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Analytical solution for the electroelastic dynamics
of a nonhomogeneous spherically isotropic piezoelectric
hollow sphere

H. J. Ding, H. M. Wang, W. Q. Chen

Summary By introduction of a special dependent variable and separation of variables tech-
nique, the electroelastic dynamic problem of a nonhomogeneous, spherically isotropic hollow
sphere is transformed to a Volterra integral equation of the second kind about a function of
time. The equation can be solved by means of the interpolation method, and the solutions for
displacements, stresses, electric displacements and electric potential are obtained. The present
method is suitable for a piezoelectric hollow sphere with an arbitrary thickness subjected to
arbitrary mechanical and electrical loads. Numerical results are presented at the end.
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1

Introduction

Owing to the special coupling between the electric field and mechanical deformation, piezo-
electric materials have been widely used in smart structures, active control and sensing devices.
For homogeneous piezoelectric materials, the axisymmetric free and forced vibrations of
piezoceramic hollow spheres have been studied in [1, 2]. The radial and three-dimensional free
vibrations of piezoceramic hollow spheres have been investigated in [3-5]. The spherically
symmetric free vibrations with the radial electric displacement vanishing on the boundary has
been studied in [6]. The natural frequencies of a piezoceramic hollow sphere submerged in and
filled with a compressible fluid were obtained in [7, 8]. The spherically symmetric steady-state
response of a piezoceramic hollow sphere submerged in a compressible fluid was analyzed in
[9], and that of a laminated spherical shell consisting of piezoelectric and elastic layers was
solved in [10].

There are also many investigations that have been done for nonhomogeneous materials.
Among them, the special case that the Young’s modulus has a power-law dependence on the
radial coordinate, while the linear thermal expansion coefficient and the Poisson’s ratio are
constants, has been considered by many scientists and engineers. For instance, general solu-
tions have been obtained for a nonhomogeneous, orthotropic annular disk in plane stress
subjected to uniform pressures at the internal and external surfaces, [11]. The pressured
functionally graded material (FGM) in hollow cylinder and disk problems were investigated
recently in [12]. The rotation problem of a nonhomogeneous, orthotropic composite cylinder
was considered in [13]. The transient thermal stresses in a rotating, nonhomogeneous, cylin-
drically orthotropic composite tube and in a nonhomogeneous, spherically orthotropic, elastic
medium with a spherical cavity were studied in [14] and [15], respectively. Exact solutions for a
steady-state problem of the FGM, anisotropic cylinders subjected to thermal and mechanical
loads have been obtained in [16]. The torsional oscillations of a finite, nonhomogeneous,
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piezoelectric, cylindrical shell were also investigated in [17]; have the analytical solution is only
suitable for the class 622 crystals, but not for the class 6 mm crystals, that are usually met. In
the above studies, the variation of the material density is mostly assumed to be the same as that
of the Young’s modulus, [13-17].

At present, most works on dynamic behavior of piezoelectric hollow spheres are concerned
with the problems of free vibration and steady-state response. For the transient response of
nonhomogeneous, piezoelectric hollow spheres, there are no related studies reported. In this
paper, an analytical method is proposed to solve the spherically symmetric electroelastodynamic
problem of a nonhomogeneous, piezoelectric, hollow sphere subjected to dynamic loads. Firstly,
a new dependent variable is introduced to rewrite the governing equations, the mechanical
boundary conditions as well as the initial conditions. Secondly, a special function is introduced
to transform the inhomogeneous mechanical boundary conditions into the homogeneous ones.
Thirdly, by virtue of the separation of variables technique, and utilizing the initial conditions as
well as electrical boundary conditions, the second kind Volterra integral equation about a
function with respect to time is derived, which can be solved by means of the interpolation
method. The displacements, stresses, electric displacements and electric potential are obtained
at the end. The present method is suitable for a nonhomogeneous, piezoelectric, hollow sphere
with an arbitrary thickness subjected to arbitrary spherically symmetric mechanical and elec-
trical loads. Numerical examples are considered and their discussion is presented.

2

Basic formulations

If a spherical coordinate system (r, 0, ¢) with the origin identical to the center of the sphere is
used, then for a spherically symmetric problem, we have uy = u, =0, u, = u,(r,t) and

® = ®(r,t), where u;(i =r,0, p) and ® are the components of the displacement and the
electric potential, respectively. The strain-displacement relations are thus simplified as

ou, U,
yrrzaa yO():? ) (1)
where 7;;(i = r, 0) are the strain components. The constitutive relations of a spherically iso-
tropic, radially polarized, piezoelectric medium are then read as, [18],

oD
000 = (€11 + €12)Y90 + €137 + €31 o
oD
Orr = 213799 + €33Ypr T €33 o (2)
oD

D, = 2e31y49 + €337, — €33 or

where cjj, e;; and ¢33 are elastic, piezoelectric and dielectric constants. ¢;; and D, are the
components of stress and radial electric displacement, respectively. The equation of motion is

00 Orr — 000 62ur

or +2 r P (3)

where p is the mass density. In absence of free charge density, the charge equation of elec-
trostatics is

19,

Let the inner and outer radii of the hollow sphere be a and b, respectively. Also, we assume that
the inhomogeneity of the material is characterized by the following special law

e =ENCh, ey ="Cn, s =ECis, 3= NG, (5)

N oY N N
es1 = B3, e3=C"Es, g3 =C" Qs p=C"py, C=7,



where Cjj, Ej, Q33 and p, are known constants, and N can be an arbitrary real number.
Substituting Eq. (5) into Egs. (2) and (3), and rewriting Egs. (1)-(4) in a nondimensional form,
gives

ou u

yrr:a_iﬂ “/90:2 ) (6)
o = £2N[(Cl +G)5 : +C365 +E12(Q

N Oou %
o =< [263£+65+E36x1}, (7)
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where

C VG333 37 Va0
— Gii (j — — /20 —_ D
0i =, (1 =T, 6), ¢ = Co b D Vo’ (10)

The boundary conditions are

ar(5,7) = pa(7),  a7(1,7) = po(1). (11)
$(s:7) = Pal1),  P(1,7) = P(1) ,

where p,(7) and p,(7) are the prescribed dimensionless pressures acting on the internal and
external surfaces, respectively, and ¢,(t) and ¢,(7) are the known dimensionless electric
potential imposed on the internal and external surfaces, respectively.

The initial conditions are

T=0:u(%0) = u(&), u(&0)=w(e) (12)

where (&) and v(&) are known functions, and a dot over a quantity denotes its partial
derivative with respect to time.

3

Analytical solution

Firstly, the third equation in Eq. (7) is rewritten as
6(],’) ou D

af _2E15+E3@f éZN .

The solution of Eq. (9) is
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where #7(7) is an undetermined function with respect to the dimensionless time 7. Substituting
Eq. (13) into the first two equations in Eq. (7), and utilizing Eq. (14), gives

= 52N[(CD+CD) +C? ZJ EI%,

Ou n(t)
o, = 52N[2CD +cP } — E3—~ |
¢l 0o T2
where
CP=C+E, CC=C+E, CP=C+EE, CP=1+E. (16)

Substituting Eq. (15) into Eq. (8), we obtain

*u 10u 4 1 ?u _E 1

4 2(N+ 12— Ly S Yt . 17
& +2(N + )565 52 612 CD 2N T3 n(c) (17)
where

CP+CP—(2N+1)CP
ﬂl—\/2—1+zc(g“3, a=+/Cf - (18)

Utilizing the second equation in Eq. (15), first of Eq. (11) can be rewritten as

E=s: COW+2C0% =5 [py(r) +59(7)], (19)
E=1: CP¥+2C%=py(7) + Esn(a) .

Secondly, a new dependent variable w(¢, 7) is introduced as

u(&) = & Dwig (20)
Then Egs. (17), (19) and (12) become

OPw 10w 12 1 0*w

E=s: Prht=p(r), (22)
5212 %%—Fh%:pz(’f) y

w(E,0) =ui(S), w(E,0) =n(E) , (23)
where

h= Zc—g— (N+l) w=1/12+ N+ x(©&) = —2%6‘(“%),

pi(0) = o [pul) + B0, pale) = o) + Eun(o) (24)

0 () = é’”fuo(é), y1(&) = (&) -

Thirdly, we transform the inhomogeneous boundary conditions into the homogeneous ones by
taking

W(éa T) = W1(£> T) + WZ(éa T) ) (25)

where w, (&, 1) satisfies the inhomogeneous boundary conditions, which can be taken as



wa(&,7) = fi(E)pa(®) + £2(E)po(7) + () (7) (26)

where

AE =B E-D", KO =HE-9)", A =EBEAE +AE)].

_ 1 —
Ay = m(1—s)™ " +-h(1—s)™ Ay =

(27)

m(s—1)" "+ h(s—1)"/s

Generally, we take m = 2 if the denominators of A; and A, are nonzero; otherwise, m = 3 or 4
etc. can be adopted. Substituting Eq. (25) into Egs. (21)-(23), gives

¢ Walézé’f) %awégr) —%m(f,r) = é@ Walif’r) +g(&, 1), (28)
ama(?f) +r <§’ i =0, ((=sandl), (29)
wi(E,0) = uz(&) — f(En(0), wi(E,0) = (&) — f(E)n(0) (30)
where
g(&,1) = &i1(& 1) + &(On(r) + g (i),
1(6:5) = Fpale) + HOPD + 5 [0 + AR,
£:(8) = B0 — 1950 B0 | (e gy = £ (31)
2 2 dn(z
7(6) = £(0) 14 - o) = IS
1 1df(E) A9
f5(8) ?fz(f) R Y
and
u(&) = w1 (&) — fi(&)pa(0) — f£2(E)ps(0),
v2(&) = (&) — £1(&)p,(0) — £2()p,(0) - (32)

In Eq. (32), we denote p,(0) = dil”f(r)frzo and p,(0) = dﬁ’if)hzo,

Then, by using the separation-of-variables technique, the solution of Eq. (28) can be
assumed in the following form

wi(é, 1) = ZRi(f)Fi(T) ; (33)

where F;(t) are unknown functions of 7, and R;(&) is given by
Rl(é) - ].u(klé)Y(,ua ki7 S) - Y,u(klé)l(:ua kia S) ) (34)

in which ], (k;¢) and Y, (k;¢) are Bessel functions of the first and second kind, and of order y,
respectively. Quantities k;, arranged in an ascending order, are a series of positive roots of the
following eigenequation:

I(:ua ki?‘g)Y(:u?kial) _I(:u7ki71)Y(.u7kias> =0 ) (35)
where
ok, &) = Ttk )y g oy - ulld) | ulkic) (36)

d¢ ¢ ¢ <
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It can be shown that w; (¢, 7) given in Eq. (33) satisfies the homogeneous boundary conditions
as shown in Eq. (29). Substituting Eq. (33) into Eq. (28), gives

~& S RROR(E) = RO RN (7)

By virtue of the orthogonal property of Bessel functions, it is easy to verify the following
equation

/ ER(ER/(E)dE = Nioy | (38)

where (3,-]- is the Kronecker delta, and

_ 1 dR;(1) 2_52 dRi(5)2 21R2(1) — 2R2(s)] — 12 [R2(1) — R%(s
Nz—z,(l;{[ S o | el - R0 - ) R,<>]}. ()

In Eq. (39), we denote dg’és) _ dr(o)

df |cf:s
the following equation from Eq. (37)

dr;(1) _ dri(¢)
and B ’i

de e Utilizing Eq. (38), we can derive

TR F) = ale) (40

where

9:(t) = qui(t) + hun(t) + hij(1),

w; = kic, Chz = fég1(§ ( )df, (41)
, 1 1
hi=—% [ Eg(OR(EAE, hy = — % [ Egs(HR(E)AE

The solution of Eq. (40) is
Byi . 1 .
Fi(t) = Byj cos w;t + -, ST + o qi(p) sinw;(t — p)dp , (42a)
1 1 rd

where By; and B,; are unknown constants. We can derive the following equation from Eq. (42a)

Fi(1) = —w;By; sin w;t + By; cos ;T + / qi(p) cos wi(t — p)dp , (42b)
0

According to Eq. (30) and Eq. (33) and utilizing Eq. (38), we obtain

F;(0) = By; = Li; + Lin(0), F;(0) = By = I + Lin(0) , (43)
where

1 1 1
i =3 [ Gn(OR(AE, L =5 [EHOR(OE, I =5 [En(OR(DAE . (44)

Noticing that g;(7) in the Eq. (41) includes #(t) , we use the integration-by-parts formula to
perform the integration of the term involving #(p) in Eq. (42a) as



/ #1(p) sinw;(t — p)dp = —7(0) sin w;T — n(0)w; cos w;t + wn(t)
0

T

. / 1(p) sinwi(z — p)dp . (45)

0

Utilizing Eq. (45), Eq. (42a) can be rewritten as

T

Fi(t) = Fyi(t) + hain(z) + <% — hziwi> /n(p) sinw;(t —p)dp , (46)

where
By; . 1 )
Fyi(t) = By cos w;t + - sin w;T + o q1i(p) sinw;(t — p)dp
i i

— 21 17(0) sin w;T + 7(0)w; cos wiT] . (47)

In the following, we will determine #(0), #7(0) and #(t) from the electric boundary conditions.
Substituting Eq. (14) into Eq. (13), gives

o Oou 11(1')
3= 2E1€+E365 a (48)
Substituting Eq. (25) into Eq. (20), utilizing Eqs. (26) and (33), we obtain
(& 1) = & 0D | ST RIGR(D) + A(OPale) + HOP(D) + ()| - (49)
Integrating Eq. (48) and utilizing Eq. (49), derives
?(&,7) = ¢1(E)palt) + 2 (E)pn(t) + ¢3(En(e) + Z P4i(Fi() + Pu(7) (50)
where
¢ _ _
$1(6) = 2B, / e R+ (e - (g,
92(8) = 28, / e D p@ae+ 5| CDpie - (g
9(8) = 2, / e @ae+ B e D) - s ()L + 400, (51)

dulS) = 2E, / e ro)de 1 E; [é-(“%)&-(é)—s-(N%)Ri(s),

() = { [é (@N+1) _ (2N+1)}/(2N+ 1) N#-0.5,
—In(¢&/s) (N=-05) .
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When ¢ = 1, Eq. (50) gives

b (T) = 1 (1)pa(T) + @2 (1)ps() + ¢5(1)n(7) + Z% i(7) + da(1) - (52a)

Then we have

G3(1) = ¢, (1)p, (1) + b2 (1), (7) + b5 (1)ir(z) + 2 bai(1)Ei(7) + do(c) . (52b)

If T = 0, we can determine #(0) and #(0) from Egs. (52) by virtue of Eq. (43):
$(0) — ¢,(0) — ¢1(1)pa(0) — ¢, (1)py(0) — 3; Pui(1)1is

b3(1) + 32 Pai(1) Lo,
$5(0) — $4(0) — 1(1)5,(0) — $2(1),(0) — 3, pus(1)Ex;

$3(1) + 325 G4i(1) D .

Substitute #7(0) and #(0) into Egs. (43) and (47). Then B;; and B,; become known and Fi;(7) is
also a known function. Substituting Eq. (46) into Eq. (52a), derives

n(0) =

(53)

7(0) =

V) = L) + 3 / n(p)sin iz — p)dp (54)

where

V(1) = ¢p(t) = da(v) = d1(1)pa(r) — ¢2(1)ps(7) Z Pai(1)Fri(t

1

1) + Z ¢4i(1)h2i7 Ly = ¢4i(1) <% - h21 z) . (55)

From Eq. (54), we have
WO = Lai(e) + 3 Lo / cos x(t — p)dp . (56)

It is noted that Eq. (54) is a Volterra integral equation of the second kind, [19], of which
analytical solutions can be obtained only for certain cases. In the general case, numerical
methods are usually adopted.

For #(0) and #(0) have been obtained, we will construct recursive formula by making use of
a cubic Hermite polynomial approximation of #(z). Practically, accurate numerical results can
be obtained efficiently by the following method. We first divide the time interval [0, 7,] into n
equal subintervals, with discrete time points 7 =0, 73, 72, ... T,. Then the cubic
Hermite polynomial at the interval [tj_;, 7j] is

n(t) = Hoj(t)n(tj—1) + Hyj(0)n(7y) + Haj(0)if(tj1) + Hj(1)in(y)  (j=1,2---m) . (57)

where 7(1;) is the value #j(7) at t = 7; , and

T—Tj— T—7Tj 2 Ti—7T T—Tj— 2
Hoj(r) = (1 + ij—fjj—ll) (Tj—fjj—l)  Hy(r) = (1 + ijifj—l) (fj—f}jjl) ’
o -1 2 T—Tj 2 .
Hj(t) = t-40)(5=5) » Hi(D=0-5)l;=7) =12...n) .

Substituting Eq. (57) into Egs. (54) and (56), gives



j
() = Lon(t) + Y Lo > [oie (k1) + A (k) + Azt (ti-1) + Asgeit ()],
i k=1
. j
V(t) = Lui(t) + > Laiooi Y o (th-1) + ptagn(Th) + ot (T 1) + et (6)]

k=1
(59)
where
Alijk = / Hy(p) sinwi(tj — p)dp, e = / Hy(p) cos w;(t; — p)dp,
Tk—1
(1:0,1,2,3;k:1,2...j;j=1,2...n) . (60)
Then we can derive the following formula from Eq. (59)
n(z) = bijkasj — bajkisj o bajkiyj — byjkay; L2, (61)
7 knjkasj — kigjkay’ 7 knjkagj — kigjkay’ ’ ’
where
kyj =1L, + Zinilijj, kiyj = ZLZi;L3zjja
i i
ka1j = Zinwiﬂujja kysj = L1 + ZLZiwiﬂﬁjjv
i i
by = ZLZI Z [oirn (Th—1) + Zuieh (Tk) + Aairh(tk—1) + Asijii (Tk)]
(62)

- Zin [Zoiin(Tj—1) + Aaijiit(Tj-1)],
;

by = Y(tj) = > Laioi D (ot (k1) + Hapen (ti) + paedt(th1) + pagjedt (1]
i k=1
— Zinwi[Hoijj’?(fj—l) + it (tj-1)] -

It should be pointed out that if j = 1, the second terms in b;; and b,; in Eq. (62) are zero. In
Eq. (48), we have obtained #(0) and #7(0), based on which we can determine #(z;) and

1(tj), (j=1,2...n) step by step by virtue of Eq. (61). After 5(t) is obtained, u(&, 1) and
¢(&, 1) also can be determined.

4
Numerical results and discussions

Example 1

The dynamic response of a nonhomogeneous, piezoelectric, hollow sphere subjected to a
constant pressure suddenly applied on the internal surface is considered. The material
constants are

C11 = C22 =139.0 GPa, C]g =778 GPa, C13 =743 GPa, C33 =115.0 GPa, E31 = —5. 2C/m ,
Es; = 15.1C/m’ , Q33 = 5.62 x 107°C?/(Nm?), [2].

The boundary conditions are

pa(t) = —0oH (1), ps(t) = 0.0,
$a(1) =0.0, ¢y(r) =0.0, (63)
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where gy is a prescribed dimensionless constant pressure, and H(t) is the Heaviside function.
In the following, we take oo = 1.0, s = 0.5, m = 2, and 1, = 700 = 5. We consider the first 40
terms in the series in Eq. (33) for numerical calculations.

Figure 1 shows the response of o, at £ = 0.75 (the middle surface) in the hollow sphere for
N = -1, N =0 and N = 1. From the curves, we can see that the peak values of compressive
stress increase quickly with the increase of N, while the peak values of tensile stress vary
slightly with N.

Figures 2 and 3 depict the response of gy at ¢ = 0.5 (the internal surface) and £ = 1.0
(the external surface) in the sphere for different values of N. From the curves, we find that, at
the internal surface, the peak values of tensile stress decrease with the increase of N, while at
the external surface, it is just the contrary. We know that the circumferential stress has the
maximum value at the internal surface for a homogeneous, isotropic, hollow sphere subjected
to a uniform pressure at the internal surface. Form the above studies, we can conclude that
nonhomogeneous materials can be used to decrease the circumferential stress at the internal
surface of the hollow sphere subjected to internal pressure. Actually, it is a very efficient way to
make full use of the materials.

Figures 4 and 5 illustrate the distributions of dimensionless electric potential ¢ at different
times for N = —1 and N = 1 . Comparing Fig. 4 with Fig. 5, we find that the distributions of ¢
are different for N = —1 and N = 1. Note that the calculated electric potentials are zero both at
the internal and external surfaces, which agrees with the prescribed electric boundary condi-
tions. The correctness of the numerical results is thus clarified in this respect.

Example 2
The dynamic response of a nonhomogeneous, piezoelectric, hollow sphere subjected to a
constant electric potential suddenly imposed on the external surface is considered here. The
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Fig. 4. Distribution of electric poten-
tial ¢ for N = —1 (example 1)

Fig. 5. Distribution of electric poten-
tial ¢ for N =1 (example 1)

material constants are the same as those adopted in Example 1. The boundary conditions
become

=0.0, py(r) =0.0,
=0.0, ¢,(1) = ¢oH(1) ,

(64)
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where ¢, is the prescribed constant dimensionless electric potential. For numerical calcula-
tions, the same parameters as that in Example 1 are employed, except that ¢, = 1.0 is used

instead of gy = 1.0.

Figure 6 shows the response of o, at £ = 0.75 (the middle surface) in the hollow sphere for
N = —1, N =0 and N = 1. From the curves, we can see that the peak values of dynamic radial
stress decrease with N.

Figures 7 and 8 depict the response of gy at £ = 0.5 (the internal surface) and ¢ = 1.0 (the
external surface) in the sphere for different values of N. From the curves, we find that, at the

8.00
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6.00
4.00
2.00
g
0.00
-2.00
-4.00 Fig. 6. Histories of dynamic stresses
g, at the middle surface varying with
6.00 N (example 2)
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5.00 (example 2)
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g
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Fig. 8. Histories of dynamic stresses
gy at the outer surface varying with N
3.00 (example 2)
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Fig. 10. Distribution of electric
potential ¢ for N = 1 (example 2)

internal surface, the peak values of the tensile stress decrease quickly, while at the external
surface, the peak values of the compressive stress decrease with N. We also notice that, at the
external surface, the dynamic circumferential stress is compressive when N = —1, while it
becomes tensile for N = 0 and N = 1. The peak values of tensile stress for N = 1 are larger than
those for N = 0.

Figures 9 and 10 illustrate the distributions of dimensionless electric potential ¢ at different
times for N = —1 and N = 1, respectively. Comparing Fig. 9 with Fig. 10, we also find that the
distributions of ¢ are different for N = —1 and N = 1. Again, the calculated electric potentials
are zero both at the internal and external surfaces, which satisfy the prescribed electric
boundary conditions. The correctness of the numerical results is further clarified in this
respect.

5

Comments

(1) In terms of numerical accuracy for different number of terms considered in the series in
Eq. (33), we find that the results vary very slightly between 30 terms and 40 terms.
Therefore, we take for all computations the first 40 terms in the series.

(2) If the electric boundary conditions in Eq. (11b) are expressed by the electric displacement,
only one boundary condition will be involved. That is because, if the electric displacement
is prescribed on one surface, then the distribution of the electric displacement can be
determined immediately from Eq. (14). In this case, from the beginning to Eq. (47), the
displacement and stress solution can be determined and the procedure of solving integral
equation can be avoided. The expression for electric potential can be written as Eq. (50).
But if we want to determine ¢(&, 1) completely, one boundary condition related to ¢ must
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3)

be known. That is, either ¢,(1) or ¢,(t) should be prescribed. The relationship between
¢,(t) and ¢,(1) is given in Eq. (52a).

If He(tr) (I1=0,1,2,3) are polynomials of 7 , the integration in Eq. (60) can be obtained
explicitly, which can improve the computing accuracy. Using cubic Hermite polynomial to
approximate 7(t), accurate results can be obtained efficiently, and it is also very stable for
long time calculations. Based on many numerical tests, we find that the relative error is less
than 1079 for the time step At < 0.1. In order to obtain highly accurate results, we adopt
At = 0.025 in the paper.
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