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Abstract
Dental implant material has an impact on adhesion and spreading of oral mucosal cells on its surface. Platelet-rich fibrin 
(PRF), a second-generation platelet concentrate, can enhance cell proliferation and adhesion. The aim was to examine the 
regulatory effects of PRF and titanium surfaces on cellular adhesion, spread, and cytokine expressions of gingival keratino-
cytes. Human gingival keratinocytes were cultured on titanium grade 4, titanium grade 5 (Ti5), and HA discs at 37 °C in a 
CO2 incubator for 6 h and 24 h, using either elutes of titanium-PRF (T-PRF) or leukocyte and platelet-rich fibrin (L-PRF), 
or mammalian cell culture medium as growth media. Cell numbers were determined using a Cell Titer 96 assay. Interleukin 
(IL)-1β, IL-1Ra, IL-8, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF) expres-
sion levels were measured using the  Luminex® xMAP™ technique, and cell adhesion and spread by scanning electron 
microscopy. Epithelial cell adhesion and spread was most prominent to Ti5 surfaces. L-PRF stimulated cell adhesion to 
HA surface. Both T-PRF and L-PRF activated the expressions of IL-1 β, IL-8, IL-1Ra, MCP-1, and VEGF, T-PRF being 
the strongest activator. Titanium surface type has a regulatory role in epithelial cell adhesion and spread, while PRF type 
determines the cytokine response.
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Introduction

Integrity of the soft-tissue seal around the abutment of den-
tal implants is crucial for the clinical success (Atsuta et al. 
2012; Ivanovski and Lee 2018). Titanium, either in pure 
(Ti1–4) or in an alloy form, is the most common material 

used to fabricate implants in dentistry (Cordeiro and  Barão 
2017). Surface characteristics like chemical composition, 
charge, topography, and roughness have a significant effect 
on the adhesion and protein expression of human oral cells 
to titanium (Lauer et al. 2001; Schwartz-Filho et al. 2012). 
Formation of a thin-oxide layer on the outer surface of the 
titanium and titanium alloys also affects the adhesion of cells 
to implant surfaces (Lausmaa et al. 1990). The interaction 
of the titanium oxide layer, rutile surface, with the organic 
molecules provides further intercourse between the cell and 
implant (YazdanYar et al. 2018). Moreover, the contamina-
tion of the titanium surfaces with saliva and bacteria is a 
potential risk factor to maintain the integrity of the titanium 
oxide layer (Delgado-Ruiz and Romanos 2018). Therefore, 
numerous surface modification methods have been described 
to alter and create an antibacterial effect on titanium sur-
faces (Chouirfa et al. 2019). Recent evidence suggests that, 
in addition to its regulatory effects on cell adhesion, titanium 
may induce a strong immune response in macrophages (Li 
et al. 2018). There is evidence that titanium particles can be 
found in epithelial cells, connective tissue, macrophages, 
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and bone tissue, and presence of these particles is associ-
ated with the initiation of the inflammatory response and 
expression of cytokines (Suárez-López del Amo et al. 2018). 
However, information on oral mucosal keratinocyte response 
is missing in this context.

Platelets have a stimulatory effect on wound healing 
and tissue hemostasis (Mosesson et al. 2001). Platelet-rich 
fibrin (PRF) is a natural biomaterial, and it is prepared by 
centrifuging the blood sample directly after drawing it. The 
main principle to obtain PRF membrane is the centrifugation 
of the freshly drawn blood in a glass/glass coated tubes at 
2700–3000 rpm for 12–15 min, approximately 400G forces 
(Dohan Ehrenfest et al. 2006). PRF is an autogenous source 
of growth factors, in which platelets are the main cells 
responsible for its biologic activity. The flexible and dense 
fibrin structure of the PRF membrane provides slow- and 
long-term secretion of the growth factors such as platelet-
derived growth factor, transforming growth factor ß, vascu-
lar endothelial growth factor, insulin-like growth factor-1 
which are responsible for the enhanced healing (Pierce et al. 
1991). Moreover, the trapped cytokines in the gel form of the 
PRF membrane induce the regulation of the epithelial cell 
migration to wound surfaces and accelerate angiogenesis 
(Ratajczak et al. 2018). PRF may stimulate the proliferation 
and differentiation of cells of oral origin, as well (Ehrenfest 
et al. 2009). The clinical benefits of both platelet products 
have been discussed recently (Schliephake et al. 2018) and 
their effect on enhancing the early phase of osseointegration 
has been pointed out (Strauss et al. 2018).

All protocols to produce PRF use an immediate centrif-
ugation; however, variations in techniques, such as using 
titanium tubes [for titanium platelet-rich fibrin (T-PRF)] or 
glass tubes [for leukocyte and platelet-rich fibrin (L-PRF)], 
can significantly affect biological properties and clinical 
implications of the outcome product (Tunali et al. 2014). 
The histological structures of the L-PRF and T-PRF show 
similarities to each other, yet the fibrin network of the T-PRF 
was much denser than L-PRF (Tunali et al. 2014). Even 
though there are slight differences in the centrifugation pro-
tocol of both fibrin products [2800 rpm, 12 min for T-PRF 
(Tunali et al. 2014); 3000 rpm, 10 min for L-PRF (Dohan 
et al. 2009)], titanium tubes that are used in the production 
of T-PRF are found to be the underlying reason of potent 
platelet activation (Tunali et al. 2014). Dense fibrin structure 
of T-PRF membranes gives additional beneficial effects on 
the treatment of soft-tissue treatment around the teeth and 
dental implants due to its elongated resorption time (Ustao-
glu et al. 2016).

In the present study, we hypothesized that adhesion, 
spread, and cytokine expression of gingival keratinocytes 
are affected by the grade of titanium, and this effect can 

be modified by PRF. Therefore, we aimed to examine the 
cellular adhesion of gingival keratinocytes to Ti4 and Ti5 
titanium surfaces and the expression of interleukin (IL)-1β, 
IL-1Ra, IL-8, monocyte chemoattractant protein (MCP)-1, 
and vascular endothelial growth factor (VEGF) in the pres-
ence or absence of T-PRF and L-PRF.

Materials and methods

Preparation of L‑PRF and T‑PRF

A systemically healthy non-smoking study volunteer 
donated the whole blood samples. The L-PRF and T-PRF 
membranes were produced as described by Tunali et al. 
(2014), with slight modifications. A 36 ml of blood sam-
ple was collected with four non-additive test tubes (9 ml, 
Vacuette 455,092; Grenier Bio-One GmbH, Frickenhausen, 
Germany). A half of the blood sample (18 ml) was quickly 
transferred into two separate titanium grade 4 tubes. Two 
non-additive and two titanium grade 4 tubes were centri-
fuged (#SL8R, Thermo Fisher Scientific, Waltham, MA, 
USA) at 2700 rpm for 15 min at room temperature. After 
centrifugation, L-PRF (from non-additive tubes) and T-PRF 
(from two titanium grade 4 tubes) clots were taken out from 
the tubes using sterile tweezers and each one was placed on 
discrete sterile gauze pads. To obtain the L-PRF and T-PRF 
membranes, the bases of all fibrin clots including the red 
corpus part were removed with sterile scissors, and serum 
components of the fibrin clot were removed by squeezing 
the clot gently between sterile gauze pads.

PRF‑elute extraction

Elute extractions were performed according to Gassling 
et al. (2013). Briefly, L-PRF and T-PRF membranes were 
broken into rectangular fragments with one side length 
7 mm and three pieces obtained from each membrane were 
placed in a 24-well cell culture plate (Costar 3524, Corning 
Incorporated, Corning, NY, USA). Membrane fragments 
were incubated with a serum-free DMEM media for 1 h at 
37 °C and 5%  CO2. The elutes, which were obtained from 
the pieces of the PRF membranes, were pooled and stored 
separately at 4 °C.

Isolation of human oral keratinocyte cells

Human oral keratinocyte (HMK) cells, which are a sponta-
neously transformed cell line, were isolated from a healthy 
human gingival biopsy sample and were received from Dr. 
M. Mäkelä, University of Helsinki, Finland (Mäkelä et al. 
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1999). The chromosome number of the cells was found to 
be around hypertriploid range (70–76, with a cell-to-cell 
variation). HMK cells were sustained in a 75 cm2 cell cul-
ture flask (Corning Incorporated, Corning, NY, USA) with 
a keratinocyte serum-free media (SFM-X, Gibco, Thermo 
Fisher Sci. Co, Waltham, Massachusetts, USA), contain-
ing human recombinant epidermal growth factor, bovine 
pituitary extract, and antibiotics (penicillin–streptomycin, 
10,000 U/mL, Gibco, Thermo Fisher Sci. Co, Waltham, 
Massachusetts, USA) at 37 °C and 5%  CO2. Keratinocyte 
growth media were replaced with fresh SFM-X three times 
per week, and the HMK cells were passaged when reaching 
80–90% confluence. HMK cells used for the experiments 
were chosen from passage number 22.

Test discs

In all experiments, machine surfaced titanium grade 4 (Ti4, 
Servo-Dental, Hagen, Germany), machine surfaced titanium 
grade 5 (Ti5, Implance, Trabzon, Turkey), and as a control 
surface hydroxyapatite (HA, Clarkson Chromatography Inc., 
South Williamsport, PA, USA) discs were used. All discs 
had a diameter of 5 mm and a thickness of 2 mm.

Cell culture

Equal numbers of HMK cells (1 × 104) were seeded on Ti4, 
Ti5, and HA discs, using either elutes of T-PRF or L-PRF, 
or SFM-X as growth media. Cells were incubated at 37 °C 
in a  CO2 incubator for 6 h and 24 h. All experiments were 
performed in quintuplicate. At the end of the incubation 
periods, elute and media were transferred into Eppendorf 
tubes and stored in − 70 °C for cytokine analysis. The cells 
on titanium and HA surfaces were used for the cell number 
and SEM analyses.

Cell number analysis on test discs

Cell numbers on each test disc were determined using the 
Cell Titer 96 assay (Promega Corporation, Wisconsin, USA) 
with a plate reader at 490 nm. To convert the absorbance val-
ues to the number of living cells, HMK cells at five different 
densities were incubated with the cell titer assay at 37 °C in 
a  CO2 incubator for 1 h. After incubation, the absorbance 
was measured at 490 nm; a standard curve was created by 
plotting the absorbance against the number of incubated 
cells. Elute and media alone were used in determination of 
the background absorbance.

SEM imaging

After the incubation periods, the cells covering the surface 
were immediately fixed by a conventional chemical fixation 
with 5% glutaraldehyde in 0.16 mol 1–1 s-collidine–HCl 
buffer at pH 7.4 for 20 min, followed by a chemical dehy-
dration in graded ethanol series (50%, 70%, and 98%) with 
5 min embedding intervals. The discs were removed from 
the bottom of the Eppendorf tubes and kept at room tempera-
ture to allow air drying for overnight. Then, the discs were 
mounted on SEM specimen metal stubs (covered with elec-
trically conductive material) and each one of them sputters 
carbon-coated for one second. The surface microtopography 
of the specimen was visualized by the LEO 1530Gemini 
scanning electron microscope (Carl Zeiss, Oberkochen, Ger-
many). The magnification of the images taken corresponds 
to a Polaroid 545 print and an image size of 8.9 × 11.4 cm.

Cytokine concentrations

After incubating the cells for 6 and 24 h, IL-1β, IL-1Ra, 
IL-8, MCP-1, and VEGF concentrations in T-PRF and 
L-PRF elutes, and SFM-X media were measured with the 
 Luminex® xMAP™ technique (Luminex Corporation, Aus-
tin, TX) using the pro-human cytokine group I assays (Bio-
Rad, Santa Rosa, CA). The detection limit of the assay was 
0.6 pg/mL for IL-1β, 5.5 pg/mL for IL-1Ra, 1.0 pg/mL for 
IL-8, 1.1 pg/mL for MCP-1, and 3.1 pg/mL for VEGF. Elute 
and media alone were used in the determination of the back-
ground absorbance.

Statistical analysis

The IBM SPSS V24.0 software (IBM, Armonk, North Cas-
tle, New York, USA) was used for statistical analysis. One-
way analysis of variance (ANOVA) with Tukey’s HSD was 
used for the analysis of the differences in cell proliferation 
and cytokine expression levels. The p value of p < 0.05 was 
accepted as statistically significant.

Results

Elevated numbers of HMK cells on Ti4, Ti5, and HA discs 
were found after 6 and 24 h incubations in the T-PRF and 
L-PRF groups, in comparison to the SFM-X group. In addi-
tion, the numbers of HMK cells on HA discs after 24 h incu-
bation were higher than those on Ti4 and Ti5 discs in the 
L-PRF and T-PRF groups (Fig. 1).
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Fig. 1  Comparison of human oral keratinocyte (HMK) cell numbers cultured on grade 4 and 5 titanium (Ti4 and Ti5) and hydroxyapatite (HA) 
discs after 6 and 24 h of incubation

Fig. 2  SEM analysis of human oral keratinocyte (HMK) cell adhesion and spread on grade 4 and 5 titanium (Ti4 and Ti5) and hydroxyapatite 
(HA) discs after 6 h of incubation. Scale bars indicate 10 µm
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The SEM analysis revealed that, after 6 h incubation, 
more cell adhesion and spread had occurred in the Ti4 and 
Ti5 groups, in comparison to the HA group. Keratinocytes 
in the HA group were either round or started to be elon-
gated with a few filopodia. In the Ti4 and Ti5 groups, both 
filopodia and lamellipodia were visible in majority of the 
cells. Of the three surfaces examined, cell spread was most 
prominent on Ti5 surface. In the HA group, cell spread 
improved when the cells were incubated with the L-PRF 
extract, while cells tend to form aggregates when they were 
incubated with T-PRF. A small number of platelet cells 
adhered to epithelial cells was observed in the PRF and 
T-PRF groups (Figs. 2, 3).

After 24 h incubation, the PRF extract-treated cells on 
Ti4 and Ti5 discs formed uneven multilayers; however, 
the number of cell layers was not even in all the parts 
of the disc (Figs. 4, 5). Cell-to-cell junctions and cell 
spread were most prominent in Ti5 group. Cells in the 

HA group lost their initial roundness and become more 
elongated.

After 6 h incubation, cells on the T-PRF discs produced 
the highest concentrations of IL-1β, IL-1RA, and IL-8, 
while those on the SMF-X discs were the lowest. No dif-
ference was observed in the MCP-1 concentrations between 
the tested groups (Fig. 6). After 24 h incubation, the highest 
concentrations of IL-1β, IL-1RA, and IL-8 were produced 
by cells in the T-PRF group, and the lowest concentrations 
were in the SFM-X group. VEGF and MCP concentrations 
did not significantly differ between the T-PRF and L-PRF 
groups, yet their concentrations were higher than in the 
SFM-X group (Fig. 7).

There was no detectable concentration of IL-1β, IL-8, 
VEGF, or MCP-1 in elutes of L-PRF or T-PRF, or in 
SFM-X growth media, whereas low concentrations of IL-
1RA were measured in each growth medium.

Fig. 3  SEM analysis of human oral keratinocyte (HMK) cell adhe-
sion and spread on grade 4 and 5 titanium (Ti4 and Ti5) and 
hydroxyapatite (HA) discs after 6 h of incubation. Two ended arrow: 
gap between HMK cells. Black arrow: A spreading HMK cell with 

lamellipodia. Black dashed arrow: A round HMK cell with filopo-
dia. White arrows: Platelets. White dashed arrow: HMK cell clumps. 
Scale bars indicate 1 µm
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Discussion

To our knowledge, this is the first study to examine adhe-
sion characteristics and cytokine production of gingival 
epithelial cells on two different titanium grade discs and to 
analyze the modifying effects of PRF on these parameters. 
According to our results, Ti5 has superiority in epithelial 
cell adhesion and spread against Ti4 and HA, besides the 
cytokine expression by epithelial cells is strongly induced 
in the presence of T-PRF.

Although machined surfaces of Ti4 and Ti5 show simi-
lar characteristics in their morphology, corrosion resist-
ance, and biocompability, they differ in their chemical 
composition (Özcan and Hämmerle 2012). The amorphous 
oxide layer formation and existence of small amounts of 
alloying elements on Ti5 (Shah et al. 2016) may explain 
its superiority in epithelial cell spread and adhesion over 
Ti4 and HA surfaces.

One interesting finding in the present study was that the 
application of PRF increased the cell spread only on HA 
discs. Growth factors in the PRF play a significant role in 
stimulating the proliferation of human oral cells (Dohan 
Ehrenfest et al. 2009a, b). It has been shown that bone 
morphogenetic proteins have affinity to bind HA (Roha-
nizadeh and Chung 2011). As PRF carries high amounts 
of bone morphogenetic proteins, it is possible that these 
proteins accumulated on HA surface stimulate the prolif-
eration and spread of gingival keratinocytes.

Based on our results, titanium surfaces have no regulatory 
effect on cytokine expression of gingival keratinocytes. It 
was recently demonstrated that titanium ions (9 ppm) acti-
vate cytokine expression of gingival epithelial cells (Wachi 
et al. 2015). In the present study, we used 6 and 24 h steady 
incubation models, which may not necessarily induce an 
abrasion on titanium surfaces, and eventually titanium 
release and elevated cytokine expression. Both T-PRF and 
L-PRF stimulated cytokine expression significantly. The 

Fig. 4  SEM analysis of human oral keratinocyte (HMK) cell adhesion and spread on grade 4 and 5 titanium (Ti4 and Ti5) and hydroxyapatite 
(HA) discs after 24 h of incubation. Scale bars indicate 10 µm
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previous studies have shown that platelet-released growth 
factors stimulate the induction of IL-6 and antimicrobial 
peptides in primary human keratinocytes (Bayer et al. 2016, 
2018). Conversely, in a clinical study where the use of PRF 
membrane was compared to connective tissue graft in the 
treatment of localized gingival recessions, the application 
of PRF membrane had no effect on the gingival crevicular 
fluid IL-1β levels after 10 days (Eren et al. 2016). L-PRF 
contains leukocytes, monocytes, and platelets, thus being 
a significant source of IL-1β, IL-6, and VEGF as well, and 
the concentration, release dynamics, and kinetics of these 
growth factors have been demonstrated in vitro (Schär et al. 
2015). Yet, in the present study, cytokine levels in PRF elute 
were nearly undetectable. Instead of PRF, we used PRF elute 
as a test material. This model has been applied successfully 
on osteoblast cultures for bone tissue engineering (Gassling 
et al. 2013). The purpose of the PRF-elute preparation was 
to get a well-homogenized PRF structure to be used in a 
disc-culture model. It was previously shown that leukocytes 

and platelets are not homogenously distributed in L-PRF and 
the heterogeneous distribution of growth factors and some 
other proteins in the fibrin network might be an explanation 
to the unequal release of these molecules after PRF’s appli-
cation (Dohan Ehrenfest 2010). One limitation of the use 
of elute is that elute does not contain the fibrin component 
of PRF; thus, the cellular composition differs between PRF 
and PRF elute. The second limitation is that the origin of the 
blood and the epithelial cells used in the present study come 
from two different individuals. Even though the blood donor 
was a systemically healthy and non-smoking volunteer, it is 
unclear if age or gender has any effect on PRF composition. 
Finally, the present study used monolayer culture model to 
evaluate the cell spread and cytokine secretion. Non-differ-
entiating cell monolayers do not simulate gingiva, because 
they lack of stratification, vertical cell contacts, and differ-
entiation (Gursoy et al. 2016). Thus, it might be beneficial to 
test the present study hypothesis on an organotypic-titanium 
cell culture model.

Fig. 5  SEM analysis of human oral keratinocyte (HMK) cell adhesion and spread on grade 4 and 5 titanium (Ti4 and Ti5) and hydroxyapatite 
(HA) discs after 24 h of incubation. White arrows: unevenly distributed multilayered human oral keratinocyte (HMK) cells. Scale bars are 1 µm
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In conclusion, the composition of titanium has a regula-
tory effect on the adhesion and spread of human gingival 
epithelial cells. PRF was proved to be a strong inducer of 
cytokine expression of gingival epithelial cells, but also 

contributed to the cell spread characteristics. Increased 
understanding of these mechanisms involved in the cellular 
process may help in an attempt to improve the wound heal-
ing in peri-implant tissues. Besides, it might be possible to 

Fig. 6  Concentrations of interleukin (IL)-1β, IL-1ra, IL-8, monocyte 
chemoattractant protein (MCP)-1, and vascular endothelial growth 
factor (VEGF) in T-PRF and L-PRF elutes and SFM-X media after 

incubating gingival keratinocytes on grade 4 and 5 titanium (Ti4 and 
Ti5) and hydroxyapatite (HA) discs for 6 h
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improve pocket reduction and clinical attachment gain in 
peri-implantitis treatment with the aid of PRF treatments.
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