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Abstract
Histone methylation is a key epigenetic mechanism and plays a major role in regulating gene expression during oocyte 
maturation and early embryogenesis. This mechanism can be briefly defined as the process by which methyl groups are 
transferred to lysine and arginine residues of histone tails extending from nucleosomes. While methylation of the lysine 
residues is catalyzed by histone lysine methyltransferases (KMTs), protein arginine methyltransferases (PRMTs) add methyl 
groups to the arginine residues. When necessary, the added methyl groups can be reversibly removed by histone demethy-
lases (HDMs) by a process called histone demethylation. The spatiotemporal regulation of methylation and demethylation 
in histones contributes to modulating the expression of genes required for proper oocyte maturation and early embryonic 
development. In this review, we comprehensively evaluate and discuss the functional importance of dynamic histone meth-
ylation in mammalian oocytes and early embryos, regulated by KMTs, PRMTs, and HDMs.
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Introduction

The term “epigenetics” was first introduced by Conrad Wad-
dington in the early 1940s, and he defined it as “the branch 
of biology which studies the causal interactions between 
genes and their products which bring the phenotype into 
being" (Waddington 1942). It is now described as the func-
tional changes in genes without any alteration in their DNA 
sequences, which can be inherited by the next generations 
(Bird 2007). Indeed, epigenetic mechanisms can lead to con-
formational changes in the chromatin structure in order to 
regulate the corresponding gene expression (Saksouk et al. 
2015; Li and Reinberg 2011). As is known, chromatin is 
a highly organized complex of DNA and histone proteins, 
both of which are tightly packaged to form the fundamental 
units, nucleosomes. In nucleosomes, a DNA fragment of 
approximately 147 base pairs wraps around an octamer core 
composed of unique histone proteins, two copies each of 

H2A, H2B, H3, and H4 (Tessarz and Kouzarides 2014). The 
fifth type of histone, linker histone protein H1, binds to the 
entry and exit sites of the wrapped DNA to maintain nucleo-
some integrity, and also covers internucleosomal DNA for 
protection from any potential nuclease attack (Woodcock 
et al. 2006).

The histone tails extending out of nucleosomes can be 
subjected to a set of modifications involving acetylation, 
phosphorylation, ubiquitination, isomerization, ADP-ribo-
sylation, and methylation for chromatin remodeling (Kadoch 
et al. 2016). Acetylation (addition of acetyl groups) and dea-
cetylation (removal of acetyl groups) of the lysine residues 
are dynamic processes, catalyzed by two main enzyme fami-
lies: histone/lysine acetyltransferases [HATs; also referred 
to as lysine acetyltransferases (KATs)] and histone deacety-
lases (HDACs), respectively (Allis et al. 2007; DesJarlais 
and Tummino 2016). In general, acetylation of lysine resi-
dues involves transcriptional activation of target genes by 
permitting chromatin accessibility to related factors, while 
deacetylation of these sites results in transcriptional sup-
pression (Rajan et al. 2020). On the other hand, phospho-
rylation is a process in which a phosphate group is added to 
histones based on intracellular signaling pathways by pro-
tein kinases, and these phosphate groups can be removed 
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by phosphatases, which is called histone dephosphorylation 
(Cao and Dang 2018). It is worth noting that phosphoryla-
tion commonly occurs on the serine, threonine, and tyrosine 
residues of histones (Rossetto et al. 2012), and is involved in 
modulating different cellular events such as DNA damage 
response (Rogakou et al. 1998), mitosis, and meiosis (de la 
Barre et al. 2000; Wei et al. 1998), apoptosis (Ajiro 2000), 
and transcriptional regulation (Metzger et al. 2008).

Ubiquitination of lysine residues in histones such as H2A 
and H2B by ubiquitin ligases contributes to modulation of 
DNA damage repair and transcription (Cao and Yan 2012). 
Ubiquitinated histones can be transformed into a non-mod-
ified form by deubiquitinating enzymes. Another histone 
modification, isomerization, is a non-covalent histone modi-
fication and takes place primarily on the proline amino acids 
of histone H3. It not only controls transcriptional activity but 
is also involved in the methylation of lysine residues on his-
tone tails (Nelson et al. 2006). ADP-ribosylation, catalyzed 
by ADP-ribose transferases, occurs in the tails of all histone 
types for the purpose of mediating DNA damage response 
and other basic cellular processes (Messner et al. 2010).

In the following sections, we will focus exclusively on the 
spatiotemporal modulation and functions of histone meth-
ylation by specific histone methyltransferases during oocyte 
maturation and early embryonic development.

Histone methylation

Histone methylation was first described by Allfrey and Mir-
sky in the early 1960s (Allfrey and Mirsky 1964). This mod-
ification commonly takes place in the arginine and lysine 
residues localized in the N-terminal tails of histones H3 and 
H4 (Dambacher et al. 2010; Ng et al. 2009).

Methylation of arginine residues

In the arginine residues, methylation can occur as mono- 
(me1) or dimethylation (me2) [appearing symmetrically 
(me2s) or asymmetrically (me2a)] (Greer and Shi 2012). 
This methylation is catalyzed by the family of protein argi-
nine methyltransferases (PRMTs), which transfer methyl 
groups from S-adenosyl-L-methionine (SAM) to target 
sites (Bedford and Clarke 2009). Notably, nine members of 
the PRMT family (type I enzymes, PRMT1, 2, 3, 4, 6, and 
8; type II enzymes, PRMT5 and PRMT9; type III enzyme, 
PRMT7) have been identified in mammals (Yang and Bed-
ford 2013). As can be seen in Fig. 1a, PRMTs contain a 
widely conserved methyltransferase (MTase) domain, and 
some of them have extra domain(s) such as Src-homol-
ogy 3 (SH3), zinc-finger (Zn), myristoylation (Myr), and 
F-box motifs (Bachand 2007). The MTase domain further 
includes subdomains for interacting with the methyl donor 

and substrate proteins. While the SH3 domain in the PRMT3 
and PRMT9 proteins provides binding to the proteins with 
proline-rich motifs (Cura et al. 2017), the N-terminal Myr 
domain appearing in the PRMT8 protein facilitates plasma 
membrane targeting (Lee et  al. 2005a). The zinc-finger 
domain of PRMT3 seems to contribute to the arginine 
methylation process (Frankel and Clarke 2000), while the 
F-box motifs play a role in substrate recognition (Mason 
and Laman 2020). Methylation of arginine residues at his-
tone tails through cooperation of these domains functions 
in activation or suppression of gene expression based on 
cellular requirement and in chromatin reorganization and 
localization of transcription factors (Fulton et al. 2018; Di 
Lorenzo and Bedford 2011).

Methylation of lysine residues

Methylation of histone lysine residues is specifically per-
formed by histone lysine methyltransferases (KMTs) (Cui 
et al. 2019). It is worth noting that me1, me2, and trimethyl 
(me3) groups can be added by transferring methyl groups 
from the methyl donor, SAM, to target regions (Martin 
and Zhang 2005). Most KMT families have evolutionarily 
conserved su(var)3–9, enhancer of the zeste and trithorax 
domain (SET; approximately 130 amino acids in length) 
responsible for catalytic activity (Jenuwein et al. 1998; Dil-
lon et al. 2005) (Fig. 1b). The SET domain is composed of a 
conserved anti-parallel beta-barrel and a variable inset that 
enclose a knot-like structure displaying the enzyme activity 
(Qian and Zhou 2006). The pre-SET and post-SET domains 
surrounding the SET domain contain nine cysteines and 
three zinc conserved sites (Dillon et al. 2005). While the 
exact function of the cysteine-rich region remains unknown 
(Scheer and Zaph 2017), the plant homeodomain (PHD) 
contributes to binding to methylated lysine residues (Hyun 
et al. 2017). The C2H2 motif serves as zinc-finger bind-
ing domain (Dillon et al. 2005), and the lysine-rich motif 
is an important site for establishing an interaction with 
ubiquitin and for binding to the nucleosome core (Oh et al. 
2010). Basically, SET domain-containing KMTs are classi-
fied into seven subfamilies (SUV39, SET1, E2, RIZ, SET2, 
SUV4-20, and SMYD), and some methyltransferases such 
as SET7/9 and SET8 even including the SET domain are not 
included in this classification as they do not share common 
domains (Dillon et al. 2005).

Another KMT family, disruptor of telomeric silencing 
1-like (DOT1L), which does not contain a SET domain, is 
involved in H3K79 methylation exclusively through its cata-
lytic domain (Feng et al. 2002). Importantly, several KMTs 
are capable of catalyzing methylation of the same lysine 
residues. For example, H3K36me2 is carried out by lysine 
methyltransferases including nuclear receptor binding SET 
domain protein 1 (NSD1), NSD2, NSD3, and absent, small, 
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or homeotic 1-like (ASH1L), whereas SET domain-contain-
ing 2 (SETD2) is the only enzyme performing H3K36me3 
in somatic cells (Husmann and Gozani 2019). Also, the six 
KMTs including SET domain-containing 1A (SETD1A), 
SETD1B, mixed lineage leukemia protein-1 (MLL1), 
MLL2, MLL3, and MLL4 can methylate H3K4 (Eissenberg 
and Shilatifard 2010).

In general, histone lysine methylation leads to changes 
in the chromatin states, resulting in activation or repression 
of gene expression (Black et al. 2012). In most genes, while 
methylation of H3K9, H3K27, and H4K20 represses the 
transcriptional activity, methylation of H3K4, H3K36, and 
H3K79 stimulates this process (Black et al. 2012). It is worth 
noting that there is also crosstalk among histone modifica-
tions including lysine methylation, acetylation, phosphoryla-
tion, and isomerization (Kouzarides 2007). Regarding this 
issue, Clements et al. (2003) documented that phosphoryla-
tion on histone H3 at serine 10 (H3S10) mediates acetylation 
of H3K14 by the histone acetyltransferase GCN5 (Clements 

et al. 2003). Moreover, the isomerization of histone 3 proline 
38 (H3P38) is essential for methylation of H3K36 (Nelson 
et al. 2006).

Histone demethylation

Histone lysine methylation is a reversible process in which 
methyl groups added by KMTs can be removed by his-
tone lysine demethylases (KDMs) (Black et  al. 2012). 
KDMs are flavin adenine dinucleotide (FAD)-dependent 
amine oxidases and catalyze demethylation by generat-
ing FADH2 (hydroquinone form) and hydrogen peroxide 
(H2O2) (DesJarlais and Tummino 2016). One of the KDMs, 
a lysine-specific histone demethylase 1 (LSD1; also known 
as KDM1A), is part of the co-repressor complex C-terminal 
binding protein 1 (CtBP1) and performs demethylation of 
H3K4me1 and H3K4me2 (Shi et al. 2003, 2004). KDM1A 
includes the Swi3p/Rsc8p/Moira (SWIRM), N-terminal 

Fig. 1   Schematic structures of arginine and lysine protein methyl-
transferases and lysine-specific demethylases. a The basic domains of 
protein arginine methyltransferases (PRMTs). PRMTs contain a con-
served methyltransferase (MTase) domain in all members, and some 
of them have additional domain(s) such as Src-homology 3 (SH3), 
zinc-finger (Zn), myristoylation (Myr), and F-box motifs. Each 
domain contributes to methylation of arginine residues. b The basic 
domains of histone lysine methyltransferases (KMTs). Most KMT 
families have an evolutionarily conserved SET [su(var)3–9, enhancer 

of zeste and trithorax] domain. It is noteworthy that the disruptor of 
the telomeric silencing1-like family does not contain a SET domain. 
The SET domain-containing lysine methyltransferases are classified 
into seven subfamilies: SUV39, SET1, EZ, RIZ, SET2, SUV4-20, 
and SMYD. c The basic domains of lysine-specific demethylases 
(LSDs or KDMs). LSDs include highly conserved three domains: 
N-terminal Swi3p/Rsc8p/Moira (SWIRM), amine oxidase-like 
(AOL), and TOWER. This figure was created utilizing the BioRender 
program (BioRender; Toronto, Canada)
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amine oxidase-like (AOL-N), TOWER, and C-terminal 
AOL (AOL-C) domains (Anand and Marmorstein 2007). 
The SWIRM domain found in many chromatin-associated 
proteins has a compact helix-turn-helix-related fold and sev-
eral shorter helices surrounding the central helix (Yoneyama 
et al. 2007). Although SWIRM’s function within KDM1A 
is not clearly revealed, it is known to play a role in binding 
to DNA and in establishing an association between protein 
complex and nucleosomal substrates (Qian et al. 2005). The 
AOL domain is composed of two subdomains, FAD-binding 
and substrate-binding, both of which comprise a large cav-
ity center for the catalytic process (Yoneyama et al. 2007). 
Another KDM1A domain, TOWER, which divides the AOL 
domain, includes a helix-turn-helix formation, and forms a 
binding site for the partner proteins such as corepressor ele-
ment silencing factor CoREST (Lee et al. 2005b).

The histone lysine demethylase KDM1B further pos-
sesses a zinc-finger domain next to the SWIRM domain 
at its N-terminus, but there is no TOWER domain (Ismail 
et al. 2018). The zinc-finger domain contributes to bind-
ing the FAD cofactor and forming a structural scaffold-
ing (Zhang et al. 2013). The JmjC proteins also perform 
demethylation by utilizing the amine oxidase and Jumonji 
C (JmjC) domains (Black et al. 2012). The JmjC domain 
interacts with Fe(II) cofactor and α-ketoglutarate in order to 
provide hydroxylation of methylated substrates (Klose et al. 
2006). Notably, one of the JmjC proteins, arginine demethy-
lase, JMJD6, facilitates demethylation of arginine residues 
(Chang et al. 2007; Walport et al. 2016).

As a result, these lysine and arginine methyltransferases 
and demethylases are responsible for dynamic changes in 
histone methylation for regulating gene expression during 
oocyte maturation, maternal-to-zygotic transition, and early 
embryogenesis in order to enable proper early development. 
In the following sections, the spatiotemporal modulation of 
histone (de)methylation in mammalian oocytes and early 
embryos will be explained.

Oogenesis from primordial germ cells 
to mature oocytes

In mice, the precursors of primordial germ cells (PGCs) first 
appear among epiblast cells at about 6.5 days of embryonic 
development (E6.5), and then migrate toward the extraem-
bryonic mesoderm at the base of the allantois, where they 
differentiate into PGCs (McLaren and Lawson 2005). The 
PGCs migrate to the genital ridges between E9.5 and E11.5 
along with the dorsal mesentery of the hindgut (Molyneaux 
et al. 2001; McLaren and Buehr 1990). In the genital ridges, 
they undergo a number of mitotic divisions and then dif-
ferentiate into oogonial stem cells (OSCs). Once OSCs 
enter the meiotic division at E14.5 following many mitotic 

divisions, they are called primordial oocytes arrested at the 
prophase of the first meiotic division. As is well known, 
these oocytes are surrounded by squamous follicular cells 
(also known as pre-granulosa cells) to create primordial fol-
licles during the fetal and postnatal early periods (Pepling 
and Spradling 2001). The primordial follicles serve as ovar-
ian reserve and remain in a dormant state until puberty (Epi-
fano and Dean 2002; Zheng et al. 2014). A subset of primor-
dial follicles can be stimulated based on the balance between 
activator and inhibitor factors (Oktem and Urman 2010), 
and begin to grow in a gonadotropin-independent manner 
at puberty. The primary follicles arising from primordial 
follicles are composed of a layer of cuboidal granulosa 
cells enclosing primary oocytes, and then secondary folli-
cles including two or more layers of granulosa cells emerge 
in a gonadotropin-dependent manner. When small spaces 
occur between granulosa cells, these follicles are defined as 
preantral follicles with centrally localized germinal vesicle 
(GV) oocytes. After formation of a single large antrum by 
coalescing the small spaces, antral follicles appear. Mean-
while, GV oocytes in the antral follicles undergo nuclear 
maturation to complete the first round of meiotic division 
dependent on a luteinizing hormone (LH) surge. The ovu-
lated cumulus–oocyte complexes (COCs) include the sec-
ondary oocytes arrested at the metaphase II (MII) phase 
of the second meiotic division until fertilization, and these 
oocytes also have a first polar body persistent in the perivi-
telline space (Sánchez and Smitz 2012).

Dynamic histone methylation in oocytes

As is known, transcription is in an active state in growing 
GV oocytes during folliculogenesis, but its silencing occurs 
in the fully grown GV oocytes, having a surrounded nucleo-
lus, progressively condensed chromatin, and alteration of 
several transcription factors including the TATA binding 
protein at the time of meiotic resumption (De La Fuente and 
Eppig 2001; Albertini et al. 2003). Thus, various types of 
histone methylation, especially on histone H3, play key roles 
in regulating several cellular events for successful oocyte 
maturation from the GV to MII stages (Fig. 2).

Lysine methylation

An evolutionarily conserved histone modification, H3K4 
methylation in the oocyte genome is established in both 
promoters and bodies of genes to regulate transcriptional 
activity (Sha et al. 2020). Therefore, H3K4me1, H3K4me2, 
and H3K4me3 are generally observed in actively transcrib-
ing genes (Barski et al. 2007). In mouse oocytes, Dahl et al. 
(2016) reported that H3K4me3 was not only present in the 
promoters but was also accumulated in the intergenic regions 
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independent of transcription (Dahl et al. 2016). In the pro-
moters, H3K4me3 is also involved in a time-dependent tran-
scriptional repression of certain genes required for meiotic 
resumption and embryonic genome activation (EGA) (Dahl 
et al. 2016; Zhang et al. 2016a). Although the general con-
sensus about H3K4me3 is that it leads to transcriptional acti-
vation, its contribution to transcriptional repression during 
meiotic resumption and EGA in mice may be performed by 
exclusive cooperation with transcriptional repressors and/
or other epigenetic mechanisms such as DNA methylation. 
Consistent with this suggestion, it was found that MLL2 
involved in the establishment of non-canonical H3K4me3 
marks interacts with CpG islands (Denissov et al. 2014; Hu 
et al. 2013).

In human oocytes, H3K4me3 levels were found to 
decrease from the GV to the MII stage, but it was not sig-
nificant (Zhang et al. 2012) (Table 1). Hanna et al. (2018) 
revealed that H3K4me3 is limited to active promoters in 
non-growing oocytes, and it is also deposited in the inter-
genic regions, putative enhancers, and silent promoters at 
the later stages of oogenesis in mice (Hanna et al. 2018). In 
bovine oocytes, H3K4me3 remains at stable levels from the 
GV to MII stages (Wu et al. 2020). It is worth noting that 
the transcript levels of the three KDM5 family demethyl-
ases involved in demethylation of H3K4, KDM5A, KDM5B 
(also known as JARID1B), and KDM5C, were analyzed in 
porcine oocytes, but no significant differences were found 
between GV and MII oocytes (Huang et al. 2015) (Table 2). 
The protein levels of these methyltransferases should be ana-
lyzed in the same samples. Together, these results indicate 
that although there are small differences in H3K4me3 levels 
among species, the H3K4me1, H3K4me2, and H3K4me3 
modifications seem to have important roles in controlling 
expression of the chromatin modifiers and transcriptional 
regulators including transcription factors, coactivators, 

enhancers, and silencers. Thus, they contribute to regulat-
ing transcription and chromatin remodeling during oocyte 
development. 

H3K9me2 was found at similar levels during meiotic 
maturation in human oocytes at the stages of germinal vesi-
cle breakdown (GVBD), MI, and MII (Qiao et al. 2010). 
This means that H3K9me2 begins to be established in the 
GV oocytes. Similarly, the genome of mouse oocytes had 
H3K9me2 and H3K9me3 at the GV and MII stages during 
meiotic maturation (Liu et al. 2004). Russo et al. (2013) 
also noted that the genome of sheep GV oocytes under-
went H3K9me3 (Russo et al. 2013). The expression of the 
SUV39H1 and SUV39H2 genes, both of which catalyze tri-
methylation of H3K9, showed dynamic changes in bovine 
oocytes produced by in vitro maturation (IVM) (Zhang et al. 
2016b). The accumulated H3K9me3 level in the GV oocytes 
disappeared in the MII oocytes. Consistently, SUV39H1 and 
SUV39H2 mRNA levels in the MII oocytes were dramati-
cally lower than in the GV oocytes (Table 2).

The H3K79me2 and H3K79me3 signals were also ana-
lyzed in mouse oocytes, and they were detected in the GV, 
GVBD, and MII stages (Ooga et al. 2008). These modifi-
cations may be regulated by specific nuclear factors such 
as SMYD3 and DOT1L present in the GV oocytes during 
folliculogenesis (Phillips et al. 2016). As is known, H3K27 
methylation is catalyzed by polycomb repressive complex 2 
(PRC2) and represses gene transcription (Wiles and Selker 
2017). Trimethylation of H3K27 at unmethylated genomic 
regions leads to transcriptional repression, and this modi-
fication is removed during oocyte maturation for facilitat-
ing transcription of the related genes (Zheng et al. 2016). 
Analysis of H3K27 methylation levels in porcine oocytes 
during maturation showed that H3K27me1, H3K27me2, and 
H3K27me3 signals were intensively present in the nuclei 
of the GV and MII stages (Marinho et al. 2017) (Table 1).

Fig. 2   The main functions of 
methylation on histone H3 
lysine (K) residues in different 
developmental and intracel-
lular events. The rectangular 
boxes with different colors on 
the lysine residues depict the 
events. This figure was created 
utilizing the BioRender program 
(BioRender; Toronto, Canada)
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The enhancer of zeste homolog 2 (Ezh2; a catalytic 
subunit of the PRC2 complex performing trimethylation of 
H3K27) gene expression at the mRNA and protein levels 
exhibited a similar pattern as the H3K27me3 levels during 
oocyte maturation in mice (Qu et al. 2016). Specifically, the 
EZH2 protein level gradually increased from the GVBD to 
MII stages, but was found at a low level in the GV oocytes. 
The KDM6B protein [also known as Jumonji domain-con-
taining protein 3 (JMJD3)] carries out demethylation of 
H3K27me3 to permit gene transcription, and the KDM6B 
transcript was found at high levels in bovine GV and MII 
oocytes (Canovas et al. 2012). In future work, the KDM6B 
protein levels should be evaluated in the same oocytes to 
more reliably compare the expression distribution with his-
tone methylation levels during oocyte maturation. As there 
are a limited number of studies that have examined dynamic 
changes in histone methylation-related gene expression, fur-
ther investigations are required to elucidate the (de)meth-
yltransferases specifically functioning in methylation and 
demethylation of target histones, and their potential roles 
during oocyte maturation.

Arginine methylation

The methylation of H3 arginine 17 (H3R17) and H4R3 also 
affects the transcriptional activation in mouse oocytes dur-
ing maturation (Sarmento et al. 2004). Indeed, it was shown 
that H3R17 and H4R3 methylation contribute to forming a 
complex with coactivators to facilitate the binding of his-
tone acetyltransferases so that gene transcription can occur 
(Wang et al. 2001; Bauer et al. 2002; Li et al. 2010b). Sar-
mento et al. (2004) revealed that H3R17 and H4R3 methyla-
tion existed in the chromatin of GV oocytes, whereas these 
modifications were almost absent in the chromosomes of 
MII oocytes (Sarmento et al. 2004). The dimethylation of 
H4R3 was observed in human oocytes at the GV, GVBD, 
MI, and MII stages (Qiao et al. 2010). The similar distribu-
tion of methylation on the arginine and lysine amino acids 
of histones H3 and H4 in the oocytes at different stages 
suggests that they may be localized in the same or nearby 
nucleosomes to control transcriptional activity and genomic 
reorganization during maturation.

Early embryonic development from one‑cell 
to blastocyst

When a competent sperm cell fertilizes a mature oocyte, the 
second meiotic division is completed, and a one-cell embryo 
(also known as a zygote) having male and female pronuclei 
is formed. The pronuclei replicate their genomes as they 
approach each other, and then fuse within 24 h of fertiliza-
tion (Li et al. 2010a). The first cleavage division occurs 1 

day after fertilization whereby a two-cell embryo including 
two even blastomeres is produced (Fujimori 2010). The four-
cell embryo, 12 h after first cleavage, and then the eight-cell 
embryo emerge at the end of the second and third mitotic 
divisions, respectively. The eight-cell embryo experiences a 
compaction process, and subsequently a morula composed 
of 12–16 embryonic cells which are tightly aggregated is 
formed. Eventually, a blastocyst arises, containing two dis-
tinct cell types, inner cell mass (ICM) and outer cells (also 
known as trophectoderm), with different polarization (Grob-
stein 1985).

The early embryonic development is mainly regulated 
by epigenetic mechanisms including histone methylation. 
The genome of early embryos developing from one-cell to 
blastocyst stages undergoes methylation, especially on his-
tone H3, to regulate molecular events such as EGA, X-chro-
mosome inactivation, genomic imprinting, and chromatin 
reorganization required for proper early development (Li 
2002) (Fig. 2).

Dynamic histone methylation in early 
embryos

H3K4 methylation

Among the methylation on histone H3, the H3K4 methyla-
tion profile was analyzed by Shao et al. (2014) in mouse 
early embryos from one-cell to blastocyst stages (Shao et al. 
2014). Although H3K4me1 was at a higher level in the two-
cell embryos when compared to the others, H3K4me2 at low 
levels in the four-cell and eight-cell embryos increased in the 
one-cell embryo, morula, and blastocyst, and was further 
enhanced in the two-cell embryos. On the other hand, the 
lowest H3K4me3 level in the one-cell embryos increased in 
the four-cell and eight-cell embryos, was further enhanced 
in the four-cell embryos, and reached the highest levels in 
the morula- and blastocyst-stage embryos (Table 1). In the 
bovine early embryos, H3K4me3 at low levels in the eight-
cell and morula-stage embryos increased in the blastocysts, 
and was further enhanced in the two-cell and four-cell 
embryos (Wu et al. 2020). Zhang et al. (2012) evaluated 
the H3K4me3 distribution in human early embryos, and 
found that it was at high levels in the one-cell and four-cell 
embryos, decreased in the blastocysts, and further reduced in 
the eight-cell embryos (Zhang et al. 2012) (Table 1). Taken 
together, these reports show that H3K4me3 levels exhibit 
remarkable differences during early embryonic develop-
ment among these species, and the fluctuation in H3K4me3 
levels in the early embryos indicates that it may function 
in regulating temporal gene expression. The mRNA levels 
of H3K4 demethylases including KDM5A, KDM5B, and 
KDM5C were evaluated in porcine embryos, and revealed 
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that although there were no differences in the one-cell, two-
cell, four-cell, and blastocyst-stage embryos for KDM5A 
and KDM5C gene expression, the KDM5B transcript lev-
els increased in the two-cell embryos, and were further 
enhanced in the blastocysts (Huang et al. 2015) (Table 2). 
Although there seems to be a correlation between H3K4 
methylation levels and the KDM transcript levels, their pro-
tein levels should be explored in the same species to reach a 
consensus on the relationship between the histone methyla-
tion and demethylase levels in early embryos.

As EGA facilitates successful embryonic develop-
ment, its inhibition by 5,6-dichloro-1-β-d-ribofuranosyl-
benzimidazole blocking RNA polymerase II results in 
reduced H3K4me3 levels (Abe et al. 2018). A study by 
Aoshima et al. (2015) reported that H3K4me1, H3K4me2, 
and H3K4me3 marks involved in active transcription are 
associated with EGA minimally appearing in one-cell 
embryos, and the loss of H3K4 marks led to decreased EGA 
in mice (Aoshima et al. 2015). In the same study, it was 
also revealed that knockdown of Mll3/4 gene (encoding an 
enzyme carrying out H3K4 methylation) expression in the 
one-cell embryos caused embryonic developmental arrest 
(Aoshima et al. 2015). These findings indicate that EGA as 
a crucial process for early developmental progression seems 
to be regulated by changes in the H3K4 methylation marks 
and the corresponding enzymes.

During fertilization, the male pronucleus was found to 
undergo a major exchange of protamines with maternal 
histones (Derijck et al. 2006; Svoboda 2018). Although 
H3K4me2 and H3K4me3 modifications were not ini-
tially observed in the male pronucleus, both pronuclei had 
H3K4me1 at similar levels in the mouse zygote (Lepikhov 
and Walter 2004). Later in development, the male pronu-
cleus acquired H3K4me2 and H3K4me3 in the one-cell 
embryos, and these modifications were maintained dur-
ing early cleavage divisions in mice (Aoshima et al. 2015). 
Therefore, maternal H3K4me3 undergoes active demethyla-
tion by the demethylases KDM1A and KDM5B to establish 
proper H3K4 methylation marks for normal EGA and early 
development (Zhang et al. 2016a; Dahl et al. 2016).

H3K27 methylation

The trimethylation of H3K27 plays a crucial role in estab-
lishing genomic imprinting and transcriptional repression in 
early embryos (Inoue et al. 2017; Zheng et al. 2016). It was 
found that in mice, the H3K27me3 signal in the morula was 
more intense than that in the blastocysts (Wu et al. 2014). 
This modification at low levels in the eight-cell and blasto-
cyst-stage embryos increased in the one-cell stage, further 
increased in the four-cell stage, and reached the highest level 
in the two-cell embryos, which showed significant differ-
ences from H3K27me1 and H3K27me2 levels analyzed in 

the same embryos in a porcine model (Marinho et al. 2017). 
The H3K27me1 and H3K27me2 at high levels in the GV and 
MII oocytes decreased in the early embryos at the one-cell, 
two-cell, four-cell, and eight-cell stages, and increased again 
in the blastocysts. Fu et al. (2017) also evaluated H3K27me3 
levels in bovine embryos and found that levels were low in 
the eight-cell embryos, then increased in the blastocysts and 
reached high levels in the two-cell and four-cell embryos 
(Table 1). It is important to note that H3K27me3 exhibits 
similar distributions in the early embryos of porcine and 
bovine models, suggesting that this mark may perform 
the same function in these species during early embryonic 
development.

The gene expression of a H3K27me3 histone methyltrans-
ferase Ezh2 in mice was found at the highest level in the 
one-cell embryos and was reduced in the two-cell, four-cell, 
and eight-cell early embryos having the same levels as the 
MII oocytes, further decreased in the morula, and reached 
the lowest level in the blastocysts (Wu et al. 2014). Huang 
et al. (2014) also demonstrated that EZH2 was intensively 
localized in the nuclei of early embryos from one-cell to 
blastocyst stages (Huang et al. 2014). The transcript level 
of H3K27me3 demethylase KDM6B in bovines decreased 
significantly from one-cell to morula-stage embryos, and 
there a level of higher expression was found in blastocysts 
than in the early cleavage embryos (Canovas et al. 2012) 
(Table 2). Although there are similar and different expres-
sion distributions of the Ezh2 and KDM6B genes during 
early development, their protein levels should be analyzed in 
the early embryos of these species to address their potential 
relationship with H3K27me3 accumulation.

H3K9 methylation

H3K9me2 was found to be absent or weakly present in the 
male pronucleus, whereas it was strongly detected in the 
female pronucleus of mouse one-cell embryos (Liu et al. 
2004). The same study revealed that the H3K9me2 levels 
in the one-cell and two-cell embryos at the G2 stage were 
reduced by almost half of those observed at their G1 stage. 
In bovine preimplantation embryos obtained by in vitro 
fertilization (IVF) procedure, although there were no sig-
nificant differences for the H3K9me3 levels during early 
development, high levels were found in the early embryos 
from two-cell to blastocyst stages (Zhang et al. 2016b). In 
contrast, the expression of histone H3K9me3 methyltrans-
ferase SUV39H1 in bovines was at high levels in the two-cell 
embryos but significantly decreased in the four-cell embryos, 
and no expression was found in the eight-cell embryos and 
blastocysts (Zhang et al. 2016b). The expression of another 
histone H3K9me3 methyltransferase, SUV39H2, was found 
at low levels in  the two-cell embryos, increased signifi-
cantly in the four-cell embryos, and then predominantly 



15Histochemistry and Cell Biology (2022) 157:7–25	

1 3

decreased in the eight-cell embryos and blastocysts (Zhang 
et al. 2016b). Although only mRNA levels of these genes 
were analyzed in this study, they did not exhibit comparable 
expression patterns in the early bovine embryos. This sug-
gests that other methyltransferases such as G9a and PRDM 
family members may participate in H3K9 methylation, or 
that levels of the demethylases including JHDM2, JHMD3, 
and PHF8 are increased in the early embryonic stages. It is 
worth noting that the dynamic changes in SUV39H1 and 
SUV39H2 gene expression in early embryos might be associ-
ated with their potential roles in chromosome segregation, 
cell division, and DNA repair (Peters et al. 2001; Sidler et al. 
2014).

H3K79 methylation

H3K79me2 and H3K79me3 modifications were found to 
accumulate in mouse oocytes during meiotic maturation, 
and a weak signal was present in the female pronucleus fol-
lowing fertilization, but there was no signal in the male pro-
nucleus (Ooga et al. 2008). The weak signal in the two-cell, 
four-cell, and morula-stage embryos significantly increased 
in the blastocysts. The expression of the Dot1L gene per-
forming H3K79 methylation was also evaluated in mouse 
early embryos by the same group (Ooga et al. 2013). The 
study showed that Dot1L mRNA at a high level in the one-
cell embryos decreased significantly in the two-cell and 
four-cell embryos, and increased at the blastocyst stage. 
Analogously, the DOT1L protein intensity at high levels in 
the one-cell and two-cell embryos decreased to a low level in 
the four-cell embryos, and then increased dramatically in the 
blastocysts (Table 2). When H3K79 methylation marks were 
compared with the Dot1L gene expression, the H3K79me2 
and H3K79me3 levels partially overlapped with the DOT1L 
protein levels in the early embryos from one-cell to blasto-
cyst stages (Ooga et al. 2013).

DOTL1-mediated H3K79 methylation was found to func-
tion in meiotic progression in mouse oocytes because its 
suppression using siRNA technology resulted in markedly 
reduced H3K79 methylation levels, which blocked the divi-
sion at the first meiotic metaphase (Wang et al. 2014). Con-
sistent with the known roles of DOT1L, its loss led to devel-
opmental defects including growth impairment, abnormal 
angiogenesis in the yolk sac, and cardiac dilation, and these 
embryos died between 9.5 and 10.5 days post coitum (Jones 
et al. 2008). Moreover, Dot1L-deficient embryonic stem 
cells displayed global loss of H3K79 as well as decreased 
heterochromatic marks at the centromeres and telomeres. 
A recent article reported that maternal DOT1L accumula-
tion is not required for successful early mouse development 
(Liao and Szabo 2020). Most likely, DOT1L expression and 
establishment of H3K79 methylation are mainly regulated 
by the embryonic genome following EGA. All these findings 

indicate that in concert with other histone methylation, 
regulation of both H3K79 methylation and spatiotemporal 
expression of the Dot1L gene is a crucial process for generat-
ing competent early embryos.

Lack of histone methyltransferases 
in oocytes and early embryos

Many studies have examined the functional impacts of the 
depletion or lack of genes involved in histone methylation 
and demethylation processes during oocyte maturation 
and early embryonic development. One of these studies 
was on the histone-lysine N-methyltransferase SETD1B 
(also referred to as H3K4 methyltransferase) involved in 
regulating gene expression during oocyte maturation (Sha 
et al. 2020). The conditional knockout (cKO) of Setd1b in 
mouse oocytes led to downregulation of the expression of 
oogenic genes such as oocyte maturation, alpha (Omt2a), 
oocyte maturation, beta (Omt2b), oocyte-secreted protein 
1 (Oosp1), and oogenesin 3 (Oog3), having roles in tran-
scriptional regulation and cell cycle reorganization (Brici 
et al. 2017). Zona pellucida defects, abnormal cytoplasmic 
maturation, and polyspermy have also been found to occur in 
the oocytes with SETD1B deficiency, but there is no effect 
on the primordial germ cell migration. Additionally, loss of 
SETD1B was observed to cause a developmental defect in 
oocyte-to-embryo transition based on morphological evalua-
tion, impaired chromatin configuration from non-surrounded 
nucleolus (NSN; type of chromatin configuration showing 
transcriptional activity) to surrounded nucleolus (SN; dis-
playing transcriptional silencing), formation of smaller mei-
otic spindles, arrest at the one-cell embryonic stage, and 
eventually female infertility (Brici et al. 2017) (Table 3). 
In a recently published study, GV oocyte-specific ablation 
of Setd1b resulted in an impaired oogenic gene expression 
program in mouse GV and MII oocytes (Hanna et al. 2021). 
Furthermore, in the Setd1b cKO oocytes, H3K4me3 levels 
decreased in the promoters of transcriptionally active and 
inactive genes, but some genes having a CpG-rich region 
gained H3K4me3 marks and subsequently underwent hypo-
methylation. The resulting impairments in the oocytes and 
early embryos due to the loss of the Setd1b gene suggest that 
H3K4 methylation acts as an orchestral conductor in modu-
lating early development-related gene expression.

Loss of the Setdb1 gene

The loss of the H3K9 methyltransferase Setdb1 (performing 
di- and trimethylation) in mice using cKO technology caused 
severe defects in meiotic arrest and meiotic resumption dur-
ing oocyte maturation (Kim et al. 2016). Moreover, it led 
to increased double-strand breaks in the oocytes, defective 
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mitotic cell cycle progression in the one-cell embryos, and 
progressive developmental delay in the early embryos, 
which were therefore unable to reach the blastocyst stage 
(Table 3). The same study further revealed that SETDB1 is 
required not only for modulating global H3K9me2 levels but 
also for silencing of retrotransposons such as long terminal 
repeats (LTRs) in the growing oocytes. Restoring SETDB1 
activity in the Setdb1 cKO GV oocytes could completely 
rescue the defects related to meiosis and early embryonic 
development (Kim et al. 2016).

Eymery et al. (2016) also created cKO of the Setdb1 
gene in growing mouse oocytes to explore its function dur-
ing meiotic maturation and early embryonic development 
(Eymery et al. 2016). Although SETDB1-deficient oocytes 
were able to undergo GVBD (the first step of meiotic matu-
ration) with delayed time, they were unable to complete mei-
otic maturation, most likely due to altered expression of the 
genes involved in cell cycle and chromosome condensation. 
The loss of Setdb1 also caused aneuploidy owing to defec-
tive kinetochore–microtubule interactions, and impaired pro-
tein kinase A signaling in the mouse oocytes (Eymery et al. 
2016). Histone H3K9 methyltransferase Eset (involved in 
heterochromatin formation and gene silencing during early 
embryogenesis) mutant mice were generated to investigate 
its role during preimplantation embryonic development 
(Dodge et al. 2004). In this study, it was shown that although 
maternal Eset transcripts existed in oocytes and were main-
tained during preimplantation development, embryonic Eset 
began to be expressed from the blastocyst stage and per-
sisted throughout postimplantation development. The lack 
of the Eset gene caused abnormalities in development of the 
ICM in the blastocysts, establishment of embryonic stem 
cells, and peri-implantation lethality at 9.5–16.5 days post 
coitum (Table 3). However, there was no change observed 
in the global H3K9me3 level or DNA methylation in the 
Eset−/− blastocysts. Therefore, the researchers suggested 
that maternally stored ESET likely provides for maintenance 
of H3K9me3 levels during early embryonic development. 
Importantly, ESET may have further functions in addition to 
its primary role in H3K9 methylation, since different pheno-
typic effects emerge upon lack of this protein during the pre-, 
peri-, and postimplantation periods. Overall, these studies by 
Kim et al. (2016) and Eymery et al. (2016) on the Setdb1-
knockout mice models reached comparable results, including 
reduced global H3K9me2 levels in the oocytes, defective 
meiotic maturation, abnormal kinetochore–microtubule 
interactions and spindle organization, defects in cell cycle 
progression and chromosome segregation, and impaired 
early embryonic development (Table 3).

Loss of the Setd2 gene

The histone-lysine N-methyltransferase SETD2 was found 
to exhibit strong intensity in the nucleus of NSN-type 
porcine oocytes, whereas there was no expression in the 
nuclei of the SN, MI, or MII oocytes (Diao et al. 2018). 
A weak cytoplasmic SETD2 distribution was observed in 
the SN, MI, and MII oocytes. SETD2 catalyzes H3K36me3 
for transcriptional activation, and its knockdown using 
siRNA led to impairment in both meiotic maturation and 
first polar body extrusion in mouse oocytes (Li et al. 2018). 
The immunostaining of Setd2-knockdown oocytes for the 
tubulin protein showed that there was a kinetochore–micro-
tubule mis-attachment, incorrect chromosome alignment, 
and an increased rate of aneuploidy. A later study by Xu 
et al. (2019) reported that maternal SETD2 deficiency led to 
reduced H3K36me3 levels, decreased MII oocyte number, 
and abnormal DNA methylome in mouse oocytes (Xu et al. 
2019). Moreover, it caused the loss of maternal imprints 
and ectopic H3K4me3 formation at the imprinting control 
regions, arrest at the one-cell-stage embryos, failure of DNA 
replication and EGA, and abnormal epigenome creation 
in the early embryos derived from aberrant parental epig-
enomic reprogramming, as well as inhibited preimplanta-
tion and postimplantation development. These phenotypes 
(Table 3) that appeared due to maternal depletion of SETD2 
indicate that SETD2 is required for properly establishing a 
maternal epigenome, which is essential for successful early 
embryonic development.

Loss of other histone methyltransferases

Another histone lysine methyltransferase, MLL2, contributes 
to regulating gene expression by way of catalyzing trimeth-
ylation of H3K4 in oocytes and early embryos (Andreu-
Vieyra et al. 2010). The cKO of Mll2 using Gdf9 promoter 
in mouse oocytes caused several defects involving ovarian 
follicle loss, impaired ovulation, increased oocyte death, 
failure of transcriptional repression, and abnormal histone 
modifications (Andreu-Vieyra et al. 2010) (Table 3). As a 
result, the loss of MII2 led to female sterility due to the 
emerging phenotypes.

Depletion of the lysine methyltransferase Ezh2 by Mor-
pholino antisense oligos resulted in chromosome misalign-
ment, disrupted kinetochore–microtubule interactions, 
abnormal spindle formation, aneuploidy, and accelerated 
first polar body extrusion in mouse oocytes (Qu et al. 
2016). The overexpression of Ezh2 in the same study by 
injecting its mRNA into oocytes led to chromosome mis-
alignment, aneuploidy, and impaired first polar body extru-
sion. The researchers also documented that although meth-
yltransferase activity of EZH2 was not required for meiotic 
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Table 3   The phenotypes deriving from the loss or knockdown of histone methyltransferases (KMTs) in mouse models

Gene Phenotypes Knockout or knockdown technology Reference

Setd1b Abnormal cytoplasmic maturation
Disrupted oogenic gene expression
Zona pellucida defects
Polyspermy
Defect in oocyte-to-embryo transition
Impaired chromatin configuration
Abnormal meiotic spindles
Arrest in one-cell embryos
Female infertility

Cre-Lox recombination Brici et al. 2017

Setdb1 Defects in both meiotic arrest and resumption
Impaired silencing of retrotransposons
Increased double-strand breaks in oocytes
Reduced global H3K9me2 levels in oocytes
Impaired protein kinase A signaling in oocytes
Impaired mitotic cell cycle progression in one-cell 

embryos
Developmental delay in early embryos
Failure to reach blastocyst stage
Abnormal kinetochore-microtubule interactions and spin-

dle organization
Defects in cell cycle progression and chromosome segre-

gation

Cre-Lox recombination Kim et al. 2016
Eymery et al. 2016

Setd2 Reduced H3K36me3 levels
Abnormal DNA methylome
Loss of maternal imprints
Ectopic H3K4me3 at imprinting control regions
Arrest at one-cell embryos
Failed DNA replication and EGA
Abnormal epigenome in embryos
Delayed pre- and postimplantation development
Female sterility

Cre-Lox recombination Xu et al. 2019

Mll2 Impaired ovulation
Failure to establish transcriptional repression
Abnormal histone modification
Premature ovarian follicle loss
Increased oocyte death
Female sterility

Cre-Lox recombination Andreu-Vieyra et al. 2010

Ezh2 Chromosome misalignment
Disrupted kinetochore-microtubule interaction
Abnormal spindle formation
Aneuploidy
Accelerated first polar body extrusion

Morpholino antisense oligonucleotides Qu et al. 2016

Chromosome misalignment
Aneuploidy
Impaired first polar body extrusion

mRNA injection Qu et al. 2016

Severe growth retardation in early embryos
Increased number of cracked and dead embryos
Reduced blastocyst formation
Decreased Oct4, Sox2, and Nanog gene expression
Reduced H3K27me2 and H3K27me3 levels

siRNA injection Huang et al. 2014

G9a Impaired chromatin reorganization in oocytes
Reduced CG and non-CG methylation in oocytes
Decreased H3K9me2 levels
Developmental defects in early embryos
Embryonic lethality
Altered gene expression in oocytes and early embryos
Abnormal chromosome segregation
Arrest in early embryos
Reduced female fertility

A standard gene targeting technique
Cre-Lox recombination

Tachibana et al. 2002
Yeung et al. 2019
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maturation in the oocytes, it was essential for maintain-
ing the stability of the spindle assembly checkpoint pro-
tein BUBR1. In a previous study, one-cell embryos were 
treated with Ezh2 siRNA (Huang et  al. 2014). Severe 
growth retardation in the early embryos and reduced rates 
of blastocyst formation, along with an increased number 
of cracked (having morphologically abnormal blastomeres 
and zona pellucida) and dead early embryos, were deter-
mined in the siRNA-treated group. In addition, expression 
of the pluripotency-associated transcription factor genes 
(Oct4, Sox2, and Nanog) and H3K27me2 and H3K27me3 
levels decreased markedly in the early embryos injected 
with Ezh2 siRNA (Huang et al. 2014) (Table 3). These 
investigations suggest that the EZH2 protein at required 
levels plays key roles in oocyte maturation and early 
embryonic development via methylation of the target 
genes in a spatiotemporal manner.

The functional importance of the G9a gene [also known 
as euchromatic histone lysine methyltransferase 2 (EHMT2), 
a H3K9 methyltransferase] was also examined in mice 
(Yeung et al. 2019). The oocyte-specific cKO of G9a led 
to various types of defects, including impaired chromatin 
reorganization, decreased H3K9me2 levels, developmen-
tal defects, reduced CG and non-CG methylation levels, 
changes in the expression of the genes and endogenous ret-
rovirus, abnormal chromosome segregation and arrest in the 
oocytes or early embryos, and reduced female fertility. Addi-
tionally, the proportions of the transcriptionally inactive and 
SN-type oocytes decreased in the G9a cKO ovaries (Yeung 
et al. 2019). Similarly, it was reported in a previous study 
that G9a-deficient embryos showed markedly decreased 
H3K9 methylation profiles, mainly in euchromatic regions, 
severe growth retardation, and early lethality at E9.5–E12.5 
(Tachibana et al. 2002) (Table 3).

In a recently published study, another histone lysine meth-
yltransferase, ASH1L (making H3K36 methylation for stim-
ulating gene expression), was knocked down using siRNA 
in bovine cumulus cells (Cui et al. 2021). The decrease in 
ASH1L resulted in reduced H3K36me1, H3K36me2, and 
H3K36me3 levels, increased apoptosis rate, and reduced 
proliferation in cultured bovine cumulus cells. The authors 
concluded that establishment of histone methylation in the 
granulosa cells during folliculogenesis may be an impor-
tant process for generating good-quality oocytes and early 
embryos.

As revealed in the abovementioned studies (Table 3), 
establishing methylation on target histones is very impor-
tant for proper progression of oocyte maturation and early 
embryonic development. However, further studies are 
needed to identify the molecular determinants and mecha-
nisms underlying the emergence of those phenotypic defects 
that derive from the loss of histone methyltransferases and 
histone methylation. Also, it remains unknown whether 
potential functions of histone methyltransferases other than 
their primary role may have any impact on the emergence 
of those phenotypes.

Loss of the histone demethylases in oocytes 
and early embryos

The loss of H3K4 demethylases

In addition to examining the effects of histone methyltrans-
ferases loss, the potential impacts of the lack of histone dem-
ethylases in oocytes and early embryos were also evaluated. 
Although there was no effect of the disrupted histone H3K4 
demethylase Kdm1b gene on early mouse development 
and oogenesis, oocytes from KDM1B-deficient females 
showed markedly increased H3K4 methylation and defects 
in establishing methylation marks in the maternally imprint-
ing genes Mest, Grb10, Zac1, and Impact (Ciccone et al. 
2009). Moreover, the early embryo produced from these 
oocytes exhibited biallelic expression or biallelic suppres-
sion of the affected genes, and died before mid-gestation 
(Table 4). Another H3K4 demethylase, the LSD1 gene, was 
observed at higher levels in MII oocytes compared to GV 
oocytes during IVM in goats (Liu et al. 2020). Additionally, 
the inhibition of LSD1 by its specific inhibitor, GSK-LSD1, 
led to a reduced first polar body extrusion rate, abnormal 
spindle assembly, misaligned chromosomes, and an increase 
in H3K4me2 levels in oocytes.

The demethylation of H3K4me2 and H3K4me3 per-
formed by KDM5B is a crucial process for proper early 
embryonic development (Han et  al. 2017). The lack of 
Kdm5b in mice resulted in increased H3K4me3 levels in 
the early embryos and postnatal lethality in the majority of 
pups (Albert et al. 2013). Furthermore, functional defects 
in the respiratory system, disorganized cranial nerves, aber-
rant eye development, and homeotic skeletal transformations 
were observed. By contrast, Zou et al. (2014) revealed that 

Table 3   (continued)

Gene Phenotypes Knockout or knockdown technology Reference

Eset Abnormal development of inner cell mass
Aberrance in producing embryonic stem cells
Peri-implantation lethality

A standard gene targeting technique Dodge et al. 2004
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the majority of Kdm5b knockout mouse embryos survived 
beyond the neonatal stage (Zou et al. 2014). These mice 
exhibited reduced body weight and female fertility rates, 
increased mortality, and delayed mammary gland develop-
ment (Table 4). The differences between the two studies 
may derive from the use of different strategies to create the 
knockout mouse models.

The altered expression of the H3K27, H3K9, 
and H3K36 demethylases

The knockdown of the KDM5B gene expression by Huang 
et  al. (2015) in porcine MII oocytes led to increased 
abundance of H3K4me3 in four-cell and blastocyst-stage 
embryos, but a decrease in H3K27me3 levels in blasto-
cysts (Huang et al. 2015). Also, impaired early embryonic 
development and enhanced expression of the homeobox 
(HOX, undergoing silencing during early development) 
and ten-eleven translocation (TET, having a role in DNA 
methylation) genes were observed in the knockdown group 
(Table 4). Notably, changes in the TET genes (TET1, TET2, 
and TET3) expression indicated an association between the 
establishment of histone methylation and DNA methylation. 
The researchers also suggested based on their results that a 
decreased H3K27me3 profile in the blastocysts may arise 
from the upregulation of histone demethylase KDM6A.

The  H3K27me3 demethylase KDM6B (also called 
JMJD3) gene expression was knocked down in bovine MII 
oocytes using siRNA injection in order to investigate its 
roles during early embryonic development (Canovas et al. 
2012). The H3K27me3 levels that normally decrease in the 
preimplantation embryos did not change in the cleavage-
stage embryos produced from KDM6B-knockdown oocytes, 
and similarly there was no remarkable change observed in 
the early embryos derived from the parthenogenetically 
activated MII oocytes. Additionally, the rate of blastocyst 
formation decreased in the KDM6B knockdown group when 
compared to their control counterparts (Canovas et al. 2012). 
In parallel with the previous study, knockdown of the his-
tone demethylase JMJD1C (involved in demethylation of 
H3K9me1 and H3K9me2) gene expression using siRNA 
technology in bovine MII oocytes caused reduced rates of 
both blastocyst formation and cleavage of one-cell embryos 
after IVF (Li et al. 2015) (Table 4). These studies suggest 
that these demethylases contribute to temporally establish-
ing the H3K9 and H3K27 methylation states for proper early 
embryonic development in bovines.

To investigate the functional importance of KDM1A 
catalyzing H3K9me2 as well as H3K4me1 and H3K4me2 
demethylation during early embryogenesis, the Kdm1a gene 
was maternally deleted in a mouse model (Ancelin et al. 
2016). The early embryos developed from Kdm1a-knockout 

oocytes were arrested at the two-cell stage. In the same study 
(Ancelin et al. 2016), the one-cell embryos from wild-type 
mice were treated with pargyline, an inhibitor of KDM1A 
enzymatic activity, to evaluate its importance for preim-
plantation embryonic development. Most one-cell embryos 
treated with pargyline showed arrested development at the 
two-cell stage, and some of them failed to develop beyond 
the four-cell stage, as was observed in the Kdm1a knockout 
models. On the other hand, maternal absence of KDM1A 
did not affect H3K4me1, H3K4me2, H3K4me3, H3K9me1, 
or H3K9me2 levels in the one-cell embryos but caused an 
abnormal increase in H3K9me3. In the two-cell embryos, 
there were significant increases in the H3K4 and H3K9 
methylation states (-me1, -me2, and -me3), impairment of 
the normal changes of transcriptome, and enhanced LINE-1 
protein levels and γH2AX foci in the Kdm1a-depleted 
group. Another study by Wasson et al. (2016) reported that 
deficiency of maternally expressing Kdm1a led to early 
developmental arrest at the one-cell or two-cell stage and 
a failure of maternal-to-zygotic transition in mice (Wasson 
et al. 2016). Also, the hypomorphic phenotypes including 
decreased litter size, increased perinatal lethality, enhanced 
fragmented and multicellular embryos, and abnormal behav-
ior and imprinting defects in the progeny were detected in 
the Kdm1a knockout group (Table 4). Taken together, these 
studies indicate that KDM1A is a key player in regulating 
early and postnatal embryonic development. Importantly, 
other factors involved in modulating Kdm1a gene expres-
sion in oocytes and early embryos should be determined to 
understand the background of the phenotypes that emerge 
in the loss of KDM1A.

As KDM4A is involved in the demethylation of 
H3K9me2 and H3K9me3, as well as H3K36me2 and 
H3K36me3, maternal expression of the Kdm4a gene is 
critical for embryo survival and female fertility in mice 
(Sankar et al. 2017). Expectedly, Kdm4a knockout mice 
exhibited a lower implantation rate, decreased develop-
mental potential, and female infertility when compared to 
wild-type mice (Table 4). It is worth noting that no global 
change in H3K9me3 methylation level was observed in the 
absence of KDM4A. This may reflect the compensating for 
the loss of KDM4A by other demethylases such as KDM4B 
and KDM4C. In a newly published study, it was reported 
that KDM4A-mediated H3K9me3 demethylation in mouse 
oocytes is required for EGA and normal early embryonic 
development (Sankar et al. 2020). In the impairment of 
H3K9me3 demethylation, most genes expressed during EGA 
undergo repression in the two-cell embryos.

Overall, the studies evaluating the potential roles of 
the histone demethylases suggest that KDMs play crucial 
roles in temporally regulating the expression of the genes 
required for oocyte maturation, early embryonic develop-
ment, and postnatal development. It is worth noting that 
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histone methyltransferases and demethylases work in bal-
ance for reorganizing chromatin. Further studies are needed 
to uncover the possible relationship between histone meth-
yltransferases and demethylases, as well as their interac-
tion with other epigenetic mechanisms, for example, DNA 
methylation.

The potential effect of aging on histone 
methylation

Reduced reproductive features accompanied by biological 
aging are closely associated with decreased oocyte quality 
and defective embryonic development (Qiao et al. 2014; 
Cui et al. 2013). These unfavorable outcomes may arise in 
part from failure to establish proper histone methylation. 
The potential effects of the early postnatal development 
periods on histone methylation were evaluated in grow-
ing mouse GV oocytes (Kageyama et al. 2007). The levels 
of H3K4me2, H3K4me3, H3K9me2, and H3K9me3 were 

higher in the growing oocytes from a 15-day-old mouse 
compared with 5- to 10-day-old mice. Expectedly, the Set7 
(performing H3K4me2), Mll (performing H3K4me3), and 
G9a (performing H3K9me2) genes exhibited higher expres-
sion levels in the oocytes of a 15-day-old mouse than in the 
5- and 10-day-old groups. The researchers suggested that 
the increase in H3K4 methylation profiles may be associated 
with the change in chromatin configuration independent of 
transcription; however, the altered H3K9 methylation levels 
seem to be related to the suppression of gene expression and 
the formation of a heterochromatin structure during oocyte 
growth.

A study by Manosalva and Gonzalez (2010) analyzed 
the changes in histone methylation levels in the GV and 
MII oocytes obtained from young (2-month-old) to old 
(11-month-old) mice (Manosalva and Gonzalez 2010). The 
H3K9me3, H3K36me2, H3K79me2, and H4K20me2 levels 
decreased significantly in the GV and MII oocytes of the 
old mice, and lower H3K4me2 and H3K9me2 levels were 
found in the MII oocytes from the old mice when compared 

Table 4   The phenotypes derived from the loss or knockdown of the histone lysine demethylases (KDMs) in different mammalian species

Gene Species Phenotype Gene repression method Reference

Kdm1b Mouse Increased H3K4 methylation in oocytes
Elevated H3K4me2 levels in oocytes
Failure to establish genomic imprinting
Embryonic death before mid-gestation

Cre-Lox recombination Ciccone et al. 2009

Kdm5b Mouse Increased H3K4me3 levels in embryos
Postnatal lethality
Other organ defects

Cre-Lox recombination Albert et al. 2013

Kdm5b Mouse Viable beyond neonatal stages
Reduced body weight
Delayed mammary gland development
Reduced female fertility

A standard gene targeting technique Zou et al. 2014

Kdm5b Porcine Increased H3K4me3 levels
Decreased H3K27me3 levels
Enhanced expression of HOX and TET genes
Impaired preimplantation development

Knockdown by Morpholino antisense 
oligonucleotide

Huang et al. 2015

KDM6B Bovine Decreased H3K27me3 levels in cleavage-stage embryos
Reduced blastocyst formation rate

siRNA injection Canovas et al. 2012

JMJD1C Bovine Reduced blastocyst formation rate
Decrease in cleavage of one-cell embryos

siRNA injection Li et al. 2015

Kdm1a Mouse Failure of maternal-to-zygotic transition
Early developmental arrest at 1–2-cell stage
Increase in H3K9me3 level in one-cell embryos
Elevated H3K4 and H3K9 methylation level in two-cell 

embryos
Impaired transcription changes in two-cell embryos
Enhanced LINE-1 protein level and γH2AX foci in two-

cell embryos
Hypomorphic phenotype
Abnormal behavior
Imprinting defects in progeny

Cre-Lox recombination Ancelin et al. 2016
Wasson et al. 2016

Kdm4a Mouse Low embryo implantation rate
Impaired preimplantation embryonic development
Female infertility

Cre-Lox recombination Sankar et al. 2017
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with the GV and MII oocytes of young mice (Manosalva 
and Gonzalez 2010). Furthermore, the number of oocytes 
with NSN was lower in the old mice than young ones. These 
findings indicate that changes in histone methylation profiles 
in oocytes with aging may alter the chromatin configuration, 
influencing temporal transcriptional activity. Another study 
on this subject revealed that H3K4me2 and H3K4me3 levels 
were reduced in the GV oocytes of old mice (42–44 weeks 
old), but the H3K4me2 level increased significantly in the 
MII oocytes of old mice when compared with their young 
(6–8 weeks old) counterparts (Shao et al. 2015). In a recently 
published study, Petri et al. (2020) reported that in vitro pos-
tovulatory aging enhanced H3K9me3 levels in mouse MII 
oocytes (Petri et al. 2020). As a result, histone methylation 
exhibited dynamic changes from GV to MII oocytes during 
maturation, and biological aging seemed to be a prominent 
factor affecting methylation levels. More work is required 
to determine the short- and long-term influences of histone 
methylation changes due to biological aging on oocyte and 
early embryo quality.

Conclusion

In conclusion, correctly establishing methylation of histones 
in a spatiotemporal manner contributes to proper completion 
of oocyte maturation and pre- and postimplantation develop-
ment. For this purpose, dynamic changes in the expression 
levels of KMTs and HDMs take place in oocytes and early 
embryos. The lack or overproduction of these enzymes leads 
to altered histone methylation profiles that cause impaired 
oogenic and/or embryonic gene expression, abnormal 
EGA, arrest in early embryos, and even embryonic lethal-
ity. Unsuitable changes in histone methylation patterns, as 
well as other epigenetic modifications, may be one of the 
main reasons for decreased reproductive functions and ulti-
mately female infertility. Further studies are needed to elu-
cidate the mechanisms modulating histone methylation and 
demethylation processes during oocyte maturation and early 
embryogenesis. Findings from these studies would aid in 
determining the molecular background of female infertility 
deriving from inappropriate changes in histone methylation, 
and in the discovery of new treatment strategies to maintain 
female fertility for a longer period.
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