticity approaches for the static and dynamic bending of plates and
shells. These theories offer, in most situations if not all, accurate and reliable solutions for the
analysis and design of shells and shell systems. The methods of solution are mostly exact
closed-form solutions [5–7].

Here we will restrict our attention to the solution of anisotropic spherical shells. The open
spherical shell has applications in a variety of aerospace and civil engineering structures. For
example, Stephens and Fulton [8] have studied the axisymmetric response of shallow spherical
caps due to step loading. Ball and Burt [9] have studied the asymmetric response of shallow
spherical caps subjected to asymmetric step pressure loading. Reddy and Khdeir [10] have
investigated the transient behaviour of cross-ply laminated composite spherical shells using a
third-order shear deformation theory. However, the open spherical shell is perhaps the least
widely studied of all existing shell models. This is primarily because very few researchers have
attempted to include spherical shells in their models. In addition, most solutions existing in the
literature are limited to cylindrical shells and/or sinusoidal distribution of the transverse load
[7, 11–16].
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The study of thin spherical shells usually involves the use of shell theories with emphasis on
the development of solution methods. Spherical shells are often modeled using the classical shell
theory neglecting transverse shear deformations. Refined shell theories allowing for a more
adequate description of structural response characteristics are needed. They provide improved
global response parameters for moderately thick shells when compared to the classical shell
theory. Thick and moderately thick shells have a number of distinctly different features from
thin shells. One of these features is that in thick shells the transverse shear deformation may no
longer be neglected. In a number of particular cases of loadings the radial stress distribution of
thick shells is very important and needs to be considered in the shell analysis.

It is not difficult to incorporate transverse shear deformations in shells. This can be
accomplished following the work of Reissner [17] for plate theory. Nevertheless, it is not an easy
task to incorporate radial stresses in thin shell theory and to obtain quadratic shear stress
distributions through the shell thickness in order to describe the behaviour of thick shells.
Attention in the previously developed shell theories was focused on two-dimensional shell
equations while maintaining a linear stress distribution through the shell thickness (see Flügge
[1]; Niordson [18]). It appears that refinement of the stress distribution in thick shells has hardly
been ignored. The theory of thin shells may provide a good estimate of the strain energy for
some problems in thick shells. Nevertheless, it cannot provide an accurate distribution for the
stresses through the thickness. This accuracy is imperative from an engineering point of view.

The usual refined theory considered in the treatment of dynamic and static responses of
anisotropic shells is the first-order transverse shear deformation theory [5, 13]. Comparison of the
bending response of spherical shells obtained from the classical shell theory and first-order shear
deformation shell theory would be interesting and useful as it would shed light on the relative
importance of the inclusion of shear deformation effects. In the present analysis, the bending
response of anisotropic spherical shells under a uniformly distributed transverse load is studied
using a refined first-order shear deformation shell theory. The mixed variational formulation is
used to obtain the governing equations and to develop the numerical solution for free vibration,
buckling and bending of anisotropic spherical shells. The results obtained are compared with
those obtained using classical shell theory. Comparisons with some of the available results
(obtained for simply-supported edge conditions) are performed and appropriate conclusions
concerning the various effects are formulated. The numerical results included here for monoclinic
shells are not available in the literature and, therefore, should be of interest to designers of shell
structures, numerical analysts and experimentalists in evaluating their techniques.

2
Mixed variational formulation
The variational method finds one of the most fruitful fields of application in the small
displacement theory of elasticity. When the existence of a strain energy function is assured and
the external forces are assumed to be kept unchanged during displacement variation, the
principle of virtual work leads to the establishment of the principle of minimum potential
energy. The variational principle is generalized by the introduction of Lagrange’s multipliers to
yield a family of variational principles that include the Hellinger–Reissner’s principle, the
principle of minimum complementary energy, and so forth [13–16, 19–22].

Variational formulations of elasticity find another important application as a computational
tool. If the correct displacements are known to minimize some integral, then a finite linear
combination of suitable functions can be inserted into the integral and the constants of combi-
nation can then be sought that provide the smallest possible value to the integral over the class of
functions under consideration. The problem is thus reduced to an algebraic one that is well suited
to modern computers. This approach is illustrated here based upon Hamilton’s mixed variational
formula in connection with the static and dynamic problems of anisotropic spherical shells.

The final form of the mixed variational formulation based upon Hamilton’s principle is
given by [13, 16, 19–22]:

0 ¼
Z t2

t1

Z Z Z
V

q€uidui þ d rijeij � �UðrÞ
� �� �

dvþ dP

� �
dt; ði; j ¼ 1; 2; 3Þ; ð1Þ

where ðt1; t2Þ is a time interval, q is the density of the undeformed body and �UðrÞ is the
complementary energy density. The potential energy P of the applied loads can be defined as a
function of the displacement field ui and the applied loads as follows:
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P ¼ �
Z Z Z

V

Biuidv�
Z Z

Sr

F�i uids�
Z Z

Su

njrijðui � u�i Þds; ði; j ¼ 1; 2; 3Þ; ð2Þ

where nj are the components of the unit vector along the outward normal to the total surface
Sr þ Su;Bi are the body forces measured per unit volume of the undeformed body, F�i are the
prescribed components of the stress vector per unit area of the surface Sr, and u�i are the
prescribed components of the displacements of the remaining surface Su. For stresses rij and
strains eij ði; j ¼ 1; 2; 3Þ the subscripts 1–6 are defined as follows: 1! 11; 2! 22; 3! 33;
4! 23; 5! 13; and 6! 12: Then the first variation of the complementary energy density
is given by:

d�UðrÞ ¼ aijridrj; ði; j ¼ 1; 2; . . . ; 6Þ; ð3Þ

where aji ¼ aij are the coefficients of deformation (compliances). The utilization of the mixed
variational principles allows one to treat the shell problems by introducing kinematic
assumptions of any power of the thickness coordinate. Also, the transverse shear stresses are
consistent with the surface conditions. So, the necessity for the introduction of a shear cor-
rection factor required in other first-order shear deformation theories is obviated. In addition,
the effect of transverse normal stress is taken into account.

3
Derivation of the governing equations
The spherical shell as shown in Fig. 1 is assumed to be of length a, width b, radius of a value of
the mid-surface R, and uniform thickness h. The orthogonal curvilinear coordinates ðn1; n2; fÞ
are taken such that the n1- and n2- curves are lines of curvature on the mid-surface ðf ¼ 0Þ; and
f- curves are straight lines perpendicular to the mid-surface and positive in a downward
direction. Let the shell be subjected to a distributed transverse load q as well as to the com-
pressive in-plane edge forces S1 and S2 and a distributed shear force S6 (per unit length) acting
on the mid-plane of the shell. Then, for the first variation of the potential energy P in the
absence of body forces and prescribed displacements we have

dP ¼ �
Z Z

Sr

F�i duids ¼
Z Z

Sr

�qþ ðS1@�n1
wþ S6@�n2

wÞ@�n1

h

þðS6@�n1
wþ S2@�n2

wÞ@�n2

i
dwd�n1d�n2; ð4Þ

where @�ni
¼ ai@ni

; @ni
denotes differentiation with respect to ni and a1 ¼ a2 ¼ a is the surface

metric of the spherical shell.
As in the shear deformation theory of flat plates, we start in the usual way by proposing the

first-order displacement field:

u1ðn1; n2; fÞ ¼ ð1þ f�Þ uðn1; n2Þ þ fwðn1; n2Þ;
u2ðn1; n2; fÞ ¼ ð1þ f�Þ vðn1; n2Þ þ fuðn1; n2Þ;
u3ðn1; n2; fÞ ¼ wðn1; n2Þ;

9=
; ð5Þ

where f� ¼ f=R; ðu; v;wÞ are the displacements of a point on the mid-surface, and w and u are
the rotations at f ¼ 0 of the normals to the mid-surface with respect to the n2- and n1- axes,
respectively. The strain field for the assumed displacement field follows immediately as

Fig. 1. Geometry and coordinates system
of the spherical shell
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e1 ¼ w� þ @x1
uþ f@x1

w; e4 ¼ uþ @x2
w;

e2 ¼ w� þ @x2
vþ f@x2

u; e5 ¼ wþ @x1
w;

e3 ¼ 0; e6 ¼ @x1
vþ @x2

uþ fð@x1
uþ @x2

wÞ:
ð6Þ

Here, w� ¼ w=R and xi denote the Cartesian coordinates, dxi ¼ adni; i ¼ 1; 2 (see [5]). The
non-vanishing stress field is assumed to be of the form [13, 19–21]:

ri ¼ ½Gð0Þi ðn1; n2Þ þ fG
ð1Þ
i ðn1; n2Þ�ð1þ f�Þ�1;

rj ¼ G
ð0Þ
j ðn1; n2Þ½1� �f2�ð1þ f�Þ�1;

r3 ¼
X3

r¼0

frG
ðrÞ
3 ðn1; n2Þ; ði ¼ 1; 2; 6; j ¼ 4; 5Þ;

ð7Þ

where �f ¼ 2f=h: The functions G
ð0Þ
i ;G

ð1Þ
i and G

ð0Þ
j may be obtained easily from the condition

that the above stress field satisfies the following stress resultants:

fNi;Mi;Qjg ¼
Z þh=2

�h=2

fri; fri; rjgð1þ f�Þdf; ði ¼ 1; 2; 6; j ¼ 4; 5Þ: ð8Þ

Also, the functions G
ðrÞ
3 follow from the requirement that the transverse normal stress r3

satisfies the conditions

r3jz¼þh=2
¼ 0; r3jz¼�h=2

¼ �q;

Z þh=2

�h=2

r3df ¼ 0;

Z þh=2

�h=2

fr3df ¼ 0: ð9Þ

Therefore, the final expressions for the stress components can be written in terms of their
resultants and the thickness coordinate f:

ri ¼ Ni=hþ 12Mif=h3; rj ¼ 3Qjð1� �f2Þ=2h; ðj ¼ 4; 5Þ;
r3 ¼ ðq=4Þ½1� 2�f� 5�f2�ð1� �fÞ; ði ¼ 1; 2; 6Þ:

ð10Þ

It is to be noted that the transverse shear stresses r4 and r5 are functions of f and vanish on the
faces f ¼ �h=2.

3.1
Equations of equilibrium (motion)
The next step in deriving the governing equations consists of the substitution of Eqs. (5), (6),
and (10) into the mixed variational formulation (Eq. 1). The extremum condition gives the
following equilibrium (dynamic) equations:

@x1
N1 þ @x2

N6 ¼ 0 ðI1€uþ I2
€wÞ; @x1

N6 þ @x2
N2 ¼ 0 ðI1€vþ I2 €uÞ;

@x1
�Q5 þ @x2

�Q4 � �N1 � �N2 þ q ¼ 0 I0 €wð Þ;
@x1

M1 þ @x2
M6 � Q5 ¼ 0ðI2€uþ I3

€wÞ; @x1
M6 þ @x2

M2 � Q4 ¼ 0 ðI2€vþ I3 €uÞ;
ð11Þ

where

�Ni ¼ Ni=R; �Q4 ¼ Q4 þ ðS6@x1
þ S2@x2

Þw; �Q5 ¼ Q5 þ ðS1@x1
þ S6@x2

Þw; ð12Þ

and inertia Ij ðj ¼ 0; 1; 2; 3Þ is given by

I0; I1; I2; I3f g ¼
Z þh=2

�h=2

q 1; ð1þ f�Þ2; fð1þ f�Þ; f2
� �

df: ð13Þ

Eq. (11) can be specialized to flat plates by setting 1=R ¼ 0: The classical shell theory can be
obtained by setting u ¼ �@x2

w and w ¼ �@x1
w:
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3.2
Boundary conditions
Requirments of the Kinematic and dynamic boundary conditions are given below:

3.3
Constitutive equations
The constitutive equations are given by:

N1

N2

N6

8<
:

9=
; ¼

A11 A12 A16

A12 A22 A26

A16 A26 A66

2
4

3
5 w� þ @x1

u
w� þ @x2

v
@x1

vþ @x2
u

8<
:

9=
;; ð14Þ

Q4

Q5

� �
¼ A44 A45

A45 A55

	 

uþ @x2

w
wþ @x1

w

� �
; ð15Þ

M1

M2

M6

8<
:

9=
; ¼

D11 D12 D16

D12 D22 D26

D16 D26 D66

2
4

3
5 @x1

w
@x2

u
@x1

uþ @x2
w

8<
:

9=
;; ð16Þ

where

A11 A12 0 0 A16

A22 0 0 A26

A44 A45 0
A55 0

symm. A66

2
66664

3
77775 ¼ h

a11 a12 0 0 a16

a22 0 0 a26
6
5 a44

6
5 a45 0
6
5 a55 0

symm. a66

2
66664

3
77775

�1

; Dij ¼
h2

12
Aij:

For monoclinic shell, when we have one plane of elastic symmetry parallel to the median
surface of the shell, the compliances aij may be expressed in terms of the engineering char-
acteristics as [23]:

a11 ¼
1

E1
; a12 ¼ �

m12

E1
¼ � m21

E2
; a16 ¼

g16

E1
¼ g61

G12
; a26 ¼

g26

E2
¼ g62

G12
;

a22 ¼
1

E2
; a44 ¼

1

G23
; a45 ¼

l45

G23
¼ l54

G13
; a55 ¼

1

G13
; a66 ¼

1

G12
:

ð17Þ

Here, Ei; Gij and mij stand for Young’s moduli, shear moduli and Poisson’s ratios, respectively.
Traditionally, the following notations are used: g61 and g62 are constants characterizing normal
deformations in directions x1 and x2 when a shear load is applied in the x1 � x2 plane, and l45

is the constant characterizing shear deformation in the plane x1 � f when a shear load is
applied in the plane x2 � f: This system of notations extends logically the notations for
Poisson’s ratios of an orthotropic material. In addition, for an orthotropic shell
ða16 ¼ a26 ¼ a45 ¼ 0Þ we find:

A11 ¼
hE1

1� m12m21
; A12 ¼

hE2m12

1� m12m21
¼ hE1m21

1� m12m21
; A22 ¼

hE2

1� m12m21
;

A44 ¼
5

6
hG23; A55 ¼

5

6
hG13; A66 ¼ hG12:

ð18Þ

At edge x1 ¼ 0; a At edge x2 ¼ 0; b

u = prescribed; otherwise N1 ¼ 0 u = prescribed; otherwise N6 ¼ 0
v = prescribed; otherwise N6 ¼ 0 v = prescribed; otherwise N2 ¼ 0
w = prescribed; otherwise �Q5 ¼ 0 w = prescribed; otherwise �Q4 ¼ 0
w = prescribed; otherwise M1 ¼ 0 w = prescribed; otherwise M6 ¼ 0
u = prescribed; otherwise M6 ¼ 0 u = prescribed; otherwise M2 ¼ 0
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4
Solution procedure
The mixed variational formulation will be extended here in order to analyze the free vibration,
the buckling and the bending problems of anisotropic spherical shells. For the free vibration
case we set q; S1; S2; and S6 in the governing equations equal to zero, and represent the dis-
placement quantities as:

ðu;wÞ
w
ðv;uÞ

8<
:

9=
; ¼

Xn

i¼1

Xn

j¼1

Uij;Wij

� �
F0ðkix1Þ Gðkjx2Þ

Wij Fðkix1Þ Gðkjx2Þ
Vij;Uij

� �
Fðkix1Þ G0ðkjx2Þ

8<
:

9=
;eîx t; ð19Þ

where x ¼ xij denotes the eigenfrequency associated with the (ith, jth) eigenmode, î ¼
ffiffiffiffiffiffi
�1
p

,
and Uij;Vij;Wij;Uij and Wij are arbitrary parameters. The functions Fðkix1Þ and Gðkjx2Þ can be
constructed for any combination of simply-supported and/or clamped boundary conditions on
the shell edges (see [14, 15]). Substitution of the constitutive equations (Eqs. 14–16), considered
in conjunction with Eq. (19) in the final form of the mixed variational formulation given in Eq.
(1), yields a system of algebraic equations. For the free vibration case ðq ¼ S1 ¼ S2 ¼ S6 ¼ 0Þ
this system is expressed in compact form as:

½K�fDg ¼ x2½L�fDg; ð20Þ

and for buckling ðx! 0; q ¼ S6 ¼ 0; S1 ¼ �bc; S2 ¼ �cbc; c ¼ S2=S1Þ; we obtain

½K�fDg ¼ bc½N�fDg; ð21Þ

where fDg denotes the column

fDgT ¼ fUij;Vij;Wij;Uij;Wijg: ð22Þ

The elements of the coefficient matrices [K], [L] and [N] are defined in the Appendix.
For non-trivial solutions of Eqs. (20) and (21), the following determinants should be zero:

½K� � x2½L�
�� �� ¼ 0 and ½K� � bc½N�

�� �� ¼ 0: ð23Þ

The above equations give the eigenfrequencies and the critical buckling loads.
For bending analysis, a uniformly distributed transverse load with a total of n terms in both

x1 and x2 directions is used:

qðx1; x2Þ ¼
Xn

i¼1

Xn

j¼1

qij sin
ipx1

a
sin

jpx2

b
; ð24Þ

where the coefficients qij are defined as follows:

qij ¼
16q0

ijp2

1 i; j ¼ 1; 3; 5; . . . ; n
0 otherwise

n
ð25Þ

in which q0 is the intensity of the load. In this case, Eq. (20) takes the form

½K�fDg ¼ fFg; ð26Þ

where fFg denotes the load vector

fFgT ¼ f0; 0; qijf0g0; 0; 0g; ð27Þ

and

f0 ¼
Z a

0

Fðkix1Þ sin
ip x1

a
dx1; g0 ¼

Z b

0

Gðkjx2Þ sin
jp x2

b
dx2: ð28Þ
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Thus, one needs to solve the 5� 5 matrix equation, Eq. (26), for the vector of amplitudes of the
generalized displacements.

5
Discussion of the results
In order to simplify the presentation, the edge conditions for spherical shells are denoted by the
letters S (simply-supported) and C (clamped). For example, the designation CSCC denotes that
the shell is clamped at x1 ¼ 0; simply-supported at x1 ¼ a; clamped at x2 ¼ 0 and x2 ¼ b: In
addition, we will assume in all cases (unless otherwise stated) that a=b ¼ 1 and R=a ¼ 5:

5.1
Isotropic spherical shells
The bending of an isotropic SSSS spherical shell under point load at the center is analyzed. The
following geometric and material parameters are used:

R=a ¼ 3; b=a ¼ 1; m ¼ 0:3:

A comparison of the center deflection of the present theories (MFST and CST) with that
obtained by Vlasov [24] is presented in Table 1. The results obtained using the first-order shear
deformation theory (FSDT) of Reddy [5] and higher-order shear deformation theory (HSDT) of
Reddy and Liu [6] are also presented. This problem was also solved using the finite element
method by Yang [25]. The numerical solutions of Vlasov [24] and Yang [25] are taken from
Reddy’s paper [5] and both of them did not consider transverse shear strains. It is clear from
the results that the series solution converges very slowly. The difference between the values

Table 1. Center deflection (wE/100q0) of an isotropic spherical shell under point load at the center,
a/h = 320 (finite-element solution of Yang [25]: 38.670)

Theory na = 9 n = 49 n = 99 n = 149 n = 199 n = 249

Vlasov [24] 39.560
FSDTb 32.594 39.469 39.724 39.786 39.814 39.832
CSTb 39.591 39.647 39.653
HSDTc 32.584 39.458 39.714 39.775 39.803
MFST 32.5837 39.4580 39.7136 39.7747 39.8033 39.8210
CST 32.5630 39.3594 39.5806 39.6216 39.6360 39.6426

a n� n term series,
b Reddy [5],
c Reddy and Liu [6].

Table 2. Center deflection ðwE=100q0Þ of an isotropic spherical shell under point load at the center

a=h Theory n = 9 n = 49 n = 99 n = 149 n = 199 n = 249

100 FSDTa 3.6640 3.9019 3.9194 3.9270 3.9319 3.9356
HSDTb 3.6610 3.8986 3.9158 3.9230 3.9274
MFST 3.6607 3.8986 3.9161 3.9237 3.9286 3.9323
CST 3.6458 3.8588 3.8656 3.8668 3.8673 3.8675

20 FSDTa 0.1646 0.1713 0.1735 0.1748 0.1757 0.1764
HSDTb 0.1637 0.1701 0.1715 0.1720 0.1722
MFST 0.1637 0.1704 0.1726 0.1739 0.1748 0.1755
CST 0.1583 0.1600 0.1601 ‹

10 FSDTa 0.03485 0.03755 0.03864 0.03927 0.03972 0.0400
HSDTb 0.03450 0.03668 0.03704 0.03713 0.03716
MFST 0.0345 0.0372 0.0383 0.0389 0.0394 0.0397
CST 0.0310 0.0312 ‹

5 FSDTa 0.00671 0.00798 0.008523 0.008838 0.009061 0.0092
HSDTb 0.00658 0.00775 0.007337 0.007350 0.007354
MFST 0.0066 0.0079 0.0085 0.0088 0.0090 0.0092
CST 0.0046 ‹

a Reddy [5],
b Reddy and Liu [6].
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predicted by MFST and CST is not significant because the shell is essentially very thin and
shallow (a/h = 320 and R/h = 960). In addition, it can be seen that there is excellent agreement
between the results obtained by MFST and those obtained by HSDT of Reddy and Liu [6].

To investigate the effect of transverse shear strains on the center deflection, the same
spherical shell problem with point load at the center or uniformly distributed loading is
analyzed, and the results are presented in Tables 2 and 3. Note that for the point load, the
results obtained using MFST compare well with those obtained using HSDT and FSDT. The
difference between the values predicted by MFST and CST increases with the decrease of the
a/h ratio. For a uniformly distributed load, the solution given by the 49-term series is the same
as that given by the 199-term series, indicating that the convergence is achieved with 49 (or
less) terms in the series. Comparison of the MFST results with the CST results shows that the
shear deformation is significant for side-to-thickness ratios smaller than 10. For example, the
relative error between the two theories reaches 18.59% for a/h = 5.

5.2
Orthotropic spherical shells
Of great practical importance is a shell made of orthotropic material, i.e., a material through
each point of which pass three mutually perpendicular planes of elastic symmetry. In this
example numerical results will be presented for orthotropic spherical shell under uniformly
distributed loading with a 45-term series. To complete the analysis, the results of free vibration
and buckling problems are also presented. The numerical results obtained using MFST and
CST will be compared, as a special case, with the exact closed form solution presented by
Srinivas and Rao [26] for flat plate. The material properties used in this example are:

E1 ¼ 145:81GPa; E2 ¼ 76:58GPa; E3 ¼ 70GPa; G12 ¼ 35:7GPa;

G13 ¼ 25:97GPa; G23 ¼ 43:33GPa; m12 ¼ m13 ¼ 0:44; m32 ¼ 0:23:

The following normalization is used:

X̂ ¼ xh

ffiffiffiffiffiffiffi
qh

A11

s
; b̂c ¼

bca2

h3E1
; ŵ ¼ w

a

2
;
b

2

 �
A11

q0h2
;

r̂1 ¼ r1
a

2
;
b

2
;
h

2

 �
1

q0
; r̂2 ¼ r2

a

2
;
b

2
;
h

2

 �
1

q0
; r̂5 ¼ r5 0;

b

2
; 0

 �
1

q0
:

Tables 4 and 5 display the eigenfrequencies and critical buckling loads obtained using the
present theories and deleting the stretching effects. The exact three-dimensional elasticity
solutions of Srinivas and Rao [26] for SSSS square plates are used to assess improvement of
frequency prediction. The results obtained from the higher-order shear deformation theory
(HSDT) developed by Reddy [27], and from the theory referred to as DT developed by Librescu

Table 3. Center deflection ðwE=100q0Þ of an isotropic spherical shell under uniformly distributed load

n Theory a/h

320 100 20 10 5

9 FSDTa — 314.28 49.701 11.266 1.9774
HSDTb — 314.33 49.526 10.873 1.6669
MFST 928.99 314.25 49.370 11.138 1.9495
CST 928.96 314.30 49.194 10.748 1.6434

49 FSDTa — 313.87 49.695 11.265 1.9767
HSDTb — 313.93 49.523 10.872 1.6669
MFST 916.96 313.84 49.364 11.137 1.9488
CST 916.95 313.90 49.191 10.748 1.6433

99 FSDTa — 313.86 49.695 11.265 1.9767
HSDTb — 313.93 49.523 10.872 1.6669
MFST 916.96 313.84 49.364 11.137 1.9488
CST 916.95 313.90 49.191 10.748 1.6433

a Reddy [5],
b Reddy and Liu [6].
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et al. [28], are also used in the comparisons. Note that the results obtained using MFST are
found to be in excellent agreement with relative errors between MFST and CST increasing
slightly with the increase of the radius-to-side ratio. In addition, this relative error increases
rapidly with the increase of the eigenmode values (see Table 4) and decreases rapidly with the
increase of the side-to-thickness ratio (see Table 5).

Table 6 contains the non-dimensionalized center deflections ŵ of orthotropic spherical
shells under uniformly distributed load. The results are tabulated for various thickness-to-side,
radius-to-side and aspect ratios. The deviation between MFST and CST increases with the
increase of h/a, a/b and R/a ratios. This deviation is 0.76% at h/a = 0.05, a/b = 0.5 and R/a = 5
while at h/a = 0.14, a/b = 2.0 and R/a = 100, a deviation of 24.3% is observed. This is to be
expected as the inclusion of transverse shear would have more effect on a thicker shell than on
a thinner shell. In Table 7 the stresses r̂1; r̂2 and r̂5 are presented for square shells with
various values of thickness-to-side and radius-to-side ratios. The results in Tables 6 and 7,
calculated in the present MFST and in Srinivas and Rao [26], are compared for flat plates. There

Table 4. Eigenfrequencies X̂ of SSSS orthotropic spherical shells ða=h ¼ 10Þ

R/a Theory ði; jÞ

(1,1) (1,2) (2,2) (1,3) (2,3) (1,4) (3,3) (4,1) (2,4)

5 MFST 0.0551 0.1069 0.1714 0.1903 0.2481 0.2962 0.3309 0.3311 0.3457
CST 0.0567 0.1132 0.1944 0.2088 0.2892 0.3383 0.4181 0.4479 0.4161

10 MFST 0.0494 0.1041 0.1697 0.1888 0.2469 0.2953 0.3301 0.3303 0.3449
CST 0.0512 0.1107 0.1929 0.2075 0.2883 0.3375 0.4174 0.4473 0.4155

20 MFST 0.0479 0.1034 0.1693 0.1884 0.2467 0.2951 0.3298 0.3301 0.3447
CST 0.0498 0.1100 0.1926 0.2072 0.2880 0.3373 0.4173 0.4472 0.4153

50 MFST 0.0475 0.1032 0.1692 0.1883 0.2466 0.2950 0.3298 0.3300 0.3447
CST 0.0493 0.1098 0.1925 0.2071 0.2880 0.3372 0.4172 0.4472 0.4153

100 MFST 0.0474 0.1032 0.1691 0.1883 0.2466 0.2950 0.3298 0.3300 0.3447
CST 0.0493 0.1098 0.1925 0.2071 0.2879 0.3372 0.4172 0.4472 0.4153

Plate MFST 0.0474 0.1032 0.1691 0.1883 0.2465 0.2949 0.3299 0.3300 0.3446
CST 0.0493 0.1098 0.1925 0.2071 0.2879 0.3372 0.4172 0.4472 0.4153
Exacta 0.0474 0.1033 0.1694 0.1888 0.2475 0.2969 0.3320 0.3319 0.3476
HSDTb 0.0474 0.1033 0.1695 0.1888 0.2477 0.2969 0.3326 0.3330 0.3479
DTc 0.0474 0.1033 0.1692 0.1884 0.2469 0.2958 0.3310 0.3310 0.3462

a Srinivas and Rao [26],
b Reddy [27],
c Librescu et al. [28].

Table 5. Non-dimensional critical buckling loads b̂c of SSSS orthotropic spherical shells

R/a Theory a/h=2 a/h=5 a/h=10 a/h=20 a/h=50

c=0 c=1 c=0 c=1 c=0 c=1 c=0 c=1 c=0 c=1

5 MFST 0.9795 0.4897 2.3225 1.1613 3.4678 1.7339 6.3132 3.1566 25.189 12.594
CST 2.8189 1.4094 3.0072 1.5036 3.6796 1.8398 6.3695 3.1847 25.198 12.599

10 MFST 0.9526 0.4763 2.1544 1.0772 2.7954 1.3977 3.6233 1.8117 8.3777 4.1889
CST 2.7920 1.3960 2.8390 1.4195 3.0072 1.5036 3.6796 1.8398 8.3869 4.1935

20 MFST 0.9459 0.4729 2.1124 1.0562 2.6272 1.3136 2.9509 1.4754 4.1748 2.0874
CST 2.7852 1.3926 2.7970 1.3985 2.8390 1.4195 3.0072 1.5036 4.1840 2.0920

50 MFST 0.9440 0.4720 2.1006 1.0503 2.5802 1.2901 2.7626 1.3813 2.9980 1.4990
CST 2.7834 1.3917 2.7852 1.3926 2.7920 1.3960 2.8189 1.4094 3.0072 1.5036

100 MFST 0.9437 0.4719 2.0989 1.0495 2.5734 1.2867 2.7357 1.3678 2.8299 1.4149
CST 2.7831 1.3915 2.7836 1.3918 2.7852 1.3926 2.7920 1.3960 2.8390 1.4195

Plate MFST 0.9436 0.4718 2.0984 1.0492 2.5712 1.2856 2.7267 1.3633 2.7738 1.3869
CST 2.7830 1.3915 2.7830 1.3915 2.7830 1.3915 2.7830 1.3915 2.7830 1.3915
HSDTa 0.9581 0.4791 2.0999 1.0500 2.5706 1.2853 2.7258 1.3629 2.7729 1.3864
DT b 0.9435 0.4718 2.0978 1.0489 2.5704 1.2852 2.7258 1.3629 2.7729 1.3864

a Reddy [27],
b Librescu et al. [28].
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is excellent agreement in the deflection ŵ and the in-plane stress r̂2: However, a minor devi-
ation may be observed for the stresses r̂1 and r̂5:

5.3
Monoclinic spherical shells
This example utilizes the following monoclinic material [23]:

E1 ¼ 47:9GPa; E2 ¼ 8:6GPa; G23 ¼ 3:81GPa; G13 ¼ 19:6GPa; G12 ¼ 0:837GPa;
E3 ¼ 30:4GPa; m12 ¼ 0:361; l16 ¼ 1:25; l26 ¼ 0:036; l45 ¼ �0:071;
m13 ¼ 0:509; m23 ¼ 0:052; g36 ¼ 0:044:

The following normalization is used in the presentation of the numerical results in Table 8 and
Figs. 2–8:
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Table 6. Non-dimensionalized center deflection (ŵ) of SSSS orthotropic spherical shells under uniformly
distributed load (s = a/b)

R/a Theory h=a ¼ 0:05 h=a ¼ 0:10 h=a ¼ 0:14

s = 0.5 s = 1.0 s = 2.0 s = 0.5 s = 1.0 s = 2.0 s = 0.5 s = 1.0 s = 2.0

5 MFST 11816 7186.8 1846.7 1161.5 615.65 135.63 347.54 179.77 39.517
CST 11727 7101.2 1797.3 1105.5 577.02 121.05 313.31 157.88 31.914

10 MFST 17914 9388.3 1995.7 1337.9 669.37 138.72 376.70 188.49 40.036
CST 17688 9232.4 1936.8 1262.9 623.38 123.44 336.51 164.42 32.236

20 MFST 20507 10158.8 2036.6 1390.3 684.25 139.52 384.74 190.80 40.168
CST 20206 9974.0 1975.1 1309.2 636.12 124.05 342.84 166.14 32.318

50 MFST 21367 10397.1 2048.3 1405.7 688.54 139.74 387.06 191.46 40.205
CST 21039 10203.0 1986.0 1322.8 639.78 124.22 344.84 166.63 32.341

100 MFST 21496 10432.0 2050.0 1408.0 689.15 139.77 387.39 191.55 40.210
CST 21164 10236.5 1987.6 1324.7 640.31 124.25 344.92 166.70 32.344

Plate MFST 21539 10443.7 2050.6 1408.7 689.36 139.78 387.50 191.58 40.212
CST 21206 10247.7 1988.1 1325.4 640.48 124.26 345.00 166.72 32.345
Exact a 21542 10443.0 2048.7 1408.5 688.75 139.08 387.23 191.07 39.790

a Srinivas and Rao [26].

Table 7. Non-dimensionalized stresses of SSSS orthotropic spherical shells under uniformly distributed
load

h/a=0.05 h/a=0.10 h/a=0.14

R/a Theory r̂1 r̂2 r̂5 r̂1 r̂2 r̂5 r̂1 r̂2 r̂5

5 MFST 119.13 81.253 8.3393 35.565 23.505 5.0492 18.413 12.282 3.7324
CST 119.82 81.148 — 36.007 23.120 — 18.804 11.862 —

10 MFST 143.58 92.869 10.1748 36.697 23.495 5.3854 18.499 12.045 3.8712
CST 144.03 92.478 — 37.087 23.065 — 18.891 11.631 —

20 MFST 147.95 92.695 10.8169 36.451 22.922 5.4786 18.303 11.760 3.9080
CST 148.35 92.261 — 36.864 22.520 — 18.724 11.377 —

50 MFST 146.59 89.867 11.0154 36.020 22.390 5.5054 18.108 11.535 3.9184
CST 147.01 89.472 — 36.466 22.022 — 18.555 11.180 —

100 MFST 145.41 88.460 11.0446 35.830 22.182 5.5092 18.030 11.452 3.9199
CST 145.86 88.089 — 36.290 21.829 — 18.487 11.108 —

Plate MFST 143.89 86.828 11.0543 35.617 21.959 5.5105 17.945 11.365 3.9204
CST 144.37 86.488 — 36.092 21.622 — 18.414 11.032 —
Exact a 144.31 87.080 10.8730 36.021 22.210 5.3411 18.346 11.615 3.7313

a Srinivas and Rao [26].
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Table 8. Global structural behaviour of monoclinic square spherical shells (a/h=10)

BC Theory �X �b0
�b1 ŵ �r1 �r2 �r6 �r4 �r5

SSSS MFST 7.9756 6.6429 3.3215 2.3884 0.6986 1.4833 0.3753 0.2835 0.7101
CST 8.0864 6.8287 3.4143 2.3336 0.7002 1.4854 0.3675 — —

SSCS MFST 8.7729 7.9963 3.6889 1.9882 0.5843 1.6011 — — 0.6269
CST 8.9287 8.2878 3.8234 1.9271 0.5822 1.6169 — — —

SSCC MFST 9.8747 10.1119 4.5012 1.7428 0.5183 1.7894 — — 0.5949
CST 10.1633 10.7278 4.7754 1.6509 0.5066 1.8246 — — —

CSSS MFST 11.5363 12.1208 6.5292 1.0864 0.4284 0.6237 — 0.2060 —
CST 11.7995 12.7030 6.8428 1.0437 0.4299 0.6127 — — —

CSCS MFST 12.2648 13.4545 6.7273 0.9887 0.3951 0.7827 — — —
CST 12.5646 14.1418 7.0709 0.9474 0.3961 0.7809 — — —

CSCC MFST 13.1204 15.2956 7.3980 0.9686 0.3912 1.0008 — — —
CST 13.5162 16.2684 7.8686 0.9175 0.3889 1.0200 — — —

CCSS MFST 15.3494 20.9611 11.6305 0.6292 0.3233 0.3380 — 0.1861 —
CST 15.9811 22.9347 12.7256 0.5791 0.3228 0.3163 — — —

CCCS MFST 16.1508 22.1822 11.4533 0.6067 0.3152 0.4739 — — —
CST 16.8505 24.2572 12.5246 0.5594 0.3156 0.4541 — — —

CCCC MFST 16.9141 23.9282 11.9641 0.6295 0.3314 0.6587 — — —
CST 17.6915 26.2754 13.1377 0.5784 0.3314 0.6509 — — —

Fig. 2. Non-dimensional center deflec-
tion (�w) versus side-to-thickness ratio
of monoclinic spherical shells for (a)
SSSS, SSCS, SSCC, CSCS and CCCC
boundary conditions, and (b) CSSS,
CSCC, CCSS and CCCS boundary con-
ditions
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Fig. 3. Non-dimensional in-plane
stress (�r1) versus side-to-thickness
ratio of monoclinic spherical shells for
various boundary conditions

Fig. 4. Non-dimensional in-plane
stress (�r2) versus side-to-thickness
ratio of monoclinic spherical shells for
various boundary conditions

Fig. 5. Effect of a/h on the fundamental
frequency �X of monoclinic spherical
shells for various boundary conditions
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Fig. 6. Effect of a/h on the uniaxial
critical buckling load �b0 of monoclinic
spherical shells for various boundary
conditions

Fig. 7. Effect of a/h on the biaxial crit-
ical buckling load �b1 of monoclinic
spherical shells for various boundary
conditions

Fig. 8. Variation of the shear stresses
�r4 and �r5 through the thickness of
monoclinic spherical shells for various
boundary conditions (a/h=10)
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Table 8 shows the deflections and stresses obtained for a monoclinic square spherical shell
under a uniformly distributed loading with a total of 45-term series using MFST and CST. The
fundamental frequencies and uniaxial and biaxial critical buckling loads are also included in
Table 8. Figs. 2–7 contain plots of non-dimensionalized center deflections �w; in-plane stresses
�r1 and �r2; fundamental frequencies �X; and uniaxial �b0 and biaxial �b1 critical buckling loads as
functions of the thickness-to-side ratio for various boundary conditions. It should be pointed
out that neglection of transverse shear strains in spherical shells could lead to an underpre-
diction of the deflections (see Fig. 2) and an overprediction of the natural frequencies (see
Fig. 5) and buckling loads (see Figs. 6 and 7). This is due to the low transverse shear modulus
compared to the in-plane Young’s moduli. Note that the differences between the CST and MFST
results increase as the thickness of the shell is increased (i.e., the a/h parameter is decreased)
irrespective of the considered boundary conditions. In Fig. 8 the through-thickness variations
of the shear stresses �r4 and �r5 are presented. It is clear that other first-order shear deformation
theories account for constant transverse shear stresses through the thickness and, therefore,
require a correction to the transverse shear stiffness.

6
Conclusions
The mixed variational formulation is used to develop both analytical and numerical solutions
for anisotropic elastic spherical shells according to the refined first-order shell theory. The shell
is considered to be subjected to a uniformly distributed transverse load as well as to in-plane
edge forces. Numerical results are presented for natural frequencies, critical buckling loads,
deflections and stresses of spherical shells subjected to various edge conditions. The refined
mixed first-order shear deformation shell theory (MFST) as well as the classical shell theory
(CST) was used and results were compared. The results of MFST and CST are in close
agreement with available solutions in the literature. The inclusion of transverse shear in the
MFST overpredicts deflections and underpredicts frequencies and critical loads when com-
pared with the results from CST especially for moderately thick shells. Moreover, the present
MFST leads to the quadratic distribution of the transverse shear stresses (and zero transverse
normal strain) and, therefore, no shear correction factors are used.

References
1. Flügge, W.: Stresses in shells. Berlin, Springer (1962)
2. Ambartsumian, S.A.: Theory of anisotropic shells. Washington, DC, NASA TTF-118 (1964)
3. Kraus, H.: Thin elastic shells. New York, Wiley (1967)
4. Librescu, L.: Elastostatics and kinetics of anisotropic and heterogeneous shell-type structures.

The Netherlands, Noordhoff, Leyden (1975)
5. Reddy, J.N.: Exact solutions of moderately thick laminated shells. J Eng Mech 110 (1984) 794–809
6. Reddy, J.N.; Liu C.F.: A higher-order shear deformation theory of laminated elastic shells. Int J Eng Sci

23 (1985) 319–330
7. Bhaskar, K.; Varadan, T.K.: Exact elasticity solution for laminated anisotropic cylindrical shell. J Appl

Mech 60 (1993) 41–47
8. Stephens, W.B.; Fulton, R.E.: Axisymmetric static and dynamic buckling of spherical caps due to

centrally distributed pressure. AIAA J 7 (1969) 2120–2126
9. Ball, R.E.; Burt, J.A.: Dynamic buckling of shallow spherical shells. J Appl Mech 40 (1973) 411–416

10. Reddy, J.N.; Khdeir, A.A.: Dynamic response of cross-ply laminated shallow shells according to a
refined shear deformation theory. J Acoust Soc Am 85 (1989) 2423–2431

11. Hsu, Y.S.; Reddy, J.N.; Bert, C.W.: Thermoelasticity of circular cylindrical shells laminated of bimo-
dulus composite materials. J Therm Stress 4 (1981) 155–177

12. Khdeir, A.A.; Reddy, J.N.; Frederick, D.: A study of bending, vibration and buckling of cross-ply
circular cylindrical shells with various shell theory. Int J Eng Sci 27 (1989) 1337–1351

13. Fares, M.E.; Allam, M.N.M.; Zenkour, A.M.: Hamilton’s mixed variational formula for dynamical
problems of anisotropic elastic bodies. SM Arch 14 (1989) 103–114

14. Zenkour, A.M.: Vibration of axisymmetric shear deformable cross-ply laminated cylindrical shells–a
variational approach. Int J Eng Sci 36 (1998) 219–231

15. Zenkour, A.M.: Stress analysis of axisymmetric shear deformable cross-ply circular laminated
cylindrical shells. J Eng Math 40 (2001) 315–332

16. Zenkour, A.M.; Fares, M.E.: Thermal bending analysis of composite laminated cylindrical shells using a
refined first-order theory. J Therm Stress 23 (2000) 505–526

17. Reissner, E.: The effect of transverse shear deformation on the bending of elastic plates. J Appl Mech 12
(1945) 69–77

18. Niordson, F.I.: Shell theory. Amsterdam, North-Holland (1985)
19. Fares, M.E.; Zenkour, A.M.: Mixed variational formula for the thermal bending of laminated plates.

J Therm Stress 22 (1999) 347–365

275



20. Zenkour, A.M.: Natural vibration analysis of symmetrical cross-ply laminated elastic plates using
mixed variational formulation. Eur. J. Mech. A, Solids 19 (2000) 469–485

21. Fares, M.E.; Zenkour, A.M.; El-Marghany, M.Kh.: Nonlinear thermal effects on the bending response of
cross-ply laminated plates using refined first-order theory. Compos Struct. 49 (2000) 257–267

22. Zenkour, A.M.: Buckling and free vibration of elastic plates using simple and mixed shear deformation
theories. Acta Mech 146 (2001) 183–197

23. Bogdadnovich, A.E.; Pastore, C.M.: Mechanics of textile and laminated composites with applications to
structural analysis. London, Chapman & Hall (1996)

24. Vlasov, V.Z.: General theory of shells and its applications in engineering. Washington, DC, NASA
TTF-99 (1964)

25. Yang, T.Y.: High order rectangular shallow shell finite element. J Eng Mech Div, ASCE 99:57–81 (1973)
26. Srinivas, S.; Rao, A.K.: Bending, vibration and buckling of simply supported thick orthotropic rec-

tangular plates and laminates: Int J Solids Struct (1970) 1463–1481
27. Reddy, J.N.: A refined nonlinear theory of plates with transverse shear deformation. Int J Solids Struct

20 (1984) 745–752
28. Librescu, L.; Khdeir, A.A.; Reddy, J.N.: Further results concerning the dynamic response of shear

deformable elastic orthotropic plates. ZAMM 17 (1990) 23–33

Appendix
The elements of the symmetric matrix [K] are expressed as:

K11 ¼ A11k
2
i f3g1 þ 2A16kikjf6g4 þ A66k

2
j f2g2;

K12 ¼ A16k
2
i f6g4 þ ðA12f5g5 þ A66f2g2Þkikj þ A26k

2
j f4g6;

K13 ¼
1

R
ðA11 þ A12Þkif5g1 þ ðA16 þ A26Þkjf4g4

� �
; K14 ¼ K15 ¼ 0;

K22 ¼ A66k
2
i f2g2 þ 2A26kikjf4g6 þ A22k

2
j f1g3;

K23 ¼
1

R
ðA16 þ A26Þkif4g4 þ ðA12 þ A22Þkjf1g5

� �
; K24 ¼ K25 ¼ 0;

K33 ¼
1

R2
ðA11 þ 2A12 þ A22Þf1g1 þ A55k

2
i f2g1 þ 2A45kikjf4g4 þ A44k

2
j f1g2;

K34 ¼ A45kif4g4 þ A44kjf1g2; K35 ¼ A55kif2g1 þ A45kjf4g4;

K44 ¼ D66k
2
i f2g2 þ 2D26kikjf4g6 þ D22k

2
j f1g3 þ A44f1g1;

K45 ¼ D16k
2
i f6g4 þ ðD12f5g5 þ D66f2g2Þkikj þ D26k

2
j f4g6 þ A45f4g4;

K55 ¼ D11k
2
i f3g1 þ 2D16kikjf6g4 þ D66k

2
j f2g2 þ A55f2g1;

where

f1 ¼
Z a

0

½Fðkix1Þ�2dx1; f2 ¼
Z a

0

½F0ðkix1Þ�2dx1; f3 ¼
Z a

0

½F00ðkix1Þ�2dx1;

g1 ¼
Z b

0

½Gðkjx2Þ�2dx2; g2 ¼
Z b

0

½G0ðkjx2Þ�2dx2; g3 ¼
Z b

0

½G00ðkjx2Þ�2dx2;

f4 ¼
Z a

0

Fðkix1ÞF0ðkix1Þdx1; g4 ¼
Z b

0

Gðkjx2ÞG0ðkjx2Þdx2;

f5 ¼
Z a

0

Fðkix1ÞF00ðkix1Þdx1; g5 ¼
Z b

0

Gðkjx2ÞG00ðkjx2Þdx2;

f6 ¼
Z a

0

F0ðkix1ÞF00ðkix1Þdx1; g6 ¼
Z b

0

G0ðkjx2ÞG00ðkjx2Þdx2:

The elements of the symmetric matrix [L] are expressed as:

L11 ¼ I1f2g1; L15 ¼ I2f2g1; L22 ¼ I1f1g2; L24 ¼ I2f1g2;

L33 ¼ I0f1g1; L44 ¼ I3f1g2; L55 ¼ I3f2g1;

L12 ¼ L13 ¼ L14 ¼ L23 ¼ L25 ¼ L34 ¼ L35 ¼ L45 ¼ 0:

All elements of the matrix [N] are equal to zero except N33 ¼ k2
i f2g1 þ ck2

j f1g2:

276


