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Summary The paper presents the results of the research on modal parameter estimation based
alone on output measurements. A system is excited randomly and random decrement functions
are used to separate the random responses from the determination free vibrations. It is shown
that on estimation of the natural frequencies and damping ratios of the system is possible using
the wavelet transform of the system’s free response. A particular form of the son wavelet
function improves the results compared to those obtained with the Morlet wavelet function. An
optimal son wavelet function is obtained by minimisation of the wavelet transform entropy.
The accuracy of this new technique is confirmed in a numerical example and by applying it to
ambient vibration measurements of a bridge excited by traffic.

Keywords Wavelet transform, Modal parameters, Ambient vibration transform entropy,
Random decrement technique

1
Introduction
Modal analysis is an important tool in a wide variety of engineering applications including
structural vibrations and acoustics. The information obtained by it describes the natural
frequencies and damping associated with structural modes of a system. It can be used then to
determine properties of the system such as safe operating condition, dynamic response
behaviour, material damage or to conduct active vibration control of the system [2, 3, 6]. In
general, the experimental identification of structural modes of vibration is carried out by
measuring the input, or the excitation, of the structure under test and the resulting response due
to this input. There are situations, however, where controlled excitation cannot be used. For
example, if the structure to be tested is in operation, applying any kind of external force may
cause undesirable effect. Other examples are mechanical or civil engineering systems such as off-
shore structures, bridges, [2, 6], towers [3], tall buildings and aircraft in flight which are under
ambient vibrations and the excitation is not available. To identify the modal parameters only
acceleration responses of the system are available, measured under ambient conditions. System
identification using ambient vibration measurements presents a challenge, requiring the use of
special identification techniques, which can deal with very small magnitudes of ambient
vibration contaminated by noise. In such cases, a promising technique is the use of the random
decrement technique, [3, 4], which is a special averaging procedure to obtain, free responses.

The aim of this paper is to show how the wavelet analysis of the free response of a system
allows the estimation of modal parameters. The paper is organised as follows. The theoretical
background of the wavelet transform with its properties is presented in Sec. 2. In Sect. 3, we
minimise the entropy of the wavelet transform to obtain a parameter which improves the time
and frequency resolutions. It is shown in Sect. 4 that the modulus and phase of the wavelet
transform are directly related to eigenfrequencies and damping coefficients of vibrating
systems. Further, it is shown that the mode uncoupling is possible by choosing appropriate
parameters of the wavelet function. In Sect. 5, we reconstruct the signal by the inverse wavelet
transform and separate each mode. The efficiency of the wavelet transform in modal analysis is
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demonstrated in a numerical model example and in the analysis of experimental results, which
are presented in Sect. 6. The brief conclusions are draw in Sect. 7.

2
Theoretical background of the wavelet transform
The Fourier transform represents a decomposition of a function into a linear combination of
harmonics weighted by Fourier coefficients. This decomposition does not give any local
information about the function due to the infinite nature of the trigonometric functions used in
the analysis. The Fourier analysis is not effective when used on nonstationary signals because it
does not provide frequency-content information localized in time; the frequency component of
a signal can be known but its location in time is not known. Most real-world signals, however,
exhibit nonstationary characteristics and therefore the Fourier transform is not adequate in the
time-out frequency-domain.

A localized decomposition can be obtained using the wavelet transform (WT). The wavelet
transform of a signal xðtÞ is a time-scale decomposition obtained by dilating and translating
along the time axis using a chosen analyzing function. The continuous wavelet transform of a
signal xðtÞ is, s. [1,8, 9],

ðWwxÞða; bÞ ¼ 1
ffiffiffi

a
p
Z þ1

�1
x(t)w�ðt� b

a
Þdt; ð1Þ

where wðtÞ is an analysing function, called the mother wavelet, a is the dilatation or scale
parameter defining the analysing window stretching, and b is the translation parameter local-
ising the wavelet function in the time-domain. The WT represents the correlation between the
signal xðtÞ and a scaled version of the function wðtÞ, and the idea of the WT is to decompose a
signal xðtÞ into wavelet coefficients ðWwxÞða; bÞ by using the basis of wavelet functions.

Since the mother wavelet is localized in both time-and frequency-domains, the WT displays
the time-evolution of the frequency components of a signal. The wavelet is compared to a
section at the beginning of a signal. A number is calculated, showing the degree of correlation
between the wavelet and the signal section. The wavelet is then shifted right, and the process is
repeated until the whole signal is covered. The wavelet is scaled and the previous process is
repeated for all scales.

Any function wðtÞ can be used as a mother wavelet when it satisfies the admissibility
condition, [1, 8, 9],

0 < cw ¼
Z þ1

�1

�

�WðfÞ
�

�

2

�

�f
�

�

df <1; ð2Þ

where wðf Þ is the Fourier transform of wðtÞ.The mother wavelet must be also a window
function which tends to zero at t ! �1. If one assumes a fast decay, that is, the values of wðtÞ
are negligible outside the interval ðtmin; tmaxÞ, the wavelet transform becomes local. The wavelet
transform can be inverted and the signal xðtÞ recovered, s. [1, 8, 9],

x(t) ¼ 1

cw

Z þ1

�1

Z þ1

�1
ðWwxÞða; bÞ 1

ffiffiffi

a
p w�ðt� b

a
Þ dadb

a2
: ð3Þ

Since the wavelet transform is a linear representation of a signal, it follows that the WT of P
signals has the following property:

ðWw

X

P

i¼1

xiÞða; bÞ ¼
X

P

i¼1
ðWwxiÞða; bÞ: ð4Þ

This property is convenient for the analysis of multi-component signals.
An alternative formulation of the WT can be obtained by transforming both the signal xðtÞ

and the wavelet function wðtÞ in the frequency domain

ðWwxÞða; bÞ ¼
ffiffiffi

a
p Z þ1

�1
X(f)W�ðafÞej2pf bdf ; ð5Þ
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where Xðf Þ is the Fourier transform of xðtÞ, and aw�ðaf Þej2pf b is the Fourier transform of
w�ðt�b

a Þ. The discrete wavelet transform can be calculated numerically as

Wðm; nÞ ¼
ffiffiffiffiffiffiffiffiffiffi

mDa
p X

n

X(fnÞW�ðmDafnÞej2pfnnDb; ð6Þ

where fn is the discrete frequency and Da and Db are increments of dilatation and translation
parameters. The discrete wavelet transform can be implemented with the help of the fast
Fourier transform (FFT) algorithm, by generating dilated wavelets and the signal in the
frequency-domain, before transforming the results back to the time-domain using the inverse
FFT.

A number of different analyzing functions have been used in the wavelet analysis. One of the
most known and widely used is the Morlet wavelet defined in the time-domain as

wðtÞ ¼ ejxote�t2=2; ð7Þ

where xo is the wavelet frequency. The dilated version of the Fourier transform is

WðaxÞ ¼
ffiffiffiffiffi

2p
p

e�
1
2ðax�xoÞ2 : ð8Þ

In practice, the value of xo is chosen as xo ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logð2Þ
p

, which meets approximately the
requirements given by condition (2). Note that wðaxÞ is maximum at the central frequency
xc ¼ xo=a, and the Morlet wavelet can be viewed as a linear bandpass filter whose bandwidth is
proportional to 1=a or to the central frequency. Thus, the value of the dilatation parameter a, at
which the wavelet filter is focused on the wavelet frequency, can be determined from
a ¼ xo=xc. For a given value of the dilatation parameter a, the spectrum of the Morlet wavelet
has a fixed bandwidth. If the analysed frequency is high, the dilatation parameter becomes
small, and the spectrum of the Morlet wavelet function is wide. There is then a bad spectral
resolution. In many cases, a shifted Morlet wavelet can be used. Thus, instead of x in Eq. (8),
the difference ðx� xhÞ is applied, where xh is the shift frequency, [8]. The frequency of the
analysis can then be changed arbitrarily, giving better frequency-resolution but worse
time-resolution. An alternative is proposed in Sec. 3, using a modified Molet wavelet.

In summary, the wavelet transform analyzes an arbitrary signal xðtÞ only locally, at windows
defined by a wavelet function. The WT decomposes then the signal into various components at
different time-windows and frequency bands. The location of the time-window is controlled by
the translation parameter b, while the length of the frequency band is controlled by the dila-
tation parameter a. Hence, one can examine the signal at different time-windows and frequency
bands by controlling the translation and dilatation.

3
The modified Morlet wavelet and the wavelet transform entropy
An alternative to the choice presented in Sec. 2 is to modify the Morlet wavelet function,
introducing a parameter N which controls the shape of the basic wavelet ; this parameter
balances the time-resolution and the frequency-resolution of the Morlet wavelet. The modified
Morlet wavelet function used in this paper is

wðtÞ ¼ ejxote�t2=N; ð9Þ

with N > 0. The dilated version of its Fourier transform is

wðaxÞ ¼
ffiffiffiffiffiffiffi

Np
p

e�
N
4ðax�xOÞ2 ð10Þ

The wavelet filter central frequency is xc ¼ xo=a and gives then a relation between the scale
parameter a and the central frequency of the modified Morlet wavelet.

An increased value of N gives a narrower spectrum, allowing a better resolution of closely
spaced modes, but at the expense of the time-resolution: it will increase the frequency-resolution
but decrease the time-resolution. So, there always exists an optimal N that has the best
time-frequency resolution for a certain signal localized in the time-frequency plane. This
modified Morlet wavelet function offers a better compromise in terms of localization, in both
time and frequency for a signal, than the traditionally Morlet wavelet function.
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The optimal value of N is obtained by minimizing the entropy, [7], of the wavelet transform
introduced in this section.

We assume that the signal xðtÞ is given by sampled values f xðqÞ g, q ¼ 1; 2; . . . ;Q. The total
energy of this sequence is

P

q
jxðqÞj2 and the values

p(q) ¼ jx(q)j2
P

q
jx(q)j2

; ð11Þ

give the probability distribution of the signal’s energy in the time-domain. Furthermore, in the
wavelet multiresolution analysis of the time series f xðqÞ g, the energy for each scale ai is

Eai ¼
X

j

jWðai; bjÞj2; ð12Þ

Energy Eai is then obtained with a set of wavelet coefficients over a number of translations bj,
given a particular scale ai. As a consequence, the total energy can be obtained by

Pai ¼ Eai=Etotal:

Then the normalized values,

pai ¼ EtotalEai;

which represent the relative wavelet energy for i ¼ 1; 2; ::;M, define within the scale the
probability distribution of the energy. Clearly,

X

i

pai ¼ 1

and the distribution fpaig can be considered as a time-scale density. Following the definition of
entropy given in [7], we define the time-varying wavelet entropy as

WE ¼ �
X

i

pai log pai; ð13Þ

which measures the degree of disorder or unpredictability of energy in each wavelet transform.
The Shannon entropy, [7], gives a useful criterion for analyzing and comparing these distri-
butions, since it provides a measure of the information of any distribution. Using the modified
Morlet wavelet, there exists an optimal value of the parameter N obtained by the minimization
of the wavelet entropy. Simulated and experimental signals will be used in Sec. 6 to verify the
validity of the wavelet entropy.

4
Application of the wavelet transform to modulated signals
Consider the case of a signal xðtÞ modulated in amplitude

x(t) ¼ A(t) cos /ðtÞ½ �: ð14Þ

If xðtÞ is assumed to be asymptotic, the WT of xðtÞ can be obtained by means of asymptotic
techniques and can be expressed as, [9],

ðWwxÞða; bÞ ¼
ffiffiffi

a
p

2
A(b)W�½a/ 0ðbÞ�ej/ðbÞ; ð15Þ

the prime indicating a derivative. The dilatation parameter can be calculated in order to
maximize W�½a/0ðbÞ�, that is using the Morlet wavelet (or modified Molet wavelet) for the
dilatation aðbÞ ¼ xo=/

0ðbÞ. The maximum of the wavelet transform amplitude is essentially
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concentrated in the neighbourhood of a curve given by aðbÞ. This curve is called the ridge of
the wavelet transform, [8,9].

Consider now the free response of a viscously damped single-DOF, system

x(t) ¼ Be�fxnt cosðxdtþ voÞ; ð16Þ

with B denoting the residue magnitude, xn-the undamped natural frequency, xd ¼ xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
p

the damped natural frequency, f-the viscous damping ratio and the product r ¼ xnf called the
rate of decay. If the system is underdamped, that is, if the damping ratio is smaller than unit,
the signal xðtÞ can be considered asymptotic. Therefore, the results obtained previously can be
used, considering:

A(t) ¼ Be�fxnt; ð17Þ

/(t) ¼ xdtþ vo ) /0(t) ¼ xd: ð18Þ

The wavelet transform of the damped sinusoid is

ðWwxÞða; bÞ ¼
ffiffiffi

a
p

2
Be�fxnbW�ðaxdÞejðxdbþvoÞ: ð19Þ

For a fixed value ao of the dilatation parameter, the wavelet transform modulus is

�

�ðWwxÞðao; bÞ
�

� ¼
ffiffiffiffiffi

ao
p

2
Be�fxnb

�

�W�ðao;xdÞ
�

�; ð20Þ

and applying the logarithm to this function we obtain

ln
�

�ðWwxÞðao; bÞ
�

� ¼ � fxnbþ lnð
ffiffiffiffiffi

ao
p

2
B
�

�W�ðao;xdÞ
�

�Þ: ð21Þ

Thus, the decay rate r of the signal can be estimated from the slope of the straight line of the
logarithm of the wavelet transform modulus. Note that if the Morlet (or modified Morlet) wavelet
is used, the dilatation parameter is related to the damped natural frequency: ao ¼ xo=xd.
The wavelet transform phase is given by

Arg½Wwðao; bÞ� ¼ xdbþ vo )
d

db
Arg½Wwðao; bÞ� ¼ xd; ð22Þ

and the plot of d
db

Arg½Wwðao; bÞ� should be constant in time and equal to the damped
natural frequency xd. Once the decay rate and damped natural frequency have been esti-
mated, it is possible to identify both the natural frequency and damping ratio of the vibrating
system.

The damping ratio and frequency estimation procedures, based on the wavelet transform
presented above, can be extended to multi-DOF systems by selecting the right value of the
dilatation parameter corresponding to the mode of interest. As shown in Sec. 2, the WT is a
signal decomposition procedure working as a filter in the time-frequency (or scale) domain.
Thus, it offers a possible means of uncoupling vibration modes if the value of the dilatation
parameter is correct. Since the analyzing wavelet function has compact support in the time-and
frequency-domain, the WT for P multicomponent signals is

ðWw

X

P

i¼1

xiÞða; bÞ ¼
1
ffiffiffi

a
p
X

P

i¼1

Z tþaDtw

t�aDtw

xiðtÞW�ð
t� b

a
Þdt; ð23Þ

and

ðWw

X

P

i¼1

xiÞða; bÞ ¼
ffiffiffi

a
p X

P

i¼1

Z f iþðDfw=aÞ

f i�ðDfw=aÞ
XiðfÞW�ðafÞej2pf bdf ; ð24Þ
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where Dtw and Dfw are the duration and bandwidth of the wavelet function. This shows the
filtering action of the wavelet transform, where the wavelet analyzing function for each signal i
is peaked at frequency fi. In other words, it is assumed that the function w�ðaf Þ is vanishing
outside the interval ½fi � Dfw=a; fi þ Dfw=a�.
Consider now the free response of a P-DOF system

x(t) ¼
X

P

i¼1

Bie
�fixnit cosðxditþ voiÞ; ð25Þ

where Bi is the residue magnitude,fi is the damping ratio, xni the undamped natural frequency
and xdi the damped natural frequency associated to the i-th mode. From Eq. (19), the wavelet
transform of the multi-DOF system is

ðWw

X

P

i¼1

xiÞða; bÞ ¼
ffiffiffi

a
p

2

X

P

i¼1

Bie
�fixnibW�ðaxdiÞejðxdibþvoiÞ: ð26Þ

The wavelet transform is a signal decomposition procedure working as a filter in the
time-frequency domain : it analyzes a signal only locally, at windows defined by the wavelet.
Thus, a multi-DOF system can be decoupled into single-DOF components. For a fixed value of
the dilatation parameter, a ¼ ai, which maximizes W�ðaxdÞ, only the mode associated with ai

gives a relevant contribution in the wavelet transform, while all the other terms are negligible.
Thus, the wavelet transform of each separated mode i ¼ 1; 2; ::; P becomes

ðWwxiÞðai; bÞ ¼
ffiffiffiffi

ai
p

2
Bie
�fixnibW�ðaixdiÞejðxdibþvoiÞ: ð27Þ

Clearly, the wavelet transform offers a decoupling of multi-DOF systems into single modes.
However, Eq. (27) is true under the assumption of vanishing w�ðaixdiÞ outside the interval

Fig. 1. Variations of the wavelet entropy for the 3 DOF system
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½fi � Dfw=ai; fi þ Dfw=ai�, that is, if none of the other frequencies of the system, except fi and
more likely neither fi�1 nor fiþ1, belongs to this interval. The resolution of the wavelet trans-
form using the modified Morlet wavelet (9), with an optimal value of N , is good enough to
separate the i-th mode from the neighbouring modes.

Fig. 2. Amplitude of the wavelet transform for the 3 DOF system

Fig. 3. Determination of dilatation parameters for the 3 DOF system
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Using (27) associated with (21) and (22), it is possible to follow the amplitude and the phase
variations in the time-domain of each modal component, and to estimate the corresponding
damping ratio and natural damped frequency associated to the isolated mode. We obtain for each
i-th mode

Fig. 4. Instantaneous frequencies and wavelet transform envelopes for the 3 DOF system

Fig. 5. Comparison between the theoretical free response and the identified response using the inverse
wavelet transform for the 3 DOF system
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ln
�

�ðWwxiÞðai; bÞ
�

� ¼ �fixnibþ
�

ln

ffiffiffiffi

ai
p

2
B
�

�W�ðaixdiÞ
�

�Þ; ð28Þ

Arg½Wwðai; bÞ� ¼ xdibþ voi )
d

db
Arg½Wwðai; bÞ� ¼ xdi: ð29Þ

Fig. 6. Comparison between theoretical mode and identified mode using the inverse wavelet transform for
the 3 DOF system : (a) 1st mode; (b) 2nd mode; (c) 3rd mode
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This technique requires a previous choice of the value of the dilatation parameter ai corre-
sponding to the analyzed mode. The resolution of the wavelet transform depends on the value
of this scale parameter, thus, the choice of the analyzing wavelet is important.

5
Free response recovery using the inverse wavelet transform
The reconstruction signal xðtÞ given by Eq. (3), which considers the inverse wavelet transform,
can be simplified using the reconstruction formula of Morlet, [9], which only requires a single
integration. The formula is

x(t) ¼ 1

kw

Z þ1

0

ðWwxÞða; bÞ da

a
; ð30Þ

where kw is a constant given by

kw ¼
Z þ1

0

WðfÞ�

f
df :

The free response of a P-DOF system is recovered as

Table 1. Three-DOF system simulation results

Theoretical
frequency (Hz)

Estimated
frequency
(Hz)

Theoretical
damping
ratio

Estimated
damping
ratio using
Eq. (28)

Estimated
damping
ratio using
Eq. (32)

25 24,99 0,02 0,0196 0,02
45 44,99 0,015 0,015 0,0149
70 70 0,006 0,006 0,0059

Fig. 6. Contd.
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x(t) ¼
X

P

i¼1

1

kWi

Z tþaDtw

t�aDtw

ðWwxiÞða; bÞ
da

a
; ð31Þ

where the constant kwi
is associated with the i-th mode by

Fig. 7. Variations of the wavelet entropy for the Z24 bridge

Fig. 8. Determination of dilatation parameters for the Z24 bridge
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kwi
¼
Z f iþðDfw=aÞ

f i�ðDfw=aÞ

WðfÞ�

f
:

The free response of a single mode is then

xi(t) ¼ 1

kWi

Z tþaDtw

t�aDtw

ðWwxiÞða; bÞ
da

a
: ð32Þ

The damping estimation procedure is now straightforward; the free response for a single
mode is obtained from the inverse wavelet transform by using Eq. (32), and the damping
coefficient is then estimated as the slope of the semi-logarithmic plot of the free response
function envelope.

6
Applications

6.1
Simulated results
To prove the effectiveness of the identification procedure based on the WT technique, the
free response of a three-DOF system is analyzed. The parameters of the system are chosen
as follows : f1 ¼ 25 Hz; f2 ¼ 45 Hz; f3 ¼ 70 Hz; f1 ¼ 0; 02; f2 ¼ 0; 015 and f3 ¼ 0; 006. The
analyzing function is the modified Morlet wavelet, Eq. (9), and the parameter N is obtained
by minimization of the wavelet entropy, s. Eq. (13). Increasing N from 2 to 80 and
calculating the wavelet entropy of the coefficients, we obtain the relationship between N and
the wavelet entropy, as shown in Fig. 1. There exists a minimal value of the wavelet entropy
when N ¼ 25, which means that N ¼ 25 is the optimal value of N . The amplitude of the
wavelet transform is given in Fig. 2, and the three modes corresponding to the simulated
signal are visible. The dilatation parameters ai for each eigenmode can be obtained from
Fig. 3, and damped natural frequencies can be then estimated by deriving the phase of
the wavelet transform. comp. Eq. (29). The decay rate of the envelope for each mode is
then calculated from the slope of the straight line of the logarithm of the wavelet trans-
form modulus Eq. 28. Natural frequencies and damping ratios can be then derived from
Fig. 4. Figure 5 shows a comparison between the theoretical signal (solid line) and the
recovered signal from the inverse wavelet transform, Eq. (30), (dashed line). These two
curves show a good agreement. The wavelet reconstruction formula (32) is used to recover
separated modes and the values of damping coefficients are estimated from the decaying
envelopes of the recovered single modes as shown in Fig.6. Note that these curves show
good agreement, apart from the derivations at the beginning and end of the data due to
truncation effects.

The results in Table 1 show the accuracy of the technique in estimating natural frequencies
and damping ratios.

6.2
Application to real data measurements
The WT identification technique presented above was applied to the analysis of acceleration
responses of a real engineering structure, the Z24 bridge between Bern and Zurich in
Switzerland. The bridge was excited by ambient forces, which are essentially due to traffic.
These inputs could evidently not be measured, so only acceleration data were available. A
full description of the test set-up, equipment disposition and bridge geometry can be found
in [6].

The wavelet transform estimation technique operates on the free response of the analysed
system. A well-established method to convert random responses of a structure to free decay
responses is the random decrement technique, [4]. Its basic concept is that the acceleration
response yðtÞmeasured on the structure can be decomposed into free vibration component and
forced vibration component. The free vibration component contains an impulse or step re-
sponse, while the forced vibration component represents response to the random load. The free
vibration component can be obtained by a special averaging procedure of measurements,
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which removes the random part, leaving its deterministic part. The randomdec signal (or free
response) xðsÞ of the measured signal is defined by, [4]

xðsÞ ¼ 1

Ns

X

Ns

m¼1

yðtm þ sÞ; ð33Þ

where Ns is the number of time samples averaged, s is the free response time-length, and tm are
determined from original data as all the time instants satisfying initial conditions; they are taken
as those of zero values crossing the time axis with a positive slope on the acceleration-time
history record. We have thus a very simple condition

Fig. 9. Instantaneous frequencies and wavelet transform envelopes for the Z24 bridge
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tm : yðtmÞ ¼ 0 and
dy

dt

� �

t¼tm

> 0: ð34Þ

The total length of the randomdec signal was 4096 points. Once the free responses of the
structure have been estimated, the wavelet transform identification procedure is applied.
First, the optimal value of N is obtained, using the minimization of the wavelet entropy.
From Fig. 7, we obtain N ¼ 27. The dilatation parameter ai for each eigenmode is obtained
from Fig. 8. Figure 9 shows three examples of damped natural frequencies and decay rates,
natural frequencies and damping coefficients are then estimated from these plots using a
linear interpolation procedure. A comparison between randomdec signal (solid line) and
recovered signal (dashed line) using the inverse wavelet transform is given in Fig. 10; these
two curves show a good agreement. The wavelet reconstruction formula is used to recover
separated modes and to estimate damping coefficients from envelopes of these curves, which
are plotted in Figs. 11(a–c), for three first modes. The estimated modal parameters for the
seven first modes of the Z24 bridge are shown in Table 2.

The natural frequencies obtained using the wavelet transform displayed a good match with
those found using other techniques operating in the time-or frequency-domain, [6]. Damping
ratios estimation is always crucial when lightly damped structures are considered, however,
damping coefficients estimated using the amplitude of the wavelet transform (28) and the
recovered modes (32) give satisfactory results.

7
Conclusion
An approach to estimate modal parameters in the time-domain from the output data only,
using the wavelet transform has been presented. The results obtained on the numerical sim-
ulation underline the accuracy of the wavelet transform method in estimating both natural
frequencies and damping ratios. The wavelet transform method is well suitable for the analysis
of mechanical systems excited by random forces and can be applied to real data. Note that also
other methods based on the spectral decomposition of a transition matrix, [6], have been used
to obtain modal parameters from the output measurements. A comparison of these methods

Fig. 10. Comparison between the theoretical free response and the identified response using the inverse
wavelet transform for the Z24 bridge
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with the wavelet transform method presented here is under investigation. Further work will be
directed to modal parameter identification in nonlinear systems using the wavelet transform.
The problem of neighbouring natural frequencies, which is related to the scale parameter, is
also under investigation.

Fig. 11. Identified mode and its envelope using the inverse wavelet transform for the Z24 bridge : (a) 1st
mode; (b) 2nd mode; (c) 3rd mode
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Fig. 11. Contd.

Table 2. Estimated modal parameters of the Z24 bridge

Frequency
(Hz)

Damping ratio
using Eq. (28)

Damping ratio
using Eq. (32)

3,85 0,57 0,61
4,93 1,82 1,84
9,53 2,31 2,42
10,63 1,88 2,07
12,95 1,72 1,87
18,59 2,43 2,67
20,62 2,15 2,28
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