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Analytical thermo-elastodynamic solutions
for a nonhomogeneous transversely
isotropic hollow sphere

H. J. Ding, H. M. Wang, W. Q. Chen

Summary The spherically symmetric dynamic thermoelastic problem for a special non-
homogeneous transversely isotropic elastic hollow sphere is formulated by introduction of a
dependent variable and separation of variables technique. The derived solution can be
degenerated into that for a homogeneous transversely isotropic hollow sphere, a nonhomo-
geneous isotropic hollow sphere or a solid sphere. The present method, allow to avoid integral
transforms, is suited for a hollow sphere of arbitrary thickness subjected to arbitrary spherical
symmetric thermal and mechanical loads, and is convenient in dealing with different boundary
conditions of dynamic thermoelasticity . The numerical calculation involved is easy to be
performed and its results are also presented.

Keywords Separation of variables, Dynamics, Transverse isotropy, Thermoelasticity,
Hollow sphere

1
Introduction
Thermally excited mechanical response of structures is of increasing interest in engineering
science, and much work has been done on dynamic thermoelastic problems. An exact, closed-
form solution has been obtained for the dynamic problem of a sudden temperature change at
the surface of a spherical cavity in an infinite solid, [1]. Under internal thermal shock, the
thermal stress-wave propagation in an arbitrary thick-walled spherical shell was discussed in
[2]. Dynamic thermal stress response in a hollow sphere, which is subjected to arbitrary
spherically symmetric temperature fields, has also been investigated in [3]. The technique is
based on the integral theorem of a hyperbolic initial value problem, together with the con-
struction of image temperature fields in the regions outside the actual body. The dynamic
thermal stress responses in a uniformly heated, homogeneous isotropic hollow sphere and a
solid sphere as well as in a homogeneous transversely isotropic hollow sphere were solved by
the ray theory, [4-6]. For a transversely isotropic solid sphere, the thermal stress concentration
effects were discussed in [7]. The above analyses are restricted to homogeneous materials. As
for nonhomogeneous materials, little work has been done to the author’s knowledge. The
transient thermal stresses in a nonhomogeneous spherically isotropic elastic medium with a
spherical cavity and an exponential distribution of heat sources, were obtained in [8].
Dynamic thermoelastic problems are usually solved using the Laplace transform technique,
[1, 2, 4-8]. However, this method encounters the difficulty of inverse transforms in some
special cases. The ray theory is a good tool to complete the Laplace inversion. However, for a
very thin spherical shell it needs a large number of rays and, hence, becomes impractical, [9].
The present method allows to avoid integral transforms, although it is restricted to a special
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type of inhomogeneity. A new dependent variable is introduced to rewrite the governing
equation, the boundary conditions as well as the initial conditions. Then the thermal and
mechanical loads are treated as the inhomogeneous part in the boundary conditions, and a
special function is introduced to transform the inhomogeneous boundary conditions to
homogeneous ones. By using the orthogonal expansion technique, the equation is derived with
respect to the time variable from which the solution for the dynamic thermoelastic problem of a
nonhomogeneous transversely isotropic hollow sphere is easily obtained.

2

Mathematical formulations of the problem

Transient response of a thermally shocked transversely isotropic solid sphere has been con-
sidered in [6]. If a spherical coordinate system (r, 0, ¢) with the origin at the center of the
sphere is used for the spherically symmetric problem, only the radial displacement u, = u,(r, t)
is nonzero. The strain-displacement relations are thus

Oou u
yrr:a_rrv VO():V(/)(/)ZTra Vr():y(?(p:y(pr:o ) (1)

where 7;(i,j = r,0, ¢) are the strain components. The constitutive relations are, [6]

1 )
Yy = E—ra,, - ZELragg + o, T(r,t),

Urp 1—vg
Yoo = _ELarr +Tetpa()() + OC()T(T, t) )

r

(2)

where o, and ogy are stress components and E, and Ey are the Young’s moduli of r and 6
directions, respectively; v,9 is the Poisson’s ratio which characterizes the ratio of contraction in
r direction due to extension in 0 direction and vy, is Poisson’s ratio which characterizes the
ratio of contraction in 0 direction due to extension in ¢ direction, respectively; o, and oy are
the coefficients of linear thermal expansion in r and 0 directions, respectively; T(r,t) is the
temperature change. Equation (2) can also be rewritten as

Orr = C11Ypy + 2¢12799 — BT (7, 8),

(3)
127y + (€22 + €23) 700 — B T(r,8)

000

where ¢;i(i,j = 1,2, 3) are elastic constants and f;(

i=1,2) are stress-temperature constants,
which can be expressed in terms of ¢;(i,j = 1,2,3) and «

l(l =T, 6)
Bi = ity + 2c1209, By = cra0 + (€22 + €23)2%p - (4)
The equation of motion is
aGrr O — 000 62ur
2 = 5
or t r e (5)

where p is the mass density. In this study, we assume that the nonhomogenity of the material is
characterized by the special laws

(" () 0

Here, b, A;; and p, are known constants, and N is a rational number. The coefficients of linear
thermal expansion o; are constant. From Egs. (1), (3) and (6), we obtain

r\ 2N ou u
O = (E) |:A116—;—|—2A127r—BlT(r, t):|,

r\2N ou, U,
Ogg = <E) [Au o + (A + A23)7 — B, T(r, t)} )



where
By = Apoy +2A1509, By = Aoy + (Axp + Axs)ap . (8)

Substitution Egs. (7) into Eq. (5), gives the following governing equation:

*u, 2(N+1)0u, 2 1 0%u,

A, -7 t 9
or? r or 12 Ur ¢z o +8r1) )
where

A Az — (2N +1)A A
,uf:2 2+ An—( +)12’ o = i’
Au Po (10)
(N + 1)31 — Bz T(T, t) Bl aT(T, t)
t)y=2 —_—
g(r’ ) A11 r +A11 @r

The boundary conditions are

ou,

r

r=a: s*N|Ay

ou,
or

+ 2A12% — BIT(a, l‘)] :Pa(t)ﬂ ( )
11

r=>ob: A11 +2A12%_BIT(b7 t) :Pb(t) ’

where a and b are the inner and outer radii of the spherical shell, respectively, s = a/b is the
inner-to-outer radius ratio and p,(t) and p,(t) are the prescribed pressures on the internal and
external surfaces, respectively. The initial conditions (t = 0) are

u,(r,0) = up(r), u,(r,0) =w(r) , (12)

where a dot over the quantity denotes its partial derivative with respect to ¢, and uo(r) and vo(r)
are known functions.

3
Analytical solution
Firstly, a new dependent variable w(r, t) is introduced as

u,(r,t) = rf(N%)w(r, t) . (13)

Then Egs. (9), (11) and (12) become

Pw 10w 2 1 0%w
st W =gay 14
or2  ror r2w ¢z ot a1, (14)
r=a %—w hE:pl(t),
reb Y )
" Or T 2
W(T’, 0) = ul(r)a W(T,O) = Vl(r) 3 (16)
where
1\* , 24 1
p= 1+ <N+‘) oaint)=rg(re), h==""2—(N+>),
2 AL 2
pi(?)
[BIT(a, 1)+ 5 ] (17)
Pl(t) _ aN+% s ’ Pz(t) _ bN+% [BIT(bv t) +p2(t>] ’
Ay A

547




548

We transform now the inhomogeneous boundary conditions into the homogeneous ones by
taking

w(r,t) = wi(r,t) + wy(r,t) . (18)

Here, w;(r, t) satisfies the inhomogeneous boundary conditions, which can be taken as

wa(r,t) = di(r — a)"pa(t) + da(r — b)"pi(2) (19)
where

1-m 1-m
4 = b 4= b , (20)

m(1—s)" "' +h(1 —s)" m(s—1)" "+ h(s—1)"/s

in which m > 2 is an arbitrary integer that satisfies

(1= 9" (1 - 9" m(s — 1" + 2D 1)
because of s # 1.

Substituting Eq. (18) into Eqs. (14)-(16), gives

62w1 16W1 ,u2 1 62Wl
AT S 22
orr "ror T 2 o t&lnt) (22)
r=a: agvl h*

" (23)

— . Wl - —
r=b: o h ,
wi(r,0) = uy(r), wi(r,0) = vy(r) , (24)
where
1 0wy(r,t) W 10wy (r,t)  OPwy(r,t)
t = £ —- -

& ( ) g1<7’ ) C% atz + 2 W2(T, ) r or or2 ; (25)

uy(r) = uy(r) — wa(r,0), va(r) = vi(r) — wy(r,0) .

By using the standard separation of variables technique, the solution of Eq. (22) can be
assumed in the following form

t) = ZRi(r)Fi(t) : (26)

Here, F;(t) are unknown functions of ¢, and R;(r) is given by
Ri(r) = I,u(kir)Y(:u7 kiv 61) - Y,u(kir)l(:u7 ki7 61) P <27)
in which J,(kir) and Y, (kir) are Bessel functions of the first and second kind and of the order g,

respectively. Quantities k;, arranged in an ascending order, are a series of positive roots of the
following eigenequation:

I(:ua ki7 lfl)Y(ﬂ, kia b) - ](:u7 kia b)Y(,uv kia (1) =0 3 (28)

where



ki
+ hl”(r ), Y (p kiyr) =

d]#(kﬁ’) dY‘u(k,’T) n hY#(kiT)
dr '

I(:ua ki,r) = dr

(29)

It can be shown that w;(r, ) given in Eq. (26) satisfies the homogeneous boundary conditions

as shown in Egs. (23).
Substitution Eq. (26) into Eq. (22) gives

—c Z K:F;(t)R;(r ZR d CI:tz(t +cg(r,t) . (30)

By virtue of the orthogonal property of Bessel functions, it is easy to verify the following
equation

b

/TR,'(T)Rj(T)dT = Niéij s (31)

a

where 0;; is the Kronecker delta and

Mzgé{wF%gqaﬂﬂﬁﬂﬂz

) R - R )] - R) - R%(a)]} |

(32)
In the above equation, we denote
dR;(a)  dRi(r) dR;(b)  dRi(r)
dr  dr |_) dr  dr |_,°
Utilizing Eq. (31), we can derive the following equation from Eq. (30):
szi(t)
qp T =a) (33)
where
b
q
w; = kicp,  qi( — [ rg(r,t)Ri(r)dr . (34)
Nz
The solution of Eq. (33) is
Fi(t) = Gyicos wjt + Gy; sma)t+—/ ) sin w;(t — t)dt (35)
where
b b
1 1
Gii = ﬁz/ ruy(r)Ri(r)dr, Gy = Noo / rva(r)Ri(r)dr . (36)

Finally, the radial displacement is then obtained as follows:

wr(r,t) = (V) [y (r, 8) + wa(r, 1)] (37)
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4
Some particular cases

41
Isotropic material
If
E(1—v) Ev
A11:A22:T, Alzz?, k:(1+0)(1—20), g = 0y = O (38)

where E and v are Young’s modulus and Poisson’s ratio, respectively, the solution obtained
above degenerates to that of a nonhomogeneous isotropic hollow sphere for the corresponding
dynamic thermoelastic problem.

4.2

Homogeneous material

If N = 0, the solution degenerates to that of a homogeneous transversely isotropic hollow
sphere for the corresponding dynamic thermoelastic problem. Further, if the material constants
satisfy Egs. (38), the solution becomes that of a homogeneous isotropic hollow sphere. If a
homogeneous isotropic solid sphere (a = 0) is considered, we can set

Pﬂ(t) =0, pl(t) =0, I(:uvkiaa) =0, Y(,U,k,‘,ll) =1
in the relevant formulations to obtain the corresponding solution.

4.3

Elastodynamic solution

If the temperature change T(r,t) = 0, the solution becomes that of a nonhomogeneous
transversely isotropic hollow sphere for the elastodynamic problem.

4.4
Fixed boundary conditions
For a hollow sphere fixed at the inner surface, instead of Eq. (11), we have

r=a: uf(at)=0

ou, U,
=b: An—" 424 — B T(b,t) = :
r=b ng. + 241 » 1T(b,t) = pu(t)

Consequently, we have the following equations, instead of Eqs. (15) and (23):

r=a: w(a,t)=0, r=a: wyat)=0,
L Ow W . Om wr

Then, we can set
pa(t) =0, pi(t) =0, J(wkiya) =T,(kia), Y(u ki,a)=Y,(kia)

in the relevant formulations to obtain the solution of the dynamic thermoelastic problem for a
nonhomogeneous transversely isotropic hollow sphere with fixed internal surface.

5

Numerical results and discussions

In order to examine the present solution, we first consider the dynamic response in a homo-
geneous isotropic hollow sphere due to an instantaneous constant internal radial pressure and
the dynamic thermal response in a uniformly heated, homogeneous isotropic hollow sphere.
The results agree well with those obtained in [9] and [4], and hence the validation of the
solution is clarified.



In the following, we will discuss the dynamic thermal response in a nonhomogeneous
transversely isotropic hollow sphere. Suppose the spherical shell is subjected to the following
load:

pa(t) =0, pp(t) =0, T(r,t)=ToH(t) , (39)

where Ty is a prescribed temperature change and H() denotes the Heaviside step function. The
material constants are listed in the following:

An _
An

A A o
30, SR2_IB_ 9857 M _5p . (40)
A An Oty

Further, we will take o, Tp = 1.0 x 107, uo(r) = 0, vo(r) = 0. In the presentation of the results,
the following nondimensional quantities are employed:

r—a 0ij

b—a ) é b_g? 61 0_07 (l r’ ) ) (41)
where
Oy = OCr(All + 2A12)To (42)

Figures 1 and 2 show the dynamic response of the hoop stress ¢} at the inner and outer
surfaces in a uniformly heated, nonhomogeneous transversely isotropic hollow sphere

(s = 0.2) for different values of N. We can see that the peak values of the dynamic stress
at the internal surface decrease with the increase of N, while the peak values of the
dynamic stress at the outer surface vary slightly with N. Figure 3 depicts the dynamic
response of the radial stress o) at different locations ¢ in the r direction for N = 0.5 and
s =0.5. We find that the radial thermal stress vary significantly with the position. The
distributions of the hoop stress ¢} at different times t* for N =1.0 and s = 0.5 are also
depicted in Fig. 4.

Oy 12.00

N=0.0

8.00

4.00

0.00

-4.00

-8.00

*

-12.00 T T | t
0.00 2.00 4.00 6.00 8.00 10.00

Fig. 1. Histories of dynamic stresses g}, at the inner surface for different N (s = 0.2)
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Fig. 2. Histories of dynamic stresses o}, at the outer surface for different N (s = 0.2)
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Fig. 3. Histories of dynamic stresses ¢} for different locations ¢ (N = 0.5 and s = 0.5)
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Fig. 4. Distributions of dynamic stresses ¢}, for different times t* (N = 1.0 and s = 0.5)
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