
On a moving Griffith crack in anisotropic
piezoelectric solids

A. K. Soh, J.-X. Liu, K. L. Lee, D.-N. Fang

Summary The generalized plane problem of a finite Griffith crack moving with constant
velocity in an anisotropic piezoelectric material is investigated. The combined mechanical and
electrical loads are applied at infinity. Based on the extended Stroh formalism, the closed-form
expressions for the electroelastic fields are obtained in a concise way. Numerical results for
PZT-4 piezoelectric ceramic are given graphically. The effects on the hoop stress of the velocity
of the crack and the electrical to mechanical load ratios are analyzed. The propagation ori-
entation of a moving crack is also predicted in terms of the criterion of the maximum tensile
stress. When the crack speed vanishes, the results of the present paper are in good agreement
with those given previously in the literature.

Keywords Piezoelectric material, Moving crack, Stroh formalism, Electroelastic field,
Crack branching

1
Introduction
Piezoelectric materials produce an electric field when stressed, and deform when subjected to an
electric field. Such intrinsic coupling has attracted wide industrial applications of piezoelectric
materials in various technologies. Typical examples include electromechanical transducers,
delay lines, medical instruments, denotation devices, sonar equipment, microelectronic com-
ponents and the newly emerging smart (adaptive) structures. In general, some defects or cracks
may be produced in piezoelectric materials in the course of their manufacturing. When they are
subjected to mechanical and electrical loads, stress concentrations due to these defects can give
rise to critical crack growth and subsequent mechanical failure. Therefore, it is of great im-
portance to study the electro-elastic interaction and fracture behavior of piezoelectric materials.

The first to consider the crack problem in piezoelectric materials was Parton, [1]. In his
work, the electric potential u and the normal component Dn of electric displacements across
the crack surface were assumed to be continuous, i.e. uþ ¼ u�;Dþ

n ¼ D�
n . Later, in [2] another
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set of electric boundary conditions on the crack faces was proposed, namely Dþ
n ¼ D�

n ¼ 0, and
the crack in a piezoelectric medium was modeled by the method of distributed dislocations and
electric dipoles. The conditions presented in [1] and [2], respectively, are called the permeable
and impermeable electric boundary conditions. Indeed, since the pioneering works [1] and [2],
a number of analytical researches concerning the fracture problems of piezoelectric materials
have been carried out and great progress has been made. References [3–12] give some examples
of the plane and generalized plane crack problems in piezoelectric solids. It is worthwhile
noting that these theoretical investigations were focused on the stress and electric fields in-
duced by stationary cracks. There were a few investigations that took into account the dynamic
problems of cracks moving at a constant speed in piezoelectric materials. In [13] a moving anti-
plane crack (mode-III crack) was first studied in a homogeneous piezoelectric material, and it
was shown that the stress and electric displacement intensity factors are independent of the
speed of the crack. Paper [14] analyzed the problem of a crack moving along an interface of two
dissimilar piezoelectric half-planes. The authors concluded that the stress and electric dis-
placement intensity factors are related to the crack speed, while the impermeable electric
boundary condition was used. More recently, paper [15] investigated the behavior of a moving
crack in a piezoelectric ceramic strip, and [16] examined a moving interfacial crack between
piezoelectric and elastic layers. Both in [15] and [16] the permeable electric boundary condition
was adopted. Based on the two kinds of electric boundary conditions above, paper [17] con-
sidered the same problem as in [14] and calculated the stresses disturbed by a moving interface
crack. In [13–17], Yoffe’s assumption was adopted of a crack with a fixed length propagating at
a constant velocity in a purely elastic isotropic solid [18]. It appears that such an assumption
may not be realistic since it demands that the crack opens at one end and closes at the other
one at the same speed. However, it is important to note that the angular variation of the
dynamic stress field near the moving crack tip is independent of the (fictitious) crack length.
Freund, [19], has pointed out, that the near-tip stress field of the Yoffe moving crack is the
same as that of the self-similar moving crack tip, i.e., when the opposite crack tip is moving at
the same speed but in the opposite direction. This is why many researchers have extended the
Yoffe’s model to the study the moving crack problems in purely elastic orthotropic materials
[20–30] and for piezoelectric ones [13–17].

All the above-mentioned studies on the moving crack problems in piezoelectric media are
limited to the anti-plane deformation of transversely isotropic piezoelectric media. In this
paper, we consider the generalized plane problem of a finite Griffith crack moving in a general
anisotropic piezoelectric material. The main objective is to study the dynamic features of
the hoop stress and crack branching. The impermeable electric boundary conditions along
the crack surfaces, which are commonly assumed, see [2–8, 11–14 and 17], are implemented in
the present study. The paper is organized as follows. Section 2 introduces the basic equations of
piezoelectric media based on the quasi-electrostatic approximation and, hence, formulates the
steady-state version of Stroh formalism for piezoelectricity. The solution to the moving crack
problem is derived in Sect. 3. Numerical results are given for PZT-4 piezoelectric ceramic in
Sect. 4, and conclusions are given in Sect. 5.

2
Basic equations and Stroh formalism

2.1
Basic equations
In a rectangular coordinate system xiði ¼ 1; 2; 3Þ, the momentum balance equations and
quasistatic Maxwell equation for quasi-electrostatic piezoelectricity are as follows, [31]:

rij;j ¼ q
o2ui

ot2
; Di;i ¼ 0 ; ð1Þ

where q is the density of the material, ui; rij and Di are the elastic displacements, stresses, and
electric displacements, respectively, and a subscript comma denotes partial differentiation with
respect to one of the coordinates xi. The constitutive relations are

rij ¼ cijkluk;l þ eijku;k; Di ¼ eikluk;l � eiku;k ; ð2Þ

where u is the electric potential, the electric fields Ei are related to u as
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Ei ¼ �u;i ;

and cijkl; ekij and eij are the elastic stiffnesses, piezoelectric stress and dielectric constants,
respectively.

For a two-dimensional problem, in which all the variables are independent of x3, Eqs. (1) and
(2) can be expressed in the following compact form:

t1;1 þ t2;2 ¼ qg€UU ; ð3Þ

t1 ¼ QU;1 þ RU;2; t2 ¼ RTU;1 þ TU;2 ; ð4Þ

where

U ¼ ½u1; u2; u3;u�T; tb ¼ rb1; rb2; rb3;Db
� �Tðb ¼ 1; 2Þ; g ¼ diag½1; 1; 1; 0� :

Matrices Q, R and T are related to the material constants by

Q ¼ ci1k1 e1i1

eT
1k1 �e11

� �
; R ¼ ci1k2 e1i2

eT
2k1 �e12

� �
; T ¼ ci2k2 e2i2

eT
2k2 �e22

� �
: ð5Þ

Substituting Eq. (4) into Eq. (3) leads to

QU;11 þ R þ RT
� �

U;12 þ TU;22 ¼ qg
o2U

ot2
: ð6Þ

2.2
Stroh formalism
The electroelastic fields arising from a two-dimensional steady-state motion of a piezoelectric
material at constant speed v in the positive x1-direction are as follows:

U ¼ U x1 � vt; x2ð Þ; tb ¼ tb x1 � vt; x2ð Þ : ð7Þ

Introducing the Galiean transformation

x ¼ x1 � vt; y ¼ x2; z ¼ x3 ;

one obtains o=ox ¼ o=ox1; o=ot ¼ �vo=ox. Thus, Eq. (6) can be written as

Q � qv2g
� �

U;xx þ R þ RT
� �

U;xy þ TU;yy ¼ 0 ; ð8Þ

which is the governing differential equation for the steady-state electroelastic fields. Note
that the structure of Eq. (8) is identical to that of the static case when ðQ � qv2gÞ is identified
with Q.

Adopting Stroh formalism, [32], for anisotropic elasticity, a general solution to Eq. (8) can be
sought in the form

U ¼ af ðfÞ; f ¼ x þ ly ; ð9Þ

where l and a are a constant and a constant vector, respectively, which are to be determined;
and f ðfÞ is an arbitrary function of variable f subject to the requirement of twice-differen-
tiability. Substitution of Eq. (9) into Eq. (8) results in

Q � qv2g þ l R þ RT
� �

þ l2T
� �

a ¼ 0 ; ð10Þ

which is a nonlinear eigenvalue problem. A nontrivial solution of a requires that the deter-
minant of its coefficient matrix must be zero, i.e.,

det Q � qv2g þ l R þ RT
� �

þ l2T
� �

¼ 0 : ð11Þ
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This is a polynomial of degree eight for l. The root l of Eq. (11) depends not only on the
material constants and its orientation, but also on the speed v of the steady-state motion. As
discussed in [33] when studying the existence of surface waves in piezoelectric crystals, the
static result that no root l is real does not hold for arbitrary v except for subsonic motion,
which will be considered next. If la ða ¼ 1; 2; 3; 4Þ are assumed to be the four distinct roots
with positive imaginary parts, and aa are the associated eigenvectors, the general solution can
then be expressed as

U ¼ 2<
X4

a¼1

aafa fað Þ ; ð12Þ

where < denotes the real part and fa ¼ x þ la y.
Substituting Eq. (12) into Eq. (4) and by using Eq. (3), the stress and electric displacement

vectors can be expressed as

t1 ¼ �U;y þ qv2gU;x; t2 ¼ U;x ; ð13Þ

in which

U ¼ 2<
X4

a¼1

bafa fað Þ ; ð14Þ

where U ¼ f/1;/2;/3;/4gT is called the generalized stress function vector, and ba can be
determined from aa by the following relation:

ba ¼ RT þ laT
� �

aa ¼ � Q � qv2g
� �

l�1
a þ R

� �
aa : ð15Þ

Let’s introduce two 4� 4 matrices

A ¼ a1; a2; a3; a4½ �; B ¼ b1; b2; b3; b4½ � ; ð16Þ

and a function vector

fðfaÞ ¼ f1ðf1Þ; f2ðf2Þ; f3ðf3Þ; f4ðf4Þ½ �T : ð17Þ

Then Eqs. (12) and (14) can be rewritten as

U ¼ 2< Af fað Þ½ �; U ¼ 2< Bf fað Þ½ � : ð18Þ

Equations (13) and (18) together with the relations given by Eq. (15) are the main results of
this section. In these expressions, the only unknown is the function vector fðfaÞ. The appro-
priate form of fðfaÞ depends on the boundary conditions of the problems considered.

3
Solution to the moving crack problem

3.1
Full-field solution
Consider an infinite piezoelectric medium containing a moving Griffith crack of length 2a as
shown in Fig. 1. The medium is subjected to remote uniform electro-mechanical loads given by
t12 ¼ ½r1

21; r
1
22; r

1
23;D1

2 �T. The crack surfaces are traction- and charge-free. Similar to the as-
sumption made by Yoffe, [18], for pure elasticity, and used in [13–17] for anti-plane piezo-
electricity and in [20–30] for orthotropic elasticity, in the present study the crack is also
assumed to be propagating at a constant velocity v and without change in length along the
positive x1-axis. The coordinate system ðx1; x2; x3Þ is stationary, while the coordinate system
ðx; y; zÞ is attached to the crack. The solution to the problem considered can be obtained by
superposing two solutions. The first one is the homogenous solution obtained by assuming that
the crack is absent from the infinite piezoelectric medium subjected to uniform loads t12 , and
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the second one is the disturbed solution induced by the crack surfaces which are subjected to
�t12 . The subscripts h and d are used to denote the physical variables related to the homo-
genous and disturbed solutions, respectively.

For the disturbed solution, the boundary conditions in terms of Ud are as follows:

Ud x; y ¼ 0þð Þ ¼ Ud x; y ¼ 0�ð Þ; xj j < 1;

Ud x; y ¼ 0þð Þ ¼ Ud x; y ¼ 0�ð Þ ¼ �xt12 ; xj j < a ;
ð19Þ

Ud ! 0; fj j ! 1 : ð20Þ

Based on the arguments presented in [5] for the static case of piezoelectricity and in [34] for
anisotropic elasticity, the function fdðfaÞ corresponding to the disturbed solution, which sat-
isfies the boundary conditions (19) and (20), is given by

fd fað Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2
a � a2

q
� fa


 �
 �
B�1t12 ; ð21Þ

where fah ih i denotes a 4� 4 matrix, for which the a-th diagonal element is fa and the other
elements are zero.
For the homogeneous solution, from the condition

Uh;x ¼ 2< Bfh;x fað Þ
� �

¼ t12 ; ð22Þ

one obtains

fh fað Þ ¼ 1

2
fah ih iB�1t12 : ð23Þ

We note that the constant vector denoting the translation of a rigid body and the equipotential
field have been omitted. Finally, superposition of the two solutions gives the total solution as
follows

U ¼ < A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2
a � a2

q
 �
 �
B�1

� �
t12 ; U ¼ < B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2
a � a2

q
 �
 �
B�1

� �
t12 : ð24Þ

which provides the full-field solution of the problem.

Fig. 1. Schematic representation of
a moving crack in a piezoelectric solid
subjected to far-field electromechani-
cal loading
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3.2
Electroelastic fields near the crack tip
By substituting Eq. (24) into Eq. (13), the stresses and electric displacements can be obtained
as follows:

t1 ¼ < qv2gA
faffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2
a � a2

q
* +* +

B�1 � B
lafaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2
a � a2

q
* +* +

B�1

2
64

3
75t12 ; ð25Þ

t2 ¼ < B
faffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2
a � a2

q
* +* +

B�1

2
64

3
75t12 : ð26Þ

It is obvious that the distributions of the electroelastic fields near the crack tip are of great
interest to us. By introducing a polar coordinate system ðr; hÞ with the origin at the crack right
tip, as shown in Fig. 1, we have

fa ¼ a þ r cos h þ la sin hð Þ : ð27Þ

When r is small compared to the half-length a of the crack, Eqs. (25) and (26) for the stresses
and electric displacements can be rewritten as

t1 ¼
ffiffiffiffiffi
a

2r

r
< qv2gA

1

Ka hð Þ


 �
 �
B�1 � B

la

Ka hð Þ


 �
 �
B�1

� �
t12 ; ð28Þ

t2 ¼
ffiffiffiffiffi
a

2r

r
< B

1

Ka hð Þ


 �
 �
B�1

� �
t12 ; ð29Þ

where

Ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h þ la sin h

p
: ð30Þ

4
Numerical results and discussion
In this section, the numerical calculations for the stresses near the moving crack tip are
performed using expressions (28) and (29). The used material is PZT-4 piezoelectric ceramic
that possesses the transversely isotropic property. The polarized direction of PZT-4 is per-
pendicular to the crack plane. The constitutive relations for such crack configuration and the
explicit expressions for the eigenvalue, Eq. (10), are given in the Appendix. The material
constants for PZT-4 piezoelectric ceramic are listed in Table 1.

In our calculations, a pure mechanical load, a pure electrical load and a combination of both
loads are applied. The velocity of the crack is less than c, where

c ¼
ffiffiffiffiffiffi
c66

q

r

is the lowest Bulk wave speed when the plane wave propagates along the x1-direction in the
transversely isotropic piezoelectric medium, [35]. Figure 2 shows the variation with the

Table 1. Material constants of PZT-4 piezoelectric ceramic

Elastic stiffnesses (�1010 N/m2) Piezoelectric
coefficients (C/m2)

Dielectric constants
(�10�10 C/Vm)

c11 c12 c13 c33 c44 e31 e33 e15 e11 e33

13.9 7.78 7.43 11.3 2.56 )6.98 13.84 13.44 60 54.7
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position h of the normalized hoop stress rh

ffiffiffiffiffiffiffiffiffiffi
2r=a

p
near the crack tip for different normalized

crack speeds v=c when purely mechanical load is applied along the y-direction as the tensile
stress r1

22 ¼ 2 MPa. From Fig. 2, it can be seen that the maximum hoop stress rh occurs at
h ¼ 0� for low crack velocity. This means that the crack has a tendency to propagate along its
original plane when the criterion of the maximum tensile stress is used. For high crack velocity,
the hoop stress rh is maximum for an angle h 6¼ 0� at which the crack will deviate from its
original plane. This phenomenon is called the crack branching. The angle corresponding to the
crack branching is defined as the branch angle.

Variation of the normalized hoop stress rh

ffiffiffiffiffiffiffiffiffiffi
2r=a

p
with angular position h for different crack

speeds is shown in Fig. 3, where the pure negative electrical load, D1
2 ¼ �0:002 C=m2 is

applied. The ‘‘negative’’ means that the direction of applied electric load is opposite to the
direction of poling. It can be observed that the crack tends to deviate from its straight line path
under a purely electrical load for all the crack speeds, which is in agreement with the exper-
imental observation in [36] and the theoretical investigations in [6] and [7] for the stationary
crack in piezoelectric materials. On the other hand, Fig. 3 indicates that the higher the crack
moving velocity, the larger the branch angle.

Fig. 2. Angular variation of the normalized hoop stress due to pure mechanical load ðr1
22 ¼ 2 MPaÞ

Fig. 3. Angular variation of the normalized hoop stress due to pure electrical load at D1
2 ¼ �0:002 C=m2
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For the case of the combined electromechanical loading ðr1
22 ¼ 2 MPa;D1

2 ¼ �0:002 C=m2Þ,
the angular variation of the normalized hoop stress rh

ffiffiffiffiffiffiffiffiffiffi
2r=a

p
is illustrated in Fig. 4 for different

crack velocities. In this case, the hoop stresses are tensile for all h and the crack branching
appears for each crack speed. When the crack velocities v are equal to 0, 0.3c and 0.7c,
respectively, Fig. 5 present the angular variation of the normalized hoop stress rh

ffiffiffiffiffiffiffiffiffiffi
2r=a

p
for

different electrical-to-mechanical-load ratios

c ¼ D1
2

e33

c33

� �
r1

22

:

For lower crack velocity, a negative electric load can cause the crack branching, but a
positive electric load can’t. However, when the crack velocity is higher, a positive elec-
tric load can also give rise to the occurrence of crack branching. This implies that the
influence of electric loads on crack propagation increases with the increase of the crack
velocity.

5
Conclusions
The general solution for a moving crack in an anisotropic piezoelectric material has been
presented under far-field electrical and mechanical loading. The numerical results reveal that
the crack velocity, the direction of the electrical load and electrical-to-mechanical-load ratio
have great influence on the stress distributions in the vicinity of the crack tip and the prop-
agation orientation of the moving crack. Especially, when the combined electrical and me-
chanical loads are applied, the positive electric load makes the crack tend to deviate from its
original path and propagate in an oblique direction for higher crack velocity, which is im-
possible for a stationary crack. Finally, it should be pointed out that the stress distributions
obtained for the case in which the crack velocity vanishes are consistent with those given in
[6, 7] for the stationary crack.

Appendix
The constitutive equations of transversely isotropic piezoelectric materials with the x2-axis
parallel to the poling direction in matrix notation are

Fig. 4. Angular variation of the normalized hoop stress due to combined electromechanical load
(r1

22 ¼ 2 MPa, D1
2 ¼ �0:002 C=m2Þ
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Fig. 5. Angular variation of the normalized stress for different electrical-to-mechanical-load ratios
ðr1

22 ¼ 2 MPaÞ when the crack velocity v is (a) 0, (b) 0.3c and (c) 0.7c
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r11

r22

r33

r23

r13

r12

2
6666664

3
7777775
¼

c11 c13 c12 0 0 0
c13 c33 c13 0 0 0
c12 c13 c11 0 0 0
0 0 0 c44

0 0 0 c66

0 0 0 c44

2
6666664

3
7777775

c11

c22

c33

2c23

2c13

2c12

2
6666664

3
7777775
�

0 e31 0
0 e33 0
0 e31 0
0 0 e15

0 0 0
e15 0 0

2
6666664

3
7777775

E1

E2

E3

2
4

3
5 ; ðA:1aÞ

and

D1

D2

D3

2
4

3
5 ¼

0 0 0 0 0 e15

e31 e33 e31 0 0 0
0 0 0 e15 0 0

2
4

3
5

c11

c22

c33

2c23

2c13

2c12

2
6666664

3
7777775
þ

e11

e33

e11

2
4

3
5 E1

E2

E3

2
4

3
5 ; ðA:1bÞ

where

c66 ¼
c11 � c12

2
: ðA:1cÞ

The matrices Q, R and T are

Q ¼

c11 0 0 0
0 c44 0 e15

0 0 c66 0
0 e15 0 �e11

2
664

3
775; R ¼

0 c13 0 e31

c44 0 0 0
0 0 0 0

e15 0 0 0

2
664

3
775; T ¼

c44 0 0 0
0 c33 0 e33

0 0 c44 0
0 e33 0 �e33

2
664

3
775 :

ðA:2Þ

The eigenproblem given by Eq. (10) becomes

c11 � qv2 þ c44l2 csl 0 esl
csl c44 � qv2 þ c33l2 0 e15 þ e33l2

0 0 c66 � qv2 þ c44l2 0
esl e15 þ e33l2 0 �e11 � e33l2

2
664

3
775

a1

a2

a3

a4

2
664

3
775 ¼ 0 ;

ðA:3Þ

where

cs ¼ c13 þ c44; es ¼ e15 þ e31 :

Equation (A.3) indicates that the anti-plane elastic deformation u3 decouples from the piezo-
electric fields ðu1; u2;uÞ denoted by ða1; a2; a4Þ. The equations for determination of the
eigenvalue l are

d3l
6 þ d2l

4 þ d1l
2 þ d0 ¼ 0; c66 � qv2 þ c44l

2 ¼ 0 ; ðA:4Þ

where

d3 ¼ c44 c33e33 þ e2
33

� �
;

d2 ¼ c33 c44e11 þ e2
15

� �
þ e33 c11 � qv2

� �
c33 þ c44 c44 � qv2

� �
� c2

s

� �
þ 2e33 c44e15 � csesð Þ þ c11 � qv2

� �
e2

33;

d1 ¼ c11 � qv2
� �

c44 � qv2
� �

e33 þ c44e2
15 þ e11 c11 � qv2

� �
c33 þ c44 c44 � qv2

� �
� c2

s

� �
þ 2e15 c11 � qv2

� �
e33 � cses

� �
þ c44 � qv2
� �

e2
s ;

d0 ¼ c11 � qv2
� �

c44 � qv2
� �

e11 þ e2
15

� �
:

ðA:5Þ
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Similar to the static case, the roots of the first expression of Eq. (A.4) have the following
form:

l1 ¼ in; l2 ¼ g þ is; l4 ¼ �g þ is; ðn; g; sÞ > 0 ; ðA:6aÞ

while the root of the second expression of Eq. (A.4) is

l3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c66 � qv2

c44

s
: ðA:6bÞ

The corresponding eigenvectors are

aa ¼

A1a

A2a

0
A4a

2
664

3
775; ða ¼ 1; 2; 4Þ; a3 ¼

0
0
1
0

2
664

3
775 ; ðA:7Þ

in which

A1a ¼ � c44 � qv2 þ c33l
2
a

� �
e11 þ e33l

2
a

� �
� e15 þ e33l

2
a

� �2
;

A2a ¼ cs e11 þ e33l
2
a

� �
� es e15 þ e33l

2
a

� �� �
la;

A4a ¼ cs e15 þ e33l
2
a

� �
� es c44 � qv2 þ c33l

2
a

� �� �
la :

ðA:8Þ

Once aa have been obtained, ba can be computed from Eq. (15).
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