
A sufficient criterion for the onset of sprag-slip oscillations
N. Hoffmann, L. Gaul

Summary The objective of the present work is to reexamine the dynamic phenomenon of
sprag-slip instability. To that purpose, a model consisting of an elastic beam sliding over a rigid
belt at constant speed is set up and investigated. It turns out that there are parameter com-
binations for which the system does not posess a static solution corresponding to a steady
sliding state, neither stable nor unstable, a phenomenon first discovered by Painlevé consid-
ering sliding rigid bodies, sometimes referred to as the Painlevé paradox. The nonexistence of a
steady sliding state is a sufficient criterion for the appearance of sprag-slip oscillations, since in
the corresponding configurations the fundamental behavior of the system is intrinsically
dynamic in nature.
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1
Introduction
Friction-induced vibrations and friction-related noise belong to common phenomena
observable in machine units as different as automotive wheel brakes, squealing railway wheels
or even door hinges. In the literature, a number of mechanisms for these phenomena are cited,
among those the well-known sliding velocity-dependent friction coefficient, s. e.g. [14], mode
coupling, cf. e.g. [1, 2, 8, 9, 16], follower forces and sprag-slip, s. e.g. [5, 10, 18] for reviews. The
present work focuses on the last of these mechanisms, first described already in [15]. The
fundamental model showing sprag slip-type behavior is the archetypical beam-on-disk setup,
where a tilted metal beam is sliding over a rotating metal disk. When the beam’s angle of
inclination with respect to the disk axis is unfavorable, very vigorous dynamic effects are
observable, usually involving intermittent sticking and slipping phases; sometimes the beam
may even show a lift-off from the disk.

In the context of the above works on friction-induced vibration, another line of research,
although closely related, often remains unmentioned or unnoticed: already in 1872 Jellet, [11],
and in 1895 Painlevé, [13], investigated the existence and uniqueness properties of rigid bodies
subjected to the Coulomb-type sliding friction, making use of a rigid beam model. It was
noticed that, due to the nonlinearity arising from the friction model, both the uniqueness and
the existence of solutions for this type of system can be violated, i.e. there is a possibility of
multiple solutions and for non-existence of (static) solutions. The phenomenon is called the
Painlevé paradox; we refer to [3] for a review discussing the historic aspects of the issue and to
[6] for a rather recent treatment using the original Painlevé system as basic model. In the
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following, these observations have been mainly taken into account in the development of
multibody-system modeling, since multibody systems subjected to friction interaction have to
be able to cope with the Painlevé paradox (cf. e.g. [3] for further references), also from the
perspective of non-smooth mechanics. Very recently, [12], these phenomena have been con-
sidered with respect to a specific aspect of the system dynamics: from the point of view of
bifurcation theory, the loss of solution existence corresponds of course to a system transition or
bifurcation, demarcating the borderline between distinct regimes of possibly different
dynamical behavior. The corresponding system characterization may therefore yield valuable
insight into the origins of the phenomena, hard to understand otherwise.

The motivation for the present work lies in the fact that, although sprag slip seems to be a
phenomenon known already for a long time now, technical applications are still plagued by
sprag slip-type vibrations and noise. The reasons for these enduring problems with sprag slip
seem to be twofold. Firstly, although many – and sometimes very intricate – mathematical
descriptions and explanations for sprag slip have been given, cf. eg. [15], a simple but general
enough, intuitive picture of the basic underlying mechanism allowing e.g. design engineers to
derive applicable design measures, seems to be missing still. Secondly, also a simple criterion,
allowing a direct and reliable prediction of whether or not a system will show sprag slip, is not
at hand yet. The present work therefore reexamines the fundamental dynamical aspects of a
system showing sprag slip-type characteristics. It aims at contributing to both an intuitive
understanding of sprag slip and to the development of an operational criterion allowing
engineers using modern tools like Finite Element Analysis or Elastic Multibody System Sim-
ulation to predict whether and when their system will show sprag slip. To that purpose, a model
problem is set up, the appearing phenomena are investigated in detail, and a proposal for an
approach to deal with sprag slip is derived from the results.

The paper is set up as follows: first, a description for the model system is given in Sec. 2.
Then the steady sliding state of the resulting two-degree-of-freedom (2DOF) model is deter-
mined in Sec. 3. It turns out that the system does not have a steady sliding state for all
parameter combinations. When a steady sliding state is lacking, the system is dynamic by its
very nature, and the system’s nonlinearities will determine in a very subtle manner the types of
limit cycles to be observed. To better understand the reason, why systems of the type con-
sidered sometimes lack a steady sliding state, Sec. 4 treats a reduced 1DOF model. From this,
an intuitive understanding for the observable dynamics can be gained. The conclusions and an
outlook, close the paper.

2
The model problem
It is the objective of the present work to reexamine what is usually called sprag-slip instability
in the literature. To do this, we consider the beam-on-belt configuration shown in Fig. 1. The
beam of length l is tilted with respect to the vertical by an angle c and loaded with a constant

Fig. 1. The model system
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force FL along its neutral axis. At its end it is clamped in the transversal directions and
elastically held in the axial direction, modelled by the spring stiffness ~K. The contact to a
moving belt system moving with a constant speed v is made via a spring K representing the
normal contact stiffness. Coulomb-type friction is assumed, such that FR ¼ lFN . Note also that
the point of contact is not located on the neutral axis of the beam, what will also be taken into
account. The system will be modelled using two DOF.

For the beam’s axial displacement, the equation of motion reads

m€~yþ ~K~y ¼ FL þ FN cos cþ FR sin c ; ð1Þ

where the normal and the frictional forces have been projected onto the direction of the
undeformed beam’s neutral axis. Using the Coulomb friction law and taking into account the
relative velocity between the beam tip P and the belt, one obtains

m€~yþ ~K~y ¼ FL þ FN ½cos cþ lsignðv� _xPÞ sin c� ; ð2Þ

where _xP denotes the tangential velocity component of the beam’s contact point. An expression
for FN will be given later.

For the bending of the beam, we will use a modal reduction to the first vibrational bending
eigenmode. Although this approximation is rather crude and limits the investigation to a
conceptual study, the formal simplification however is convincing and allows for a substantial
insight to be gained without getting involved into technical difficulties. Starting from the beam
dynamic equation (with beam bending stiffness B and mass density lm)

Bw0000 þ lm €w ¼ pð~yÞf ðtÞ ; ð3Þ

the lateral displacement w is expanded into normal modes of the homogeneous system:

w ¼
X1

j¼1

/jð~yÞqj ; ð4Þ

where qj denotes the amplitude if the j-th mode. In our case, the boundary conditions to be
applied correspond to the case of a beam clamped at one end at free at the other. This leads to
the usual orthogonality conditions for the bending mode shape functions, which can be used to
derive the evolution equation for the first mode

m1 €q1 þ k1q1 ¼ r1 ; ð5Þ

where the modal stiffness, mass coefficient and the driving term are given as

k1 ¼
Z l

0

/00001 /1Bd~y ¼ k4

Z l

0

/1/1Bd~y; m1 ¼
Z l

0

/1/1lmd~y; r1 ¼
Z l

0

/1pfd~y : ð6Þ

In the following, we will use the equation for the first vibration mode as a representation of the
system’s bending DOF.

The normal contact force and the frictional force are now modelled as point forces acting on
the beam’s contact point, such that pð~yÞ ¼ dð~y� lÞ can be used to simplify the expression for
r1 to

r1 ¼ /1ðlÞFN ½� sin cþ lsignðv� _xPÞ cos c� : ð7Þ

The effects of the moment FN cos cd have been neglected here, since presently we will focus on
thin beams only. To calculate m1 and k1, the analytical solution for /1ð~yÞ is used

/1ð~yÞ ¼ C
cosh kð�~yÞ � cos kð�~yÞ

cosh klþ cos kl
� sinh kð�~yÞ � sin kð�~yÞ

sinh klþ sin kl

� �
; ð8Þ
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corresponding to the beam clamped at one end and free at the other, with k ¼ 1:87510=l
resulting from the beam equation, cf. eg. [4]. To further simplify the following calculations, we
use a scaling corresponding to /1ðlÞ ¼ 1. Then q1 amounts directly to the lateral displacement
of the beam’s neutral axis at its free end due to the bending deformation. With these
assumptions, Eq. (7) for the beam’s bending deformation reads

m1€q1 þ k1q1 ¼ FN ½� sin cþ lsignðv� _xPÞ cos c� : ð9Þ

Here, FN is still to be determined, which may be done by observing that in the equations of motion
derived above FN depends on the beam’s translation ~y and on its bending state, characterized by
q1. We determine FN from the compression of the normal contact stiffness K as

FN ¼ �KyPhð�yPÞ ; ð10Þ

where yP denotes the displacement of the beam’s contact point P normal to the moving belt and
h stands for the step-function, used here to include the possibility of a lift-off. The contribution
to yP from the rigid body displacement ~y is easily determined as ~ycosc.

However, for determining the contribution due to the beam bending, some more care has to
be taken. For this purpose consider Fig. 2 showing the undeformed and deformed beam
configurations. Due to the linear beam theory used, the neutral axis shows only deflections
perpendicular to its undeformed configuration. As a consequence of the finite thickness of the
beam, however, the contact point P has displacements different from those of the neutral axis
even within the linear approximation, since the orientation of the neutral axis in the deformed
state differs from that in the undeformed state.

Let’s first determine the position P0 of the deformed beam’s contact point in the ~x� ~y
coordinate system aligned with the undeformed beam and located on the neutral axis, as shown
in Fig. 2. The new position of the contact point can be determined by rotating the vector
P ¼ dê~x by an angle a (which gives the effect of the reorientation of the neutral axis at the
beam’s end) and then adding the translatory displacement q1ê~x due to the bending deformation
of the neutral axis:

P0 ¼ DPþ q1ê~x : ð11Þ

Corresponding to the linear bending which we consider here, the rotation matrix D is only the
linear part of the nonlinear rotation matrix

cos a � sin a
sin a cos a

� �
¼ 1 �a

a 1

� �
þ Oða2Þ ¼ Dþ Oða2Þ ; ð12Þ

which results in

P0 ¼ 1 �a
a 1

� �
d
0

� �
þ q1

1
0

� �
¼ d þ q1

ad

� �
: ð13Þ

Fig. 2. The bending-induced displacement of the beam’s
contact point
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From this, the relative displacement vector P0 � P can be calculated as

P0 � P ¼ q1

ad

� �
: ð14Þ

Now it is convenient to express also the angle a as a ¼ ~aq1 where ~a ¼ /01ðlÞ. Inserting this in
(14) shows that point P0 moves along a straight line, which is however not necessarily parallel to
the undeformed beam’s bottom edge

P0 � P ¼ q1
1

~ad

� �
: ð15Þ

Already previous beam-on-disk studies, [17], have shown that this (linear !) effect has to be
taken into account for adequate modelling of considered systems.

To calculate FN , a further coordinate transformation of P0 � P into the x� y coordinate
system is needed for which the x-direction is aligned with the belt’s plane and the y-direction is
orthogonal to it, s. Fig. 1. It is performed using the rotation matrix

D~x;~y!x;y ¼ cos c sin c
� sin c cos c

� �
: ð16Þ

This yields the coordinates of the contact point in the coordinate system that has to be used to
calculate the compression of the contact spring K and the lateral displacement relevant for the
stick-slip condition:

P0 � P ¼ cos c sin c
� sin c cos c

� �
1

~ad

� �
q1 ¼ q1

cos cþ ~ad sin c
� sin cþ ~ad cos c

� �
: ð17Þ

To this, the rigid body translation contribution has to be added in order to obtain the position
of the contact point as a function of both beam translation and bending

xP

yP

� �
¼ ~y sin cþ q1ðcos cþ ~ad sin cÞ

~y cos cþ q1ð� sin cþ ~ad cos cÞ

� �
: ð18Þ

With this result, FN can be expressed in the variables ~y and q1. The resulting system of
equations of motion follows

m€~y¼� ~K~yþFLþFN ½coscþlsign½v� _xP�sinc�
¼�~K~yþFLþð�KÞhð�yPÞ½~ycosc�q1ðsinc�~ad coscÞ�½coscþlsignðv� _xPÞsinc� ;

m1€q1¼�k1q1þFN ½�sincþlsign½v� _xP�cosc�
¼�k1q1þð�KÞhð�yPÞ½~ycosc�q1ðsinc�~ad coscÞ�½�sincþlsignðv� _xPÞcosc� :

ð19Þ

These lengthy expressions may easily be brought into the generic form

m€~y
m1€q1

� �
þ K11 K12

K21 K22

� �
~y

q1

� �
¼ FL

0

� �
; ð20Þ

where the coefficients of the stiffness matrix can easily be identified. Note however that they
depend on the system’s state: due to friction and the possibility of a lift-off, the present system
is typically piecewise-linear, in which the restoring forces are nonconservative. Due to the
presence of friction, we have K12 6¼ K21.

3
The 2DOF problem: the static solution for steady sliding
In the present section we consider the system allowing both bending and translation as
described by Eqs. (19) and (20). We determine first the static solution (if possible), i.e. what
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usually is called the steady sliding state. For simplicity we restrain parameter variations to the
two key parameters: the friction coefficient l and the beam’s inclination angle c. All other
parameters are set to the fixed values l ¼ 150 mm, d ¼ 5 mm, m ¼ 2000 g, lm ¼ 0:27 g/mm,
K ¼ 1:0� 107 N/mm, ~K ¼ 1:0� 103 N/mm and FL ¼ �10 N, which correspond qualitatively
to values that can be obtained in typical experiments, cf. e.g. [2].

Looking for the steady sliding state, i.e. the static solution of (19), means setting all temporal
derivatives to zero and solving the resulting algebraic system. Note first that for this purpose all
sign-terms can be set to one, since for the static state to be determined also _xP will vanish. Then
note that two mutually exclusive states of the system have to be considered, depending on
whether the beam is in contact with the belt (yP < 0) or not (yP > 0).

For yP < 0, the equations for the static state read:

~y½� ~Kþð�KÞcoscðcoscþlsincÞ�þq1 �ðsinc�~adcoscÞðcoscþlsincÞ½ �¼�FL

~y½ð�KÞcoscð�sincþlcoscÞ�þq1½�k1þð�KÞðsinc�~adcoscÞð�sincþlcoscÞ�¼0 :
ð21Þ

For yP > 0, the system reduces to:

~K~y ¼ FL

k1q1 ¼ 0 :
ð22Þ

However, Eqs. (22) do not have a solution with the constraint yP > 0 (i.e. no contact) for
FL < 0 and 0 < c < p=2, what can easily be seen from the definition of yP in (18). To determine
static solutions we will therefore in the following solve the linear algebraic system (21). After a
solution is obtained, it must be checked, if the resulting values of ~y and q1 do in fact respect the
condition yP < 0. Should that not be the case, the system does not have a steady sliding state.

Figure 3 shows the static equilibrium results of ~y, q1 and yP vs. the beam’s angle of incli-
nation c for l ¼ 0:0, 0:2, 0:4, 0:6 and 0:8. First note that the result for l ¼ 0:0 is nothing but the
well-known beam bending result viewed in a somewhat tilted coordinate system: for all angles c
the beam is tilted as if its tip were trying to align itself with the contact surface. For l ¼ 0:2,
however, there is a parameter regime of small c, where the beam tip is rather trying to get into
an upright position with respect to the belt, due to the friction force exerting bending. For
larger c, however, the bending known from l ¼ 0 is recovered. Note also that there is a small
range of parameters at small c where ~y is positive, i.e. the beam as a rigid body backs somewhat
off from the belt, and only the instantaneous beam bending still allows the beam to stay in
contact with the belt. For l ¼ 0:4, this effect becomes even more apparent: there is a rather
wide range of the inclination angle for which ~y is positive, i.e. with respect to the longitudinal
displacement the beam is somewhat lifted from the surface; the contact is nevertheless sus-
tained, since the bending deflection is so strong that the contact point on the beam’s tip stays
attached to the moving belt.

The fundamental surprise of this simple analysis, however, appears for friction coefficients
l > 0:45, e.g. for l ¼ 0:6. Now a range of the inclination angle appears, for which our analysis
indicates yP > 0, which means that the beam’s tip point is not attached to the belt any more.
We have noted already that the analysis performed does not lead then to a valid static solution,
and we have to conclude that for this range of c there is no static solution, no steady sliding
state at all. Looking at the results for l ¼ 0:8 it turns out that the parameter regime for which
no static solution exists further increases with increasing l. To clarify the situation Fig. 4 shows
the parameter regime for which no static solution, no steady sliding state exists. Apparently
something is happening for l > 0:45, with the consequence that for certain inclination angles
of the beam the whole system lacks the property of having a static solution.

To understand the situation better, Fig. 5 shows results of an eigenvalue analysis of the
system and some force-vector plots, since a direct graphical representation of the four-
dimensional phase-space is of course not possible. For the eigenvalue analysis, the homoge-
neous part of Eqs. (19) is solved under the restraints yP < 0, i.e. in the case of closed contact,
and for _xP < v, i.e. at small vibration amplitude, using the exponential ansatz

~y
q1

� �
¼ ~y0

q0
1

� �
expðixtÞ : ð23Þ

The left column of Fig. 5 shows the resulting lowest eigenvalue x2, corresponding to the beam
bending mode, for l ¼ 0:0, 0:4 and 0:8 vs. the beam inclination angle c. Note that the friction-
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related stiffness effects lead to a decrease of the natural frequency of beam bending for small
inclinations; for l ¼ 0:8 there even is a range of angles for which the beam bending mode has
become monotonically unstable (x2 < 0). This instability always coincides with the lack of a
steady sliding state, as can be shown by simple algebra.

We will not focus, however, on spectral characteristics here, but try to point out what does
this change in the stability characteristics in conjunction with the loss of a steady sliding state
mean for the dynamics of the system. Since the phase state of the system is four dimensional,
the corresponding flow geometry can not be simply plotted in two-dimensional graphs. Instead,
we have chosen to represent the force-vector fields arising from Eqs. (21) and (22) for a fixed
inclination angle of c ¼ 15�. In a first step, we consider Eqs. (21), disregarding that it is valid
for yP < 0 only. The force-vector fields for l ¼ 0:0, 0:4 and 0:8 are shown in the middle column
of Fig. 5. The force-vector fields of the complete system (corresponding to either Eqs. (21) or
(22), depending on whether yP < 0 or yP > 0) are represented in the right column of Fig. 5.

Now, how can the phenomenon of the disappearance of the static solution be understood? In
Sec. 4, we will give a rather intuitive explanation, using a simplified 1DOF model. Here,

Fig. 3. Static equilibrium results for
~y, q1 and yP vs. the beam’s angle of
inclination c at l ¼ 0:0, 0:2, 0:4, 0:6
and 0:8 (from top to bottom)

Fig. 4. Parameter regime in c vs. l, for which no static solution, i.e. no
steady sliding state exists
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however, we choose a mathematical perspective and give an answer in terms of the dynamical
systems theory. Basically, the phenomenon described can be understood as a peculiar interplay
of two aspects: First, there is the possibility of a lift-off in the system. Second, there are the
peculiarities with the system’s fixed points, i.e. its static solutions. We have seen that there is a
range of inclination angles for which no static solution exists, due to the fact that the contact
spring K can not be brought into a stretched state. Instead, the beam takes off and the system’s
discontinuity forces the examiner to switch the equations of motion. Let us now for a while
assume that the lift-off does not take place and that the statics of the system is therefore fully
described by Eqs. (21) that apply otherwise only for yP < 0. Of course, there is always a static
solution then, marked through a circle in the middle column of Fig. 5. But what about the
stability properties of these solutions, the stability of the fixed points? Figure 5 (left column)
gives the stability results for l ¼ 0:0, 0:4 and 0:8. It turns out that the static solutions corre-
sponding to yP > 0, which appear for the higher values of l only, are unstable since one of the
two eigenmodes of the system has turned unstable. Mathematically, an increase in l transforms
the stable static solution into one that is unstable with respect to one monotonically unstable
mode. In terms of dynamical systems notation, a stable ‘elliptic’ fixed point has been trans-
formed into an unstable ‘hyperbolic’ one, s. e.g. [7] for further details.

The behavior described up to now is not something very peculiar from the perspective of the
system dynamics. What makes the system considered interesting, however, is its discontinuous
response due to the lift-off. It comes into play rather intricately: when the lift-off condition is
taken into account again, it erases all hyperbolically unstable fixed points from the full system,
since they would correspond to a stretched contact spring, which is physically inadmissible. In
the phase space nevertheless the hyperbolic fixed point’s signature still remains, s. the lowest
graph in the right column of Fig. 5. In the four-dimensional phase space the lift-off condition
yP ¼ 0 forms a hypersurface cutting the space into two parts. The part with yP < 0 (repre-
senting all situations when the beam is in contact with the belt) looks as if there were a
hyperbolically unstable fixed point around somewhere; however, it is not there any more, since
for yP > 0 another type of phase space, which contains no fixed point at all, has been stitched to
the hypersurface yP ¼ 0.

To summarize this analysis we state that for certain parameter combinations the system
considered does not have a static solution, corresponding to a steady sliding state, which can be
traced back to the combination of the system’s stability characteristics and its dynamic dis-
continuity related to the possibility of a lift-off.

On the first sight, this behavior may be merely of academic interest. However, having
understood this leads to a number of immediate consequences, the most significant of which is
that systems without a steady sliding state always show limit-cycle behavior, irrespective of how
strong the applied damping is.

Before we discuss this and other consequences, we will consider a simplified 1DOF problem,
which should elucidate from an intuitive perspective the underlying mechanism.

Fig. 5. Results for friction coeffi-
cients l ¼ 0:0, 0:4 and 0:8 (from top
to bottom) Left column: Eigenvalues
x2 for the beam’s first bending mode
vs. the inclination angle c. Middle
column: Force-vector fields corre-
sponding to Eq. (21). Also shown are
the separatrices corresponding to
the eigenvectors (straight lines with
arrows indicating temporal evolu-
tion) and the static solutions (small
circle). Right column: Force-vector
fields of the complete system
(21þ 22). The dotted line represents
the borderline to a lift-off. The vec-
tors in the lift-off-position are mag-
nified for better visibility
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4
The 1DOF problem
The 2DOF problem presented in Sec. 3 has been described as it naturally emerges from
modelling of the beam-on-disk setup. It has been shown that for certain parameter combi-
nations the system does not have a static, steady sliding state, not even an unstable one, such
that the system is per se dynamic in nature.

The mathematical explanation for this phenomenon given above will be given now a more
intuitive treatment in terms of force and stiffness characteristics. For this purpose, we put a
constraint on the system in the longitudinal axis, assuming ~y ¼ const: Then additional bearing
forces will appear along the beam’s longitudinal axis that restrain the beam in its position. For
the dynamical behavior, instead of Eqs. (19), a single equation in q1 remains to be valid

m1€q1 þ q1½k1 � hð�yPÞKðsin c� ~ad cos cÞð� sin cþ l cos cÞ�
¼ �hð�yPÞ~yK cos c½� sin cþ l cos c� : ð24Þ

When the beam is clamped in a position allowing no contact with the belt, q1 ¼ 0 is the trivial
static solution. If the clamping is such that contact is enforced (yP < 0), the static solution can
be obtained from

q1½k1 � Kðsin c� ~ad cos cÞð� sin cþ l cos cÞ� ¼ �~yK cos cð� sin cþ l cos cÞ ; ð25Þ

given that the condition yP < 0, i.e.

~y cos c� q1ðsin c� ~ad cos cÞ < 0 ; ð26Þ

is fulfilled. Figure 6 shows exemplary solutions to Eq. (25) as a function of the tilting angle c,
assuming l ¼ 0:6, ~y ¼ �0:1 mm, K ¼ 1000 N/mm and otherwise the same constants as in
Sec. 3. It turns out that a picture largely analogous to the 2DOF case, Fig. 3, emerges: again
there is an angle interval for which the solution of (25) does not satisfy the contraint (26), i.e.
there is no static, steady sliding state within this interval.

In close analogy to the 2DOF case, the static solution of (25) is unstable in exactly the same
parameter regime in which it does not satisfy (26), cf. Fig. 6. The 1DOF model, however, allows
us to give a simple intuitive explanation for this, at the first sight rather peculiar, system
behavior. To that purpose, reconsider Eq. (25). The left-hand side consists of the product of the
displacement q1 with the corresponding stiffness coefficient containing a contribution of the
friction force. The key feature of this friction-related term is that it may give a diminishing
contribution to the total stiffness coefficient, that may even render the total stiffness coefficient
negative, i.e. the system may become unstable.

The right-hand side term, due to the constraint on the system, represents a given load on the
system. The beam reacts to this load by building up a deflection q1 which is correlated to a
structural restoring force. With the deflection there goes along an increase in the normal force:
by bending the beam in the positive direction, its contact tip – due to the axial constraint on the
beam – is pushed further into the contact spring. Therefore the normal force, and by that also
the friction force, do increase and interfere with the purely structural restoring forces. When
the friction coefficient is large enough to allow for a strong enough friction force this effect may
lead to self-excitation: the beam bends to set up a restoring force, but instead of reaching a
static equilibrium position also the accelerating friction force increases and may even over-
compensate the increasing structural restoring force. The system is then continuously accel-
erated and the increasing bending follows unlimited, at least in the linear model.

Fig. 6. Values of yP (left), q1 (mid-
dle) and x2 (right) vs. the inclination
angle c for the 1DOF model as ob-
tained from Eq. (25)
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Having grasped this fundamental feature of the system’s dynamic behavior, a comparison
with Painlevé’s and Spurr’s criteria is appropriate. According to these earlier investigations,
[13], [15], the instability condition for rigid rods subjected to Coulomb friction amounts to
l > tan c. It is argued that for l ¼ tan c large, even infinite forces appear, an effect called
‘spragging’ by Spurr, and the system is driven into instability. Now, how does this picture fit
with the results of the present work? A close look at Eq. (25) gives the answer. For not too small
c (a case we will describe below) the condition l ¼ tan c describes exactly the parameter
combination for which the sign of the friction-induced restoring forces of the beam bending,
i.e. the term involving the contact stiffness K on the left-hand side of Eq. (25), changes sign,
such that for l > tan c it counteracts the structural restoring forces according to k1. When the
system parameters l or c cross this border, the whole restoring coefficient of the equation’s left-
hand side very rapidly goes to zero as an effect of the size of K, leading to unlimited beam
bending, as may be observed also from Fig. 6.

Note, however, that the classic reasoning allows an explanation only for the disappearance of
a static solution when c is reduced below a critical value. Using the present elastic beam model,
there still remains a parameter interval of very small angles above zero, where there exists a
static solution, in contradiction to Spurr’s condition. The present approach however allows a
simple explanation for this phenomenon as well. For very small c the beam thickness plays a
role, resulting from the factor sin c� ~ad cos c on the left-hand side of Eq. (25). Since both d and
~a are typically rather small quantities, for reasonably large values of c both the sign and the
value of the term are dominated by the sin c component. When c approaches zero however,
inevitably a sign change occurs, which renders the system stable again. Thus, the reasoning
followed in the present work corresponds well with the condition for instability proposed by
Spurr, although, the inclusion of elasticity and the finite beam thickness yield additional effects.

Another, more formal comment seems necessary: systems with negative stiffness coefficients
are well known in structural dynamics, cf e.g. the inverted pendulum. Usually, for such systems
there still exists a static solution, although it is unstable, as e.g. in the case of the inverted
pendulum. In the present case, however, the static state itself (the system’s fixed point in
mathematical terms) does not exist any more for certain parameter combinations, although its
phase space environment still characterizes the system’s dynamics. This is the very peculiarity
of what is usually called sprag-slip dynamics.

5
Conclusions and outlook
We have seen that in systems like the one considered it is possible that for certain parameter
combinations a static solution, i.e. a steady sliding state, does not exist. From this several
conclusions have to be drawn for the analysis and treatment of this type of system, especially in
technical applications.

First, it has always to be checked whether a static state, a steady sliding state exists under the
operational conditions the system is subjected to. In the case of a lacking static solution, the
system will inevitably show limit-cycle behavior, which may well be called a sprag-slip oscil-
lation. In this sense, a sufficient condition for detecting sprag-slip oscillations has been
revealed. It should be noted that in this case very special care and attention will have to be paid
to the system’s nonlinearities, since they will crucially influence even the general nature of the
resulting vibration. Also, only if a steady sliding state exists, the usual analysis techniques based
on linear (or linearized) modelling, like stability analysis of the complex eigenvalue type, are
applicable.

Second, measures for quietening a sprag slip-type system will have to be markedly different
from systems with a static state: for example, when there is no static solution, simply adding
damping will not result in significant improvement of the systems vibration properties, since
there just is no quiet static state to which the more damped system might tend to. Quietening a
sprag-slip system might therefore mean finding an acceptable dynamical behavior rather than
eliminating dynamical behavior in general.

Third, even though it will be very helpful with respect to quietening sprag slip-type systems
to eliminate system configurations that inevitably lead to dynamical behavior – as can be
characterized by the sufficient condition for dynamical behavior proposed in the present work,
it remains a major challenge to work towards necessary criteria. Already from simple 1DOF
stick-slip systems it is well known that, as an effect of the peculiarities of the system nonlin-
earities involved, very intricate and – from an engineering point of view – vicious phenomena
like e.g. discontinuous subcritical bifurcations are possible. Necessary criteria for whatever
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dynamical state of systems faced with sprag-slip characteristics will therefore demand further
efforts, especially with respect to the nonlinear dynamics of the systems under consideration.

These – certainly incomplete – conclusions already show that there is still much work to be
done on sprag slip-type systems. Three aspects, however, seem to be of major importance for
gaining further understanding: First, the time evolution of sprag-slip oscillations has to be
investigated in detail. Especially when situations allowing lift-off are admitted, it will have to be
answered, if structural damping will lead to bounded limit cycles, or if even then unbounded
solutions do exist. We have not conducted such an analysis for the present model, since we
think that, second, the conceptual results of the present study should be reexamined using
modelling tools allowing closer representation of realistic technical applications, like e.g. an
automotive brake. From this more realistic and technically oriented work certainly much could
be learned about actual realizations of sprag slip. Third, the present work sets the motivation
for having a close look at relevant system nonlinearities. Although in usual modelling practice
nonlinearities are often considered as second-order model components, we have seen that in
sprag-slip configurations the system nonlinearities are of primary importance for the system’s
dynamics, and have to be taken into account even at the simplest level of modelling. The role of
nonlinear structural forces (e.g. due to geometric or material effects) as well as of realistic
nonlinear contact and friction forces will have to be examined in close detail and will add
substantial further facets to the understanding of the sprag-slip phenomenon.
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