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Summary By introduction of a special dependent variable and separation of variables tech-
nique, the electroelastic dynamic problem of a nonhomogeneous, spherically isotropic hollow
sphere is transformed to a Volterra integral equation of the second kind about a function of
time. The equation can be solved by means of the interpolation method, and the solutions for
displacements, stresses, electric displacements and electric potential are obtained. The present
method is suitable for a piezoelectric hollow sphere with an arbitrary thickness subjected to
arbitrary mechanical and electrical loads. Numerical results are presented at the end.
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1
Introduction
Owing to the special coupling between the electric field and mechanical deformation, piezo-
electric materials have been widely used in smart structures, active control and sensing devices.
For homogeneous piezoelectric materials, the axisymmetric free and forced vibrations of
piezoceramic hollow spheres have been studied in [1, 2]. The radial and three-dimensional free
vibrations of piezoceramic hollow spheres have been investigated in [3–5]. The spherically
symmetric free vibrations with the radial electric displacement vanishing on the boundary has
been studied in [6]. The natural frequencies of a piezoceramic hollow sphere submerged in and
filled with a compressible fluid were obtained in [7, 8]. The spherically symmetric steady-state
response of a piezoceramic hollow sphere submerged in a compressible fluid was analyzed in
[9], and that of a laminated spherical shell consisting of piezoelectric and elastic layers was
solved in [10].

There are also many investigations that have been done for nonhomogeneous materials.
Among them, the special case that the Young’s modulus has a power-law dependence on the
radial coordinate, while the linear thermal expansion coefficient and the Poisson’s ratio are
constants, has been considered by many scientists and engineers. For instance, general solu-
tions have been obtained for a nonhomogeneous, orthotropic annular disk in plane stress
subjected to uniform pressures at the internal and external surfaces, [11]. The pressured
functionally graded material (FGM) in hollow cylinder and disk problems were investigated
recently in [12]. The rotation problem of a nonhomogeneous, orthotropic composite cylinder
was considered in [13]. The transient thermal stresses in a rotating, nonhomogeneous, cylin-
drically orthotropic composite tube and in a nonhomogeneous, spherically orthotropic, elastic
medium with a spherical cavity were studied in [14] and [15], respectively. Exact solutions for a
steady-state problem of the FGM, anisotropic cylinders subjected to thermal and mechanical
loads have been obtained in [16]. The torsional oscillations of a finite, nonhomogeneous,
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piezoelectric, cylindrical shell were also investigated in [17]; have the analytical solution is only
suitable for the class 622 crystals, but not for the class 6 mm crystals, that are usually met. In
the above studies, the variation of the material density is mostly assumed to be the same as that
of the Young’s modulus, [13–17].

At present, most works on dynamic behavior of piezoelectric hollow spheres are concerned
with the problems of free vibration and steady-state response. For the transient response of
nonhomogeneous, piezoelectric hollow spheres, there are no related studies reported. In this
paper, an analytical method is proposed to solve the spherically symmetric electroelastodynamic
problem of a nonhomogeneous, piezoelectric, hollow sphere subjected to dynamic loads. Firstly,
a new dependent variable is introduced to rewrite the governing equations, the mechanical
boundary conditions as well as the initial conditions. Secondly, a special function is introduced
to transform the inhomogeneous mechanical boundary conditions into the homogeneous ones.
Thirdly, by virtue of the separation of variables technique, and utilizing the initial conditions as
well as electrical boundary conditions, the second kind Volterra integral equation about a
function with respect to time is derived, which can be solved by means of the interpolation
method. The displacements, stresses, electric displacements and electric potential are obtained
at the end. The present method is suitable for a nonhomogeneous, piezoelectric, hollow sphere
with an arbitrary thickness subjected to arbitrary spherically symmetric mechanical and elec-
trical loads. Numerical examples are considered and their discussion is presented.

2
Basic formulations
If a spherical coordinate system ðr; h;uÞ with the origin identical to the center of the sphere is
used, then for a spherically symmetric problem, we have uh ¼ uu ¼ 0, ur ¼ urðr; tÞ and
U ¼ Uðr; tÞ, where uiði ¼ r; h;uÞ and U are the components of the displacement and the
electric potential, respectively. The strain–displacement relations are thus simplified as

crr ¼
our

or
; chh ¼

ur

r
; ð1Þ

where ciiði ¼ r; hÞ are the strain components. The constitutive relations of a spherically iso-
tropic, radially polarized, piezoelectric medium are then read as, [18],

rhh ¼ ðc11 þ c12Þchh þ c13crr þ e31
oU
or
;

rrr ¼ 2c13chh þ c33crr þ e33
oU
or
; ð2Þ

Dr ¼ 2e31chh þ e33crr � e33
oU
or

;

where cij; eij and e33 are elastic, piezoelectric and dielectric constants. rij and Dr are the
components of stress and radial electric displacement, respectively. The equation of motion is

orrr

or
þ 2

rrr � rhh

r
¼ q

o2ur

ot2
; ð3Þ

where q is the mass density. In absence of free charge density, the charge equation of elec-
trostatics is

1

r2

o

or
ðr2DrÞ ¼ 0 : ð4Þ

Let the inner and outer radii of the hollow sphere be a and b, respectively. Also, we assume that
the inhomogeneity of the material is characterized by the following special law

c11 ¼ n2N C11; c12 ¼ n2NC12; c13 ¼ n2NC13; c33 ¼ n2N C33; ð5Þ

e31 ¼ n2N E31; e33 ¼ n2NE33; e33 ¼ n2NX33; q ¼ n2Nq0; n ¼ r
b ;
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where Cij; Eij; X33 and q0 are known constants, and N can be an arbitrary real number.
Substituting Eq. (5) into Eqs. (2) and (3), and rewriting Eqs. (1)–(4) in a nondimensional form,
gives

crr ¼
ou

on
; chh ¼

u

n
; ð6Þ

rh ¼ n2N ðC1 þ C2Þ
u

n
þ C3

ou

on
þ E1

o/
on

� �
;

rr ¼ n2N 2C3
u

n
þ ou

on
þ E3

o/
oxi

� �
; ð7Þ

D ¼ n2N 2E1
u

n
þ E3

ou

on
� o/

on

� �
;

orr

on
þ 2

rr � rh

n
¼ n2N o2u

os2
; ð8Þ

1

n2

o

on
ðn2DÞ ¼ 0 ; ð9Þ

where

Ci ¼ C1i

C33
ði ¼ 1; 2; 3Þ; E1 ¼ E31ffiffiffiffiffiffiffiffiffiffi

C33X33

p ; E3 ¼ E33ffiffiffiffiffiffiffiffiffiffi
C33X33

p ;

ri ¼ rii

C33
ði ¼ r; hÞ; / ¼

ffiffiffiffiffi
X33

C33

q
U
b; D ¼ Drffiffiffiffiffiffiffiffiffiffi

C33X33

p ; ð10Þ

u ¼ ur

b ; n ¼ r
b ; s ¼ a

b ; s ¼ cv

b t; cv ¼
ffiffiffiffiffi
C33

q0

q
:

The boundary conditions are

rrðs; sÞ ¼ paðsÞ; rrð1; sÞ ¼ pbðsÞ : ð11Þ

/ðs; sÞ ¼ /aðsÞ; /ð1; sÞ ¼ /bðsÞ ;

where paðsÞ and pbðsÞ are the prescribed dimensionless pressures acting on the internal and
external surfaces, respectively, and /aðsÞ and /bðsÞ are the known dimensionless electric
potential imposed on the internal and external surfaces, respectively.

The initial conditions are

s ¼ 0 : uðn; 0Þ ¼ u0ðnÞ; _uuðn; 0Þ ¼ v0ðnÞ ; ð12Þ

where u0ðnÞ and v0ðnÞ are known functions, and a dot over a quantity denotes its partial
derivative with respect to time.

3
Analytical solution
Firstly, the third equation in Eq. (7) is rewritten as

o/
on
¼ 2E1

u

n
þ E3

ou

on
� D

n2N : ð13Þ

The solution of Eq. (9) is

Dðn; sÞ ¼ 1

n2 gðsÞ ; ð14Þ
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where gðsÞ is an undetermined function with respect to the dimensionless time s. Substituting
Eq. (13) into the first two equations in Eq. (7), and utilizing Eq. (14), gives

rh ¼ n2N ðCD
1 þ CD

2 Þ
u

n
þ CD

3

ou

on

� �
� E1

gðsÞ
n2 ;

rr ¼ n2N 2CD
3

u

n
þ CD

0

ou

on

� �
� E3

gðsÞ
n2 ;

ð15Þ

where

CD
1 ¼ C1 þ E2

1; CD
2 ¼ C2 þ E2

1; CD
3 ¼ C3 þ E1E3; CD

0 ¼ 1þ E2
3 : ð16Þ

Substituting Eq. (15) into Eq. (8), we obtain

o2u

on2 þ 2ðN þ 1Þ 1

n
ou

on
� l2

1

n2 u ¼ 1

c2
L

o2u

os2
� 2

E1

CD
0

1

n2Nþ3 gðsÞ ; ð17Þ

where

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

CD
1 þCD

2 �ð2Nþ1ÞCD
3

CD
0

;

r
cL ¼

ffiffiffiffiffiffi
CD

0

p
: ð18Þ

Utilizing the second equation in Eq. (15), first of Eq. (11) can be rewritten as

n ¼ s : CD
0

ou
on þ 2CD

3
u
n ¼ s�2N paðsÞ þ E3

s2 gðsÞ
� �

;

n ¼ 1 : CD
0

ou
on þ 2CD

3
u
n ¼ pbðsÞ þ E3gðsÞ :

ð19Þ

Secondly, a new dependent variable wðn; sÞ is introduced as

uðn; sÞ ¼ n� Nþ1
2

� �
wðn; sÞ ð20Þ

Then Eqs. (17), (19) and (12) become

o2w

on2 þ
1

n
ow

on
� l2

n2 w ¼ 1

c2
L

o2w

os2
þ XðnÞgðsÞ ; ð21Þ

n ¼ s : ow
on þ h w

n ¼ p1ðsÞ ; ð22Þ

n ¼ 1 : ow
on þ h w

n ¼ p2ðsÞ ;

wðn; 0Þ ¼ u1ðnÞ; _wwðn; 0Þ ¼ v1ðnÞ ; ð23Þ

where

h ¼ 2
CD

3

CD
0
� N þ 1

2

� �
; l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1 þ N þ 1
2

� �2
;

q
XðnÞ ¼ �2 E1

CD
0
n� Nþ5

2

� �
;

p1ðsÞ ¼ s
�Nþ

1
2

CD
0

paðsÞ þ E3

s2 gðsÞ
� �

; p2ðsÞ ¼ 1
CD

0
½pbðsÞ þ E3gðsÞ�; ð24Þ

u1ðnÞ ¼ nNþ1
2u0ðnÞ; v1ðnÞ ¼ nNþ1

2v0ðnÞ :

Thirdly, we transform the inhomogeneous boundary conditions into the homogeneous ones by
taking

wðn; sÞ ¼ w1ðn; sÞ þ w2ðn; sÞ ; ð25Þ

where w2ðn; sÞ satisfies the inhomogeneous boundary conditions, which can be taken as
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w2ðn; sÞ ¼ f1ðnÞpaðsÞ þ f2ðnÞpbðsÞ þ f3ðnÞgðsÞ ; ð26Þ

where

f1ðnÞ ¼ s�Nþ1
2 A2

CD
0
ðn� 1Þm; f2ðnÞ ¼ A1

CD
0
ðn� sÞm; f3ðnÞ ¼ E3

1
s2 f1ðnÞ þ f2ðnÞ
� �

;

A1 ¼ 1
mð1�sÞm�1þhð1�sÞm; A2 ¼ 1

mðs�1Þm�1þ hðs�1Þm=s
:

ð27Þ

Generally, we take m ¼ 2 if the denominators of A1 and A2 are nonzero; otherwise, m ¼ 3 or 4
etc. can be adopted. Substituting Eq. (25) into Eqs. (21)–(23), gives

o2w1ðn; sÞ
on2 þ 1

n
ow1ðn; sÞ

on
� l2

n2 w1ðn; sÞ ¼
1

c2
L

o2w1ðn; sÞ
os2

þ gðn; sÞ ; ð28Þ

ow1ðn; sÞ
on

þ h
w1ðn; sÞ

n
¼ 0; ðn ¼ s and 1Þ ; ð29Þ

w1ðn; 0Þ ¼ u2ðnÞ � f3ðnÞgð0Þ; _ww1ðn; 0Þ ¼ v2ðnÞ � f3ðnÞ _ggð0Þ ; ð30Þ

where

gðn; sÞ ¼ g1ðn; sÞ þ g2ðnÞgðsÞ þ g3ðnÞ€ggðsÞ;

g1ðn; sÞ ¼ f4ðnÞpaðsÞ þ f5ðnÞpbðsÞ þ
1

c2
L

h
f1ðnÞ€ppaðsÞ þ f2ðnÞ€ppbðsÞ

i
;

g2ðnÞ ¼ l2

n2 f3ðnÞ � 1
n

df3ðnÞ
dn
� d

2
f3ðnÞ

dn2 þ XðnÞ; g3ðnÞ ¼ f3ðnÞ
c2

L
; ð31Þ

f4ðnÞ ¼ l2

n2 f1ðnÞ � 1
n

df1ðnÞ
dn
� d

2
f1ðnÞ

dn2 ; _ggð0Þ ¼
dgðsÞ

ds

��
s¼0
;

f5ðnÞ ¼
l2

n2 f2ðnÞ �
1

n
df2ðnÞ

dn
� d2f2ðnÞ

dn2

and

u2ðnÞ ¼ u1ðnÞ � f1ðnÞpað0Þ � f2ðnÞpbð0Þ;
v2ðnÞ ¼ v1ðnÞ � f1ðnÞ _ppað0Þ � f2ðnÞ _ppbð0Þ : ð32Þ

In Eq. (32), we denote _ppað0Þ ¼
dpaðsÞ

ds

��
s¼0

and _ppbð0Þ ¼
dpbðsÞ

ds

��
s¼0

,

Then, by using the separation-of-variables technique, the solution of Eq. (28) can be
assumed in the following form

w1ðn; sÞ ¼
X

i

RiðnÞFiðsÞ ; ð33Þ

where FiðsÞ are unknown functions of s, and RiðnÞ is given by

RiðnÞ ¼ JlðkinÞYðl; ki; sÞ � YlðkinÞJðl; ki; sÞ ; ð34Þ

in which JlðkinÞ and YlðkinÞ are Bessel functions of the first and second kind, and of order l,
respectively. Quantities ki, arranged in an ascending order, are a series of positive roots of the
following eigenequation:

Jðl; ki; sÞYðl; ki; 1Þ � Jðl; ki; 1ÞYðl; ki; sÞ ¼ 0 ; ð35Þ

where

Jðl; ki; nÞ ¼
dJlðkinÞ

dn
þ h

JlðkinÞ
n

;Yðl; ki; nÞ ¼
dYlðkinÞ

dn
þ h

YlðkinÞ
n

: ð36Þ
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It can be shown that w1ðn; sÞ given in Eq. (33) satisfies the homogeneous boundary conditions
as shown in Eq. (29). Substituting Eq. (33) into Eq. (28), gives

�c2
L

X
i

k2
i FiðsÞRiðnÞ ¼

X
i

RiðnÞ
d2FiðsÞ

ds2
þ c2

Lgðn; sÞ : ð37Þ

By virtue of the orthogonal property of Bessel functions, it is easy to verify the following
equation

Z1

s

nRiðnÞRjðnÞdn ¼ Nidij ; ð38Þ

where dij is the Kronecker delta, and

Ni ¼
1

2k2
i

dRið1Þ
dn

� �2

�s2 dRiðsÞ
dn

� �2

þk2
i R2

i ð1Þ � s2R2
i ðsÞ

� �
� l2 R2

i ð1Þ � R2
i ðsÞ

� �( )
: ð39Þ

In Eq. (39), we denote dRiðsÞ
dn
¼ dRiðnÞ

dn

��
n¼s

and dRið1Þ
dn
¼ dRiðnÞ

dn

��
n¼1

. Utilizing Eq. (38), we can derive

the following equation from Eq. (37)

d2FiðsÞ
ds2

þ x2
i FiðsÞ ¼ qiðsÞ ; ð40Þ

where

qiðsÞ ¼ q1iðsÞ þ h1igðsÞ þ h2i€ggðsÞ;

xi ¼ kicL; q1iðsÞ ¼ � c2
L

Ni

R1
s

ng1ðn; sÞRiðnÞdn ; ð41Þ

h1i ¼ � c2
L

Ni

R1
s

ng2ðnÞRiðnÞdn; h2i ¼ � c2
L

Ni

R1
s

ng3ðnÞRiðnÞdn :

The solution of Eq. (40) is

FiðsÞ ¼ B1i cos xisþ
B2i

xi
sin xisþ

1

xi

Zs

0

qiðpÞ sin xiðs� pÞdp ; ð42aÞ

where B1i and B2i are unknown constants. We can derive the following equation from Eq. (42a)

_FFiðsÞ ¼ �xiB1i sin xisþ B2i cos xisþ
Zs

0

qiðpÞ cos xiðs� pÞdp ; ð42bÞ

According to Eq. (30) and Eq. (33) and utilizing Eq. (38), we obtain

Fið0Þ ¼ B1i ¼ I1i þ I2igð0Þ; _FFið0Þ ¼ B2i ¼ I3i þ I2i _ggð0Þ ; ð43Þ

where

I1i ¼ 1
Ni

R1
s

nu2ðnÞRiðnÞdn; I2i ¼ �1
Ni

R1
s

nf3ðnÞRiðnÞdn; I3i ¼ 1
Ni

R1
s

nv2ðnÞRiðnÞdn : ð44Þ

Noticing that qiðsÞ in the Eq. (41) includes €ggðsÞ , we use the integration-by-parts formula to
perform the integration of the term involving €ggðpÞ in Eq. (42a) as
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Zs

0

€ggð pÞ sin xiðs� pÞdp ¼ � _ggð0Þ sin xis� gð0Þxi cos xisþ xigðsÞ

� x2
i

Zs

0

gð pÞ sin xiðs� pÞdp : ð45Þ

Utilizing Eq. (45), Eq. (42a) can be rewritten as

FiðsÞ ¼ F1iðsÞ þ h2igðsÞ þ
h1i

xi
� h2ixi

	 
Zs

0

gð pÞ sin xiðs� pÞdp ; ð46Þ

where

F1iðsÞ ¼ B1i cos xisþ
B2i

xi
sin xisþ

1

xi

Zs

0

q1ið pÞ sin xiðs� pÞdp

� h2i

xi
½ _ggð0Þ sin xisþ gð0Þxi cos xis� : ð47Þ

In the following, we will determine gð0Þ, _ggð0Þ and gðsÞ from the electric boundary conditions.
Substituting Eq. (14) into Eq. (13), gives

o/
on
¼ 2E1

u

n
þ E3

ou

on
� gðsÞ

n2ðNþ1Þ : ð48Þ

Substituting Eq. (25) into Eq. (20), utilizing Eqs. (26) and (33), we obtain

uðn; sÞ ¼ n� Nþ1
2

� � X
i

RiðnÞFiðsÞ þ f1ðnÞpaðsÞ þ f2ðnÞpbðsÞ þ f3ðnÞgðsÞ
" #

: ð49Þ

Integrating Eq. (48) and utilizing Eq. (49), derives

/ðn; sÞ ¼ /1ðnÞpaðsÞ þ /2ðnÞpbðsÞ þ /3ðnÞgðsÞ þ
X

i

/4iðnÞFiðsÞ þ /aðsÞ ; ð50Þ

where

/1ðnÞ ¼ 2E1

Zn

s

n� Nþ3
2

� �
f1ðnÞdnþ E3 n� Nþ1

2

� �
f1ðnÞ � s� Nþ1

2

� �
f1ðsÞ

� �
;

/2ðnÞ ¼ 2E1

Zn

s

n� Nþ3
2

� �
f2ðnÞdnþ E3 n� Nþ1

2

� �
f2ðnÞ � s� Nþ1

2

� �
f2ðsÞ

� �
;

/3ðnÞ ¼ 2E1

Zn

s

n� Nþ3
2

� �
f3ðnÞdnþ E3 n� Nþ1

2

� �
f3ðnÞ � s� Nþ1

2

� �
f3ðsÞ

� �
þ f6ðnÞ; ð51Þ

/4iðnÞ ¼ 2E1

Zn

s

n� Nþ3
2

� �
RiðnÞdnþ E3 n� Nþ1

2

� �
RiðnÞ � s� Nþ1

2

� �
RiðsÞ

� �
;

f6ðnÞ ¼
n�ð2Nþ1Þ � s�ð2Nþ1Þ
h i

=ð2N þ 1Þ N 6¼ �0:5;

�lnðn=sÞ ðN ¼ �0:5Þ :

(
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When n ¼ 1, Eq. (50) gives

/bðsÞ ¼ /1ð1ÞpaðsÞ þ /2ð1ÞpbðsÞ þ /3ð1ÞgðsÞ þ
X

i

/4ið1ÞFiðsÞ þ /aðsÞ : ð52aÞ

Then we have

_//bðsÞ ¼ /1ð1Þ _ppaðsÞ þ /2ð1Þ _ppbðsÞ þ /3ð1Þ _ggðsÞ þ
X

i

/4ið1Þ _FFiðsÞ þ _//aðsÞ : ð52bÞ

If s ¼ 0, we can determine gð0Þ and _ggð0Þ from Eqs. (52) by virtue of Eq. (43):

gð0Þ ¼ /bð0Þ � /að0Þ � /1ð1Þpað0Þ � /2ð1Þpbð0Þ �
P

i /4ið1ÞI1i

/3ð1Þ þ
P

i /4ið1ÞI2i;

_ggð0Þ ¼
_//bð0Þ � _//að0Þ � /1ð1Þ _ppað0Þ � /2ð1Þ _ppbð0Þ �

P
i /4ið1ÞI3i

/3ð1Þ þ
P

i /4ið1ÞI2i
:

ð53Þ

Substitute gð0Þ and _ggð0Þ into Eqs. (43) and (47). Then B1i and B2i become known and F1iðsÞ is
also a known function. Substituting Eq. (46) into Eq. (52a), derives

wðsÞ ¼ L1gðsÞ þ
X

i

L2i

Zs

0

gðpÞ sin xiðs� pÞdp ; ð54Þ

where

wðsÞ ¼ /bðsÞ � /aðsÞ � /1ð1ÞpaðsÞ � /2ð1ÞpbðsÞ �
X

i

/4ið1ÞF1iðsÞ;

L1 ¼ /3ð1Þ þ
X

i

/4ið1Þh2i; L2i ¼ /4ið1Þ
h1i

xi
� h2ixi

	 

: ð55Þ

From Eq. (54), we have

_wwðsÞ ¼ L1 _ggðsÞ þ
X

i

L2ixi

Zs

0

gðpÞ cos xiðs� pÞdp ; ð56Þ

It is noted that Eq. (54) is a Volterra integral equation of the second kind, [19], of which
analytical solutions can be obtained only for certain cases. In the general case, numerical
methods are usually adopted.

For gð0Þ and _ggð0Þ have been obtained, we will construct recursive formula by making use of
a cubic Hermite polynomial approximation of gðsÞ. Practically, accurate numerical results can
be obtained efficiently by the following method. We first divide the time interval ½0; sn� into n
equal subintervals, with discrete time points s0 ¼ 0; s1; s2; . . . sn : Then the cubic
Hermite polynomial at the interval ½sj�1; sj� is

gðsÞ ¼ H0jðsÞgðsj�1Þ þ H1jðsÞgðsjÞ þ H2jðsÞ _ggðsj�1Þ þ H3jðsÞ _ggðsjÞ ð j ¼ 1; 2 � � � nÞ : ð57Þ

where _ggðsjÞ is the value _ggðsÞ at s ¼ sj , and

H0jðsÞ ¼ 1þ 2
s�sj�1

sj�sj�1

� �
s�sj

sj�sj�1

� �2
; H1jðsÞ ¼ 1þ 2

sj�s
sj�sj�1

� �
s�sj�1

sj�sj�1

� �2
;

H2jðsÞ ¼ ðs� sj�1Þ s�sj

sj�sj�1

� �2
; H3jðsÞ ¼ ðs� sjÞ s�sj�1

sj�sj�1

� �2
; ð j ¼ 1; 2 . . . nÞ :

ð58Þ

Substituting Eq. (57) into Eqs. (54) and (56), gives
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wðsjÞ ¼ L1gðsjÞ þ
X

i

L2i

Xj

k¼1

½k0ijkgðsk�1Þ þ k1ijkgðskÞ þ k2ijk _ggðsk�1Þ þ k3ijk _ggðskÞ�;

_wwðsjÞ ¼ L1 _ggðsjÞ þ
X

i

L2ixi

Xj

k¼1

½l0ijkgðsk�1Þ þ l1ijkgðskÞ þ l2ijk _ggðsk�1Þ þ l3ijk _ggðskÞ� ;

ð59Þ

where

klijk ¼
Zsk

sk�1

HlkðpÞ sin xiðsj � pÞdp; llijk ¼
Zsk

sk�1

HlkðpÞ cos xiðsj � pÞdp;

ðl ¼ 0; 1; 2; 3; k ¼ 1; 2 . . . j; j ¼ 1; 2 . . . nÞ : ð60Þ

Then we can derive the following formula from Eq. (59)

gðsjÞ ¼
b1jk22j � b2jk12j

k11jk22j � k12jk21j
; _ggðsjÞ ¼

b2jk11j � b1jk21j

k11jk22j � k12jk21j
; ð j ¼ 1; 2 . . . nÞ ; ð61Þ

where

k11j ¼ L1 þ
X

i

L2ik1ijj; k12j ¼
X

i

L2ik3ijj;

k21j ¼
X

i

L2ixil1ijj; k22j ¼ L1 þ
X

i

L2ixil3ijj;

b1j ¼ wðsjÞ �
X

i

L2i

Xj�1

k¼1

½k0ijkgðsk�1Þ þ k1ijkgðskÞ þ k2ijk _ggðsk�1Þ þ k3ijk _ggðskÞ�

�
X

i

L2i½k0ijjgðsj�1Þ þ k2ijj _ggðsj�1Þ�;

b2j ¼ _wwðsjÞ �
X

i

L2ixi

Xj�1

k¼1

½l0ijkgðsk�1Þ þ l1ijkgðskÞ þ l2ijk _ggðsk�1Þ þ l3ijk _ggðskÞ�

�
X

i

L2ixi½l0ijjgðsj�1Þ þ l2ijj _ggðsj�1Þ� :

ð62Þ

It should be pointed out that if j ¼ 1, the second terms in b1j and b2j in Eq. (62) are zero. In
Eq. (48), we have obtained gð0Þ and _ggð0Þ, based on which we can determine gðsjÞ and
_ggðsjÞ; ð j ¼ 1; 2 . . . nÞ step by step by virtue of Eq. (61). After gðsÞ is obtained, uðn; sÞ and
/ðn; sÞ also can be determined.

4
Numerical results and discussions

Example 1
The dynamic response of a nonhomogeneous, piezoelectric, hollow sphere subjected to a
constant pressure suddenly applied on the internal surface is considered. The material
constants are

C11 ¼ C22 ¼ 139:0 GPa, C12 ¼ 77:8 GPa, C13 ¼ 74:3 GPa, C33 ¼ 115:0 GPa, E31 ¼ �5:2C=m2,
E33 ¼ 15:1C=m2 , X33 ¼ 5:62� 10�9C2=ðNm2Þ, [2].

The boundary conditions are

paðsÞ ¼ �r0HðsÞ; pbðsÞ ¼ 0:0;

/aðsÞ ¼ 0:0; /bðsÞ ¼ 0:0 ;
ð63Þ
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where r0 is a prescribed dimensionless constant pressure, and HðsÞ is the Heaviside function.
In the following, we take r0 ¼ 1:0; s ¼ 0:5, m ¼ 2, and sn ¼ s200 ¼ 5. We consider the first 40
terms in the series in Eq. (33) for numerical calculations.

Figure 1 shows the response of rr at n ¼ 0:75 (the middle surface) in the hollow sphere for
N ¼ �1, N ¼ 0 and N ¼ 1. From the curves, we can see that the peak values of compressive
stress increase quickly with the increase of N, while the peak values of tensile stress vary
slightly with N .

Figures 2 and 3 depict the response of rh at n ¼ 0:5 (the internal surface) and n ¼ 1:0
(the external surface) in the sphere for different values of N . From the curves, we find that, at
the internal surface, the peak values of tensile stress decrease with the increase of N , while at
the external surface, it is just the contrary. We know that the circumferential stress has the
maximum value at the internal surface for a homogeneous, isotropic, hollow sphere subjected
to a uniform pressure at the internal surface. Form the above studies, we can conclude that
nonhomogeneous materials can be used to decrease the circumferential stress at the internal
surface of the hollow sphere subjected to internal pressure. Actually, it is a very efficient way to
make full use of the materials.

Figures 4 and 5 illustrate the distributions of dimensionless electric potential / at different
times for N ¼ �1 and N ¼ 1 . Comparing Fig. 4 with Fig. 5, we find that the distributions of /
are different for N ¼ �1 and N ¼ 1. Note that the calculated electric potentials are zero both at
the internal and external surfaces, which agrees with the prescribed electric boundary condi-
tions. The correctness of the numerical results is thus clarified in this respect.

Example 2
The dynamic response of a nonhomogeneous, piezoelectric, hollow sphere subjected to a
constant electric potential suddenly imposed on the external surface is considered here. The

Fig. 1. Histories of dynamic stresses
rr at the middle surface varying with
N(example 1)

Fig. 2. Histories of dynamic stresses
rh at the inner surface varying with N
(example 1)
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material constants are the same as those adopted in Example 1. The boundary conditions
become

paðsÞ ¼ 0:0; pbðsÞ ¼ 0:0;

/aðsÞ ¼ 0:0; /bðsÞ ¼ /0HðsÞ ;
ð64Þ

Fig. 4. Distribution of electric poten-
tial / for N ¼ �1 (example 1)

Fig. 5. Distribution of electric poten-
tial / for N ¼ 1 (example 1)

Fig. 3. Histories of dynamic stresses
rh at the outer surface varying with N
(example 1)
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where /0 is the prescribed constant dimensionless electric potential. For numerical calcula-
tions, the same parameters as that in Example 1 are employed, except that /0 ¼ 1:0 is used
instead of r0 ¼ 1:0.

Figure 6 shows the response of rr at n ¼ 0:75 (the middle surface) in the hollow sphere for
N ¼ �1, N ¼ 0 and N ¼ 1. From the curves, we can see that the peak values of dynamic radial
stress decrease with N .

Figures 7 and 8 depict the response of rh at n ¼ 0:5 (the internal surface) and n ¼ 1:0 (the
external surface) in the sphere for different values of N . From the curves, we find that, at the

Fig. 6. Histories of dynamic stresses
rr at the middle surface varying with
N (example 2)

Fig. 7. Histories of dynamic stresses
rh at the inner surface varying with N
(example 2)

Fig. 8. Histories of dynamic stresses
rh at the outer surface varying with N
(example 2)
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internal surface, the peak values of the tensile stress decrease quickly, while at the external
surface, the peak values of the compressive stress decrease with N . We also notice that, at the
external surface, the dynamic circumferential stress is compressive when N ¼ �1, while it
becomes tensile for N ¼ 0 and N ¼ 1. The peak values of tensile stress for N ¼ 1 are larger than
those for N ¼ 0.

Figures 9 and 10 illustrate the distributions of dimensionless electric potential / at different
times for N ¼ �1 and N ¼ 1, respectively. Comparing Fig. 9 with Fig. 10, we also find that the
distributions of / are different for N ¼ �1 and N ¼ 1. Again, the calculated electric potentials
are zero both at the internal and external surfaces, which satisfy the prescribed electric
boundary conditions. The correctness of the numerical results is further clarified in this
respect.

5
Comments
(1) In terms of numerical accuracy for different number of terms considered in the series in

Eq. (33), we find that the results vary very slightly between 30 terms and 40 terms.
Therefore, we take for all computations the first 40 terms in the series.

(2) If the electric boundary conditions in Eq. (11b) are expressed by the electric displacement,
only one boundary condition will be involved. That is because, if the electric displacement
is prescribed on one surface, then the distribution of the electric displacement can be
determined immediately from Eq. (14). In this case, from the beginning to Eq. (47), the
displacement and stress solution can be determined and the procedure of solving integral
equation can be avoided. The expression for electric potential can be written as Eq. (50).
But if we want to determine /ðn; sÞ completely, one boundary condition related to / must

Fig. 10. Distribution of electric
potential / for N ¼ 1 (example 2)

Fig. 9. Distribution of electric poten-
tial / for N ¼ �1 (example 2)
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be known. That is, either /aðsÞ or /bðsÞ should be prescribed. The relationship between
/aðsÞ and /bðsÞ is given in Eq. (52a).

(3) If HlkðsÞ ðl ¼ 0; 1; 2; 3Þ are polynomials of s , the integration in Eq. (60) can be obtained
explicitly, which can improve the computing accuracy. Using cubic Hermite polynomial to
approximate gðsÞ, accurate results can be obtained efficiently, and it is also very stable for
long time calculations. Based on many numerical tests, we find that the relative error is less
than 10�6 for the time step Ds � 0:1. In order to obtain highly accurate results, we adopt
Ds ¼ 0:025 in the paper.
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