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Summary The spherically symmetric dynamic thermoelastic problem for a special non-
homogeneous transversely isotropic elastic hollow sphere is formulated by introduction of a
dependent variable and separation of variables technique. The derived solution can be
degenerated into that for a homogeneous transversely isotropic hollow sphere, a nonhomo-
geneous isotropic hollow sphere or a solid sphere. The present method, allow to avoid integral
transforms, is suited for a hollow sphere of arbitrary thickness subjected to arbitrary spherical
symmetric thermal and mechanical loads, and is convenient in dealing with different boundary
conditions of dynamic thermoelasticity . The numerical calculation involved is easy to be
performed and its results are also presented.
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1
Introduction
Thermally excited mechanical response of structures is of increasing interest in engineering
science, and much work has been done on dynamic thermoelastic problems. An exact, closed-
form solution has been obtained for the dynamic problem of a sudden temperature change at
the surface of a spherical cavity in an infinite solid, [1]. Under internal thermal shock, the
thermal stress-wave propagation in an arbitrary thick-walled spherical shell was discussed in
[2]. Dynamic thermal stress response in a hollow sphere, which is subjected to arbitrary
spherically symmetric temperature fields, has also been investigated in [3]. The technique is
based on the integral theorem of a hyperbolic initial value problem, together with the con-
struction of image temperature fields in the regions outside the actual body. The dynamic
thermal stress responses in a uniformly heated, homogeneous isotropic hollow sphere and a
solid sphere as well as in a homogeneous transversely isotropic hollow sphere were solved by
the ray theory, [4–6]. For a transversely isotropic solid sphere, the thermal stress concentration
effects were discussed in [7]. The above analyses are restricted to homogeneous materials. As
for nonhomogeneous materials, little work has been done to the author’s knowledge. The
transient thermal stresses in a nonhomogeneous spherically isotropic elastic medium with a
spherical cavity and an exponential distribution of heat sources, were obtained in [8].

Dynamic thermoelastic problems are usually solved using the Laplace transform technique,
[1, 2, 4–8]. However, this method encounters the difficulty of inverse transforms in some
special cases. The ray theory is a good tool to complete the Laplace inversion. However, for a
very thin spherical shell it needs a large number of rays and, hence, becomes impractical, [9].
The present method allows to avoid integral transforms, although it is restricted to a special
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type of inhomogeneity. A new dependent variable is introduced to rewrite the governing
equation, the boundary conditions as well as the initial conditions. Then the thermal and
mechanical loads are treated as the inhomogeneous part in the boundary conditions, and a
special function is introduced to transform the inhomogeneous boundary conditions to
homogeneous ones. By using the orthogonal expansion technique, the equation is derived with
respect to the time variable from which the solution for the dynamic thermoelastic problem of a
nonhomogeneous transversely isotropic hollow sphere is easily obtained.

2
Mathematical formulations of the problem
Transient response of a thermally shocked transversely isotropic solid sphere has been con-
sidered in [6]. If a spherical coordinate system ðr; h;uÞ with the origin at the center of the
sphere is used for the spherically symmetric problem, only the radial displacement ur ¼ urðr; tÞ
is nonzero. The strain-displacement relations are thus

crr ¼
our

or
; chh ¼ cuu ¼

ur

r
; crh ¼ chu ¼ cur ¼ 0 ; ð1Þ

where cijði; j ¼ r; h;uÞ are the strain components. The constitutive relations are, [6]

crr ¼
1

Er
rrr � 2

trh

Er
rhh þ arTðr; tÞ;

chh ¼ �
trh

Er
rrr þ

1� thu

Eh
rhh þ ahTðr; tÞ ;

ð2Þ

where rrr and rhh are stress components and Er and Eh are the Young’s moduli of r and h
directions, respectively; trh is the Poisson’s ratio which characterizes the ratio of contraction in
r direction due to extension in h direction and thu is Poisson’s ratio which characterizes the
ratio of contraction in h direction due to extension in u direction, respectively; ar and ah are
the coefficients of linear thermal expansion in r and h directions, respectively; Tðr; tÞ is the
temperature change. Equation (2) can also be rewritten as

rrr ¼ c11crr þ 2c12chh � b1Tðr; tÞ;
rhh ¼ c12crr þ ðc22 þ c23Þchh � b2Tðr; tÞ ;

ð3Þ

where cijði; j ¼ 1; 2; 3Þ are elastic constants and biði ¼ 1; 2Þ are stress-temperature constants,
which can be expressed in terms of cijði; j ¼ 1; 2; 3Þ and aiði ¼ r; hÞ

b1 ¼ c11ar þ 2c12ah; b2 ¼ c12ar þ ðc22 þ c23Þah : ð4Þ

The equation of motion is

orrr

or
þ 2

rrr � rhh

r
¼ q

o2ur

ot2
; ð5Þ

where q is the mass density. In this study, we assume that the nonhomogenity of the material is
characterized by the special laws

cij ¼
r

b

� �2N
Aij; q ¼ r

b

� �2N
q0 : ð6Þ

Here, b, Aij and q0 are known constants, and N is a rational number. The coefficients of linear
thermal expansion ai are constant. From Eqs. (1), (3) and (6), we obtain

rrr ¼
r

b

� �2N
A11

our

or
þ 2A12

ur

r
� B1Tðr; tÞ

� �
;

rhh ¼
r

b

� �2N
A12

@ur

@r
þ ðA22 þ A23Þ

ur

r
� B2Tðr; tÞ

� �
;

ð7Þ
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where

B1 ¼ A11ar þ 2A12ah; B2 ¼ A12ar þ ðA22 þ A23Þah : ð8Þ

Substitution Eqs. (7) into Eq. (5), gives the following governing equation:

o2ur

or2
þ 2ðN þ 1Þ

r

our

or
� l2

1

r2
ur ¼

1

c2
L

o2ur

ot2
þ gðr; tÞ ; ð9Þ

where

l2
1 ¼ 2

A22 þ A23 � ð2N þ 1ÞA12

A11
; cL ¼

ffiffiffiffiffiffiffi
A11

q0

s
;

gðr; tÞ ¼ 2
ðN þ 1ÞB1 � B2

A11

Tðr; tÞ
r
þ B1

A11

oTðr; tÞ
or

:

ð10Þ

The boundary conditions are

r ¼ a : s2N A11
our

or
þ 2A12

ur

r
� B1Tða; tÞ

� �
¼ paðtÞ;

r ¼ b : A11
our

or
þ 2A12

ur

r
� B1Tðb; tÞ ¼ pbðtÞ ;

ð11Þ

where a and b are the inner and outer radii of the spherical shell, respectively, s ¼ a=b is the
inner-to-outer radius ratio and paðtÞ and pbðtÞ are the prescribed pressures on the internal and
external surfaces, respectively. The initial conditions (t ¼ 0) are

urðr; 0Þ ¼ u0ðrÞ; _uurðr; 0Þ ¼ v0ðrÞ ; ð12Þ

where a dot over the quantity denotes its partial derivative with respect to t, and u0ðrÞ and v0ðrÞ
are known functions.

3
Analytical solution
Firstly, a new dependent variable wðr; tÞ is introduced as

urðr; tÞ ¼ r� Nþ1
2ð Þwðr; tÞ : ð13Þ

Then Eqs. (9), (11) and (12) become

o2w

or2
þ 1

r

ow

or
� l2

r2
w ¼ 1

c2
L

o2w

ot2
þ g1ðr; tÞ ; ð14Þ

r ¼ a :
ow

or
þ h

w

r
¼ p1ðtÞ;

r ¼ b :
ow

or
þ h

w

r
¼ p2ðtÞ ;

ð15Þ

wðr; 0Þ ¼ u1ðrÞ; _wwðr; 0Þ ¼ v1ðrÞ ; ð16Þ

where

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

1 þ N þ 1

2

� �2
s

; g1ðr; tÞ ¼ rNþ1
2gðr; tÞ; h ¼ 2A12

A11
� ðN þ 1

2
Þ;

p1ðtÞ ¼ aNþ1
2

B1Tða; tÞ þ p1ðtÞ
s2N

� �

A11
; p2ðtÞ ¼ bNþ1

2
B1Tðb; tÞ þ p2ðtÞ½ �

A11
;

u1ðrÞ ¼ r Nþ1
2u0ðrÞ; v1ðrÞ ¼ r Nþ1

2v0ðrÞ :

ð17Þ
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We transform now the inhomogeneous boundary conditions into the homogeneous ones by
taking

wðr; tÞ ¼ w1ðr; tÞ þ w2ðr; tÞ : ð18Þ

Here, w2ðr; tÞ satisfies the inhomogeneous boundary conditions, which can be taken as

w2ðr; tÞ ¼ d1ðr � aÞmp2ðtÞ þ d2ðr � bÞmp1ðtÞ ; ð19Þ

where

d1 ¼
b1�m

mð1� sÞm�1 þ hð1� sÞm
; d2 ¼

b1�m

mðs� 1Þm�1 þ hðs� 1Þm=s
; ð20Þ

in which m � 2 is an arbitrary integer that satisfies

½mð1� sÞm�1 þ hð1� sÞm�½mðs� 1Þm�1 þ hðs� 1Þm

s
6¼ 0� ; ð21Þ

because of s 6¼ 1.

Substituting Eq. (18) into Eqs. (14)–(16), gives

o2w1

or2
þ 1

r

ow1

or
� l2

r2
w1 ¼

1

c2
L

o2w1

ot2
þ g2ðr; tÞ ; ð22Þ

r ¼ a :
ow1

or
þ h

w1

r
¼ 0;

r ¼ b :
ow1

or
þ h

w1

r
¼ 0 ;

ð23Þ

w1ðr; 0Þ ¼ u2ðrÞ; _ww1ðr; 0Þ ¼ v2ðrÞ ; ð24Þ

where

g2ðr; tÞ ¼ g1ðr; tÞ þ
1

c2
L

ow2ðr; tÞ
ot2

þ l2

r2
w2ðr; tÞ �

1

r

ow2ðr; tÞ
or

� o2w2ðr; tÞ
or2

;

u2ðrÞ ¼ u1ðrÞ � w2ðr; 0Þ; v2ðrÞ ¼ v1ðrÞ � _ww2ðr; 0Þ :
ð25Þ

By using the standard separation of variables technique, the solution of Eq. (22) can be
assumed in the following form

w1ðr; tÞ ¼
X

i

RiðrÞFiðtÞ : ð26Þ

Here, FiðtÞ are unknown functions of t, and RiðrÞ is given by

RiðrÞ ¼ JlðkirÞYðl; ki; aÞ � YlðkirÞJðl; ki; aÞ ; ð27Þ

in which JlðkirÞ and YlðkirÞ are Bessel functions of the first and second kind and of the order l,
respectively. Quantities ki, arranged in an ascending order, are a series of positive roots of the
following eigenequation:

Jðl; ki; aÞYðl; ki; bÞ � Jðl; ki; bÞYðl; ki; aÞ ¼ 0 ; ð28Þ

where
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Jðl; ki; rÞ ¼
dJlðkirÞ

dr
þ h

JlðkirÞ
r

; Yðl; ki; rÞ ¼
dYlðkirÞ

dr
þ h

YlðkirÞ
r

: ð29Þ

It can be shown that w1ðr; tÞ given in Eq. (26) satisfies the homogeneous boundary conditions
as shown in Eqs. (23).

Substitution Eq. (26) into Eq. (22) gives

�c2
L

X
i

k2
i FiðtÞRiðrÞ ¼

X
i

RiðrÞ
d2FiðtÞ

dt2
þ c2

Lg2ðr; tÞ : ð30Þ

By virtue of the orthogonal property of Bessel functions, it is easy to verify the following
equation

Zb

a

rRiðrÞRjðrÞdr ¼ Nidij ; ð31Þ

where dij is the Kronecker delta and

Ni ¼
1

2k2
i

b2 dRiðbÞ
dr

� �2

�a2 dRiðaÞ
dr

� �2

þk2
i b2R2

i ðbÞ � a2R2
i ðaÞ

� 	
� l2 R2

i ðbÞ � R2
i ðaÞ

� 	( )
:

ð32Þ

In the above equation, we denote

dRiðaÞ
dr

¼ dRiðrÞ
dr






r¼a

;
dRiðbÞ

dr
¼ dRiðrÞ

dr






r¼b

:

Utilizing Eq. (31), we can derive the following equation from Eq. (30):

d2FiðtÞ
dt2

þ x2
i FiðtÞ ¼ qiðtÞ ; ð33Þ

where

xi ¼ kicL; qiðtÞ ¼ �
c2

L

Ni

Zb

a

rg2ðr; tÞRiðrÞdr : ð34Þ

The solution of Eq. (33) is

FiðtÞ ¼ G1i cos xit þ G2i sin xit þ
1

xi

Z t

0

qiðsÞ sin xiðt � sÞds ; ð35Þ

where

G1i ¼
1

Ni

Zb

a

ru2ðrÞRiðrÞdr; G2i ¼
1

Nixi

Zb

a

rv2ðrÞRiðrÞdr : ð36Þ

Finally, the radial displacement is then obtained as follows:

urðr; tÞ ¼ r� Nþ1
2ð Þ½w1ðr; tÞ þ w2ðr; tÞ� : ð37Þ
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4
Some particular cases

4.1
Isotropic material
If

A11 ¼ A22 ¼
Eð1� tÞ

k
; A12 ¼

Et
k
; k ¼ ð1þ tÞð1� 2tÞ; ah ¼ ar ¼ a ; ð38Þ

where E and t are Young’s modulus and Poisson’s ratio, respectively, the solution obtained
above degenerates to that of a nonhomogeneous isotropic hollow sphere for the corresponding
dynamic thermoelastic problem.

4.2
Homogeneous material
If N ¼ 0, the solution degenerates to that of a homogeneous transversely isotropic hollow
sphere for the corresponding dynamic thermoelastic problem. Further, if the material constants
satisfy Eqs. (38), the solution becomes that of a homogeneous isotropic hollow sphere. If a
homogeneous isotropic solid sphere (a ¼ 0) is considered, we can set

paðtÞ ¼ 0; p1ðtÞ ¼ 0; Jðl; ki; aÞ ¼ 0; Yðl; ki; aÞ ¼ 1

in the relevant formulations to obtain the corresponding solution.

4.3
Elastodynamic solution
If the temperature change Tðr; tÞ ¼ 0, the solution becomes that of a nonhomogeneous
transversely isotropic hollow sphere for the elastodynamic problem.

4.4
Fixed boundary conditions
For a hollow sphere fixed at the inner surface, instead of Eq. (11), we have

r ¼ a : urða; tÞ ¼ 0

r ¼ b : A11
our

or
þ 2A12

ur

r
� B1Tðb; tÞ ¼ pbðtÞ :

Consequently, we have the following equations, instead of Eqs. (15) and (23):

r ¼ a : wða; tÞ ¼ 0; r ¼ a : w1ða; tÞ ¼ 0;

r ¼ b :
ow

or
þ h

w

r
¼ p2ðtÞ; r ¼ b :

ow1

or
þ h

w1

r
¼ 0 :

Then, we can set

paðtÞ ¼ 0; p1ðtÞ ¼ 0; Jðl; ki; aÞ ¼ JlðkiaÞ; Yðl; ki; aÞ ¼ YlðkiaÞ

in the relevant formulations to obtain the solution of the dynamic thermoelastic problem for a
nonhomogeneous transversely isotropic hollow sphere with fixed internal surface.

5
Numerical results and discussions
In order to examine the present solution, we first consider the dynamic response in a homo-
geneous isotropic hollow sphere due to an instantaneous constant internal radial pressure and
the dynamic thermal response in a uniformly heated, homogeneous isotropic hollow sphere.
The results agree well with those obtained in [9] and [4], and hence the validation of the
solution is clarified.
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In the following, we will discuss the dynamic thermal response in a nonhomogeneous
transversely isotropic hollow sphere. Suppose the spherical shell is subjected to the following
load:

paðtÞ ¼ 0; pbðtÞ ¼ 0; Tðr; tÞ ¼ T0HðtÞ ; ð39Þ

where T0 is a prescribed temperature change and HðÞ denotes the Heaviside step function. The
material constants are listed in the following:

A22

A11
¼ 3:0;

A12

A11
¼ A23

A11
¼ 1:2857;

ah

ar
¼ 2:0 : ð40Þ

Further, we will take arT0 ¼ 1:0� 10�4; u0ðrÞ ¼ 0; v0ðrÞ ¼ 0. In the presentation of the results,
the following nondimensional quantities are employed:

t� ¼ cL

b� a
t; n ¼ r � a

b� a
; r�i ¼

rii

r0
; ði ¼ r; hÞ ; ð41Þ

where

r0 ¼ arðA11 þ 2A12ÞT0 ð42Þ

Figures 1 and 2 show the dynamic response of the hoop stress r�h at the inner and outer
surfaces in a uniformly heated, nonhomogeneous transversely isotropic hollow sphere
(s ¼ 0:2) for different values of N . We can see that the peak values of the dynamic stress
at the internal surface decrease with the increase of N , while the peak values of the
dynamic stress at the outer surface vary slightly with N. Figure 3 depicts the dynamic
response of the radial stress r�r at different locations n in the r direction for N ¼ 0:5 and
s ¼ 0:5. We find that the radial thermal stress vary significantly with the position. The
distributions of the hoop stress r�h at different times t� for N ¼ 1:0 and s ¼ 0:5 are also
depicted in Fig. 4.

Fig. 1. Histories of dynamic stresses r�h at the inner surface for different N ðs ¼ 0:2Þ
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Fig. 3. Histories of dynamic stresses r�r for different locations n (N ¼ 0:5 and s ¼ 0:5)

Fig. 2. Histories of dynamic stresses r�h at the outer surface for different N ðs ¼ 0:2Þ
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