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on the role of non-ribosomal DNA sequences in organiza-
tion and function of nucleoli.

Ribosomal DNA (rDNA)

rDNA locus

Ribosomal DNA is responsible for production of ribosomal 
RNAs. Thus, in mammalian cells, there are three kinds of 
coding regions which produce 18S RNA of the small ribo-
somal subunit, as well as 28S and 5.8S RNAs of the large 
ribosomal subunit (Gonzalez and Sylvester 1995). Accord-
ingly, each transcription unit includes three genes, sepa-
rated by internal transcribed spacers, ITS1 and ITS2, and 
flanked by external spacers, 5′ ETS and 3′ ETS (Fig.  1). 
These spacers vary significantly in composition and size in 
different species (reviewed in Nazar 2004).

The transcription units of rDNA locus are separated 
from each other by non-transcribed, or intergenic, spac-
ers, NTS or IGS (Fig. 1). In yeast and infusoria, the spac-
ers are rather uniform (Philippsen et  al. 1978; Wild and 
Gall 1979). But generally, structure and length of the IGS 
vary to a large extent not only from species to species, but 
also within the species, and even within a single individ-
ual (Lewin 1980; Wellauer and Dawid 1977; Reeder et al. 
1976). The satellite contents of the DNA are particularly 
variable (Gonzalez et  al. 1992a; Gonzalez and Sylvester 
1995, 2001; Maden et al. 1987; Sasaki et al. 1987). Most 
frequently, the small repetitive arrays get increased or 
reduced in number as a result of slipped-strand mispair-
ing and other errors associated with replication (Tautz et al. 
1986; Levinson and Gutman 1987). Human IGS includes 
various kinds of DNA repeats, both tandemly and non-
tandemly arranged; they include simple sequence motifs, 

Abstract  Nucleoli are formed on the basis of ribosomal 
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Nucleoli have been known since the works of Wagner 
(1835) and Valentin (1836) as the most conspicuous com-
ponents of cell nucleus. A century later, it was found that 
these nuclear bodies are assembled around certain chromo-
somal loci, termed afterward “nucleolus organizer regions 
(NORs)” (Heitz 1931; McClintock 1934). Subsequent 
findings indicated that structure and the main function of 
nucleoli are based upon transcription of ribosomal genes. 
In recent studies, multiple other genomic regions have been 
found within and closely adjacent to the nucleoli. This 
review is focused on peculiarities of ribosomal DNA and 
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microsatellites (2–6 bp), long repeats (cca 2 kb), as well as 
transposable elements. Among the latter, Alu, belonging to 
the short interspersed elements (SINE), are predominant 
(Tautz et al. 1986; Gonzalez et al. 1989; Gonzalez and Syl-
vester 1995). Some of rDNA repeats also contain nucleo-
tide substitutions, supplementary microsatellite clusters, 
and, more seldom, extended deletions (Ryskov et al. 1993; 
Braga et al. 1995; Kupriyanova et al. 2015).

It has  long been known that the rDNA spacers include 
regulatory sequences. Thus, the promoter of each ribo-
somal gene is partly or entirely situated in IGS, upstream 
of the start codon. Typically, it consists of two parts: core 
domain and upstream control domain (Haltiner et al. 1986; 
Clos et  al. 1986; Paule 1994; Reeder 1992; Doelling and 
Pikaard 1995). Another essential part of the spacer is the 
terminator. It may be absent in rDNA of Xenopus and 
Drosophila, and in these cases, the transcription is ceased 
by a kind of processing (Labhart and Reeder 1986; McStay 
and Reeder 1986; Tautz and Dover 1986; De Winter and 
Moss 1986). In mammalian cells, transcription of rDNA is 
terminated at the 3′ end of each gene, at a sequence motif 
called “Sal box” with the length of 18  bp in mouse and 
11  bp in human (Grummt et  al. 1985; Kuhn et  al. 1988). 
Sal box binds the TTF-1 (transcription termination factor 
1) protein, which is essential for arresting RNA polymerase 
I (pol I) (Grummt et al. 1985, 1986; La Volpe et al. 1985; 
Bartsch et al. 1987; Pfleiderer et al. 1990; Diermeier et al. 

2013; reviewed in Németh et  al. 2013). But it seems that 
one such site is not sufficient, for each human or murine 
rDNA unit is provided with 10 terminators, T1–10 (reviewed 
in Diermeier et al. 2013).

Other sites regulating the expression of rDNA have been 
found in the non-transcribed spacers. A usual component of 
IGS is the enhancer; enhancers appear as clusters of repeat-
ing sequences distanced from the regulated region (Pikaard 
et  al. 1990; Moss et  al. 1985). In mammalian cells, there 
are also one or more reduced transcription units situated 
~2  kb upstream of the core promoter. Such units include 
spacer promoter, spacer terminator, and a minigene pro-
ducing transcripts of ~150 bp, termed promoter-associated 
RNAs (pRNAs), which are involved in rDNA silencing 
(Sylvester et al. 2003; Mayer et al. 2006, 2008; Moss et al. 
2007; McStay and Grummt 2008; Santoro et al. 2010; Ano-
sova et al. 2015).

Until recently, extensive IGS regions of mammalian 
cells had been regarded as receptacles of useless, “junk” 
sequences. But this idea will probably follow the fate of the 
general “junk DNA” theory. Remarkably, RNA-seq analy-
sis of human and murine rDNA revealed a specific pattern 
of low-abundance expression over the entire IGS region 
(Zentner et al. 2011, 2014; reviewed by Jacob et al. 2012), 
indicating that the spacer has a complex functional organi-
zation. The same idea is suggested by the data of Chip and 
Chip-seq analysis which show a regular distribution of pol 

Fig. 1   Organization of rDNA in mammalian cell. NOR nucleolus 
organizer region, the cluster of rDNA loci, NTS (IGS) non-transcribed 
(intergenic) spacer, 5′-ETS, 3′-ETS external transcribed spacers, 
ITS1, 2 internal transcribed spacers, UCE/CPE promoter including 

upstream control element (UCE) and core promoter element (CPE), 
Sal Sal box, the sequence serving as transcription terminator, En 
enhancer
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I and its transcription factors throughout the intergenic 
region (Copenhaver et al. 1994; Hu et al. 1994; O’Sullivan 
et  al. 2002; Zentner et  al. 2011, 2014). A special role 
belongs to the IGS in the recent theory of “nucleolar deten-
tion,” according to which nucleoli may serve as a kind of 
lumber room for useless proteins and other cell compo-
nents (Audas et al. 2012a). The process is triggered when 
RNAs produced by loci situated within the IGS recognize 
and “capture” proteins furnished with a “detention signal” 
(Audas et al. 2012a, b; Jacob et al. 2012; Diermeier et al. 
2013; Padeken and Heun 2014; reviewed in Lam and Trin-
kle-Mulcahy 2015).

Repetitive arrays

The presence of numerous ribosomal gene copies in one 
cell is one of the most remarkable characteristics of rDNA. 
There are exceptions to this rule. For instance, some species 
of Protozoa and Myxomycetes have only one chromosomal 
gene which is amplified into a set of extrachromosomal 
inverted repeats in the course of somatic growth (Lewin 
1980). But generally, metazoan genomes contain several 
hundred ribosomal gene copies (Birnstiel et  al. 1971); in 
plants, this number often reaches several thousands (Rog-
ers and Bendich 1987).

Usually, rDNA is arranged in clusters of tandem repeats, 
nucleolus organizer regions (NORs). These regions were 
first discovered as secondary constrictions of mitotic chro-
mosomes (Heitz 1931; McClintock 1934). But later, it was 
found that some of the NORs make no secondary constric-
tions; such clusters are transcriptionally silent and may 
appear both within and without nucleoli (Sullivan et  al. 
2001; Strohner et al. 2001; Kalmárová et al. 2007).

In certain cases, rDNA is organized as inverted repeats 
(Bergold et  al. 1983). In amphibia (Birnstiel et  al. 1971; 
Bird 1978), insects (Birnstiel et al. 1971), and fungi (Butler 
and Metzenberg 1993), ribosomal genes are amplified into 
numerous extrachromosomal copies (reviewed in Moss and 
Stefanovsky 1995). Human diploid genome contains about 
400–600 copies of a 43-kbp unit (Moss et al. 2006; Stults 
et al. 2009). Human NORs with an average size of 3 Mbp 
are situated on the short arms of the acrocentric chromo-
somes 13, 14, 15, 21, and 22 (Henderson et al. 1972; Long 
and Dawid 1980; Puvion-Dutilleul et al. 1991).

The abundance of ribosomal gene repeats not only 
enables the cell to regulate the production of ribosomal 
RNA more efficiently, but also increases the frequency of 
recombination. The number of repeats varies as a result of 
unequal homologous exchange, and this may cause dam-
age to the cell (La Volpe et al. 1984; Mroczka et al. 1984; 
Erickson and Schmickel 1985; Sylvester et al. 1986, 1989; 
Cassidy et al. 1986; Dumenco and Wejksnora 1986; Tower 
et  al. 1989; Stults et  al. 2009). The partial silencing of 

rDNA seems to be an important factor in maintaining sta-
bility of the loci (Peng and Karpen 2007). Gene conver-
sion is regarded as an additional stabilizing process, since it 
reduces the variability (Gonzalez and Sylvester 1995; Elder 
and Turner 1995). Tandem arrangement of rDNA increases 
the risk of inappropriate transcription; therefore, isolation 
of each repeat from its neighbors on the DNA strand seems 
necessary. Such demarcating function is ascribed to insu-
lators (Valenzuela and Kamakaka 2006). Association of 
CTCF protein with human and murine rDNA at the spacer 
promoter region suggests the presence of an insulator ele-
ment here (Torrano et al. 2006; van de Nobelen et al. 2010; 
Zentner et al. 2011). Remarkably, CTCF depletion leads to 
disorganization of nucleolar structure and overexpression 
of ribosomal genes (Hernández-Hernández et al. 2012).

Studies of restriction products show that the repeats 
within NORs vary in length and structure (Kominami 
et al. 1981; Gonzalez et al. 1985, 1990; Maden et al. 1987; 
Sasaki et  al. 1987). Variants with tissue-specific expres-
sion were found among murine rDNA repeats (Tseng et al. 
2008). In situ hybridization on the preparation of isolated 
DNA fibers, “molecular combing” (Bensimon et al. 1994; 
Michalet et  al. 1997; Anglana et  al. 2003; Caburet et  al. 
2005; Tseng et al. 2008) revealed high percentage of non-
canonical, including palindromic, sequences (about one-
third of the repeats), and great variability in the length of 
IGS (from 10 to 50  kb) in several types of human cells 
(Lebofsky and Bensimon 2005; Caburet et  al. 2005). It 
seems that the variability in the length of NORs provides 
each person with a unique rDNA electrophoretic karyo-
type, a kind of “fingerprints” (Stults et al. 2008).

The palindromic structures may cause fork stalling and/
or arrest by forming hairpin structures during lagging-
strand synthesis, which apparently results in significant 
slowing down of rDNA replication. Thus, in HeLa cells, 
the average speed of replication fork for the whole genome 
is 1.7  µm/min, but only 1  µm/min for rDNA (Lebofsky 
and Bensimon 2005). If the palindromes are pseudogenes 
(Caburet et al. 2005), they must be non-functional by defi-
nition (Mighell et al. 2000). But it is still unknown whether 
the length and composition of IGS have any impact on 
transcription of the adjacent genes.

The multiplicity and high sequence similarity of rDNA 
repeats greatly hinder their study. For that reason, NORs 
were excluded from the initial sequencing and analysis of 
the human genome.

Active and silent rDNA

It is typical for the clustered rDNA that its transcription-
ally active genes are interspersed by transcriptionally 
silent repeats (Conconi et  al. 1989; Santoro 2005, 2014; 
Zillner et al. 2015). The active genes are characterized by 
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hypomethylation of CpG sites and histone modifications 
generally associated with transcriptionally active nucleo-
plasmic chromatin (i.e., H3K4me3 and H3K9ac), whereas 
transcriptionally silent rDNA is condensed, hypermethyl-
ated, and marked with repressive histone modifications 
(i.e., H3K27me3 and H4K20me3) (Heintzman et al. 2007; 
McKeown and Shaw 2009; Zentner et  al. 2011; Zillner 
et al. 2013; reviewed in McStay and Grummt 2008; Shaw 
and McKeown 2011). Key role in the silencing scheme 
belongs to the nucleolar remodeling complex (NoRC) 
(Strohner et  al. 2001). Targeting NoRC to rDNA leads to 
repositioning of a promoter-bound nucleosome, changes in 
histone modifications, increase in DNA methylation, and 
silencing of rRNA genes (Zhou and Grummt 2005; Li et al. 
2006; Mayer et al. 2006, 2008; Schmitz et al. 2010; Ano-
sova et  al. 2015). On the other hand, nucleosome remod-
eling and deacetylation complex (NuRD) creates chromatin 
state in which rDNA is poised for transcription, though not 
yet transcribed (Xie et al. 2012).

It has been established that the active ribosomal genes 
form loops in which a promoter is joined to the terminator. 
Transcription termination factor 1 (TTF-1) and protoonco-
gene c-Myc seem to be particularly important for this con-
nection (Németh and Längst 2008; Pontvianne et al. 2013; 
Li and Hann 2013). Both proteins regulate the association 
of epigenetically activated rDNA genes with the nucleolar 
matrix (Shiue et al. 2014). TTF-1 binds to an upstream site, 
termed T0, located 170  bp upstream of the transcription 
start site (Clos et  al. 1986). This is required for efficient 
transcription initiation and for the recruitment of chroma-
tin remodeling complexes that establish distinct epigenetic 
states of rRNA genes. Interaction of TTF-1 with CSB (Coc-
kayne Syndrome protein B), NoRC, or NuRD leads to the 
establishment of active, silent, or poised state of chromatin, 
respectively (Strohner et al. 2001; Santoro et al. 2002; Yuan 
et al. 2007; Xie et al. 2012; Diermeier et al. 2013).

In steadily cycling cells, chromatin structure of ribo-
somal genes is maintained through multiple rounds of 
cell division (e.g., Li et  al. 2006, reviewed in Birch and 
Zomerdijk 2008; Santoro and De Lucia 2005; Guetg et al. 
2012). From prophase to late anaphase, the gene activity 
is efficiently blocked by cdc2/cyclin B-directed phospho-
rylation of SL-1 and other transcription factors (Heix et al. 
1998; Voit et  al. 2015). Nevertheless, the components of 
pol I transcription machinery, including the upstream bind-
ing factor (UBF) and promoter selectivity complex (SL1), 
can be detected on certain NORs even in metaphase (Babu 
and Verma 1985; Moss et  al. 1985; Weisenberger and 
Scheer 1995; Jordan et  al. 1996; Roussel and Hernandez-
Verdun 1994; Roussel et  al. 1996; Gebrane-Younes et  al. 
1997; Sirri et al. 1999, 2008; O’Sullivan et al. 2002; Leung 
et al. 2004; Prieto and McStay 2005). Such NORs, termed 
“transcriptionally competent” or just “competent” (Dousset 

et al. 2000; Savino et al. 2001), are transcribed, while the 
other, “non-competent” NORs remain silent during inter-
phase (Weisenberger and Scheer 1995; Roussel et al. 1996; 
Gebrane-Younes et al. 1997). The competence, which can 
be revealed by UBF or silver nitrate staining, is regularly 
distributed among the different chromosomes (Héliot et al. 
2000; Smirnov et  al. 2006). After S phase, some NORs 
may become “asymmetrical,” when only one of the daugh-
ter chromatids acquires the competence signal. The pres-
ence of such NORs causes mitotic asymmetry (Kalmárová 
et al. 2008).

Organization of rDNA in the nucleolus

Structure of nucleoli is based upon transcriptionally active 
rDNA (Henderson et  al. 1972; Long and Dawid 1980; 
Puvion-Dutilleul et  al. 1991; Raska 2003; Raska et  al. 
2006a, b; Cmarko et al. 2008; Sirri et al. 2008). Crude ver-
sions of that structure appear on ectopical loci in the form 
of “pseudo-NORs” or “neo-NORs” produced experimen-
tally on the basis of simple UBF binding arrays (Mais et al. 
2005; Prieto and McStay 2007; Grob et al. 2014).

It has been known that nucleoli are usually formed at 
the end of mitosis around competent NORs, which gradu-
ally unfold and fuse into a few bodies. But the organiza-
tion of rDNA in the interphase is still not understood. On 
the one hand, hypotonically isolated and spread ribosomal 
genes appear as so-called Christmas trees, in which the 
“tree stem” represents a single DNA fibril, from which the 
transcripts grow like branches (Miller and Beatty 1969; 
Trendelenburg et  al. 1974; Scheer and Zentgraf 1982; 
Trendelenburg and Puvion-Dutilleul 1987; Mougey et  al. 
1993; Scheer et al. 1997; Albert et al. 2011). On the other 
hand, electron microscopical studies show that transcrip-
tion of rDNA and the first steps of rRNA processing take 
place in the FC/DFC units, i.e., fibrillar centers (FC) sur-
rounded by dense fibrillar components (DFC) (Fig. 2). The 
transcribed part of rDNA as well as the transcription sig-
nal after pulse labeling has been observed in the DFC or 
at the border between DFC and FC (Raška et al. 1983a, b, 
1995; Ochs et al. 1985; Raska et al. 1989, 2006a, b; Scheer 
and Benavente 1990; Hozák et  al. 1993, Cmarko et  al. 
2000; Melcák et  al. 1996; Koberna et  al. 2002; Casafont 
et al. 2006; Shaw and McKeown 2011). But it proved to be 
very difficult to find out how the elements of “Christmas 
trees” are accommodated among the elements of nucleolar 
ultrastructure.

There are reasons to believe that each FC/DFC unit 
typically accommodates one transcriptionally active rDNA 
repeat (Haaf et  al. 1991; Haaf and Ward 1996; Denissov 
et  al. 2011), which forms multiple coils passing through 
DFC and adjacent FC area (Reeder and Lang 1997; Cheu-
tin et al. 2002; Puvion-Dutilleul et al. 1991; Derenzini et al. 
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2006; McStay and Grummt 2008). Pictures of osmium 
amine staining show the presence of some DNA in the 
FC, but the status and composition of this DNA still have 
not been determined (Derenzini et  al. 2006, 2014). Fur-
ther studies are needed to establish the position of inactive 
rDNA repeats, as well as the “poised genes” (reviewed in 
Németh and Längst 2011). The latter, together with silent 
genes, may be localized in the fibrillar center but, upon 
activation, move toward the DFC (Raska et al. 2006b).

According to the data of chromatin capture analysis, 
the promoter of each active gene is joined to the respec-
tive terminator and may be close topographically to sev-
eral loci of the gene (Grewal et al. 2005; Arabi et al. 2005; 
Gomez-Roman et  al. 2006; Grandori et  al. 2005; Németh 
et  al. 2008; Németh and Längst 2008; Shiue et  al. 2009, 
2014; Denissov et  al. 2011; Lykke-Andersen et  al. 2011; 
Xie et al. 2012; Diermeier et al. 2013; reviewed in Németh 
and Längst 2011). Based on such data, and considering 
increased binding of promoter selectivity complex SL1 
over the entire region, Denissov et  al. (2011) proposed a 
“core-helix model.” According to it, a single ribosomal 
gene occupying the FC/DFC unit assumes the form of 
rotating cylindrical solenoid. The transcribing pol I com-
plexes driven by actin revolve around the SL1-containing 
core, which is situated in the FC and serves as an anchor for 
both the promoter and the terminator of the rDNA repeat; 
the nascent rRNAs exit radially into the DFC. Remarkably, 
this chiefly speculative model seems to be the only hypoth-
esis describing organization of rDNA in the interphase 
nucleoli. So far, it is not even known whether replication 
of ribosomal genes occurs within FC/DFC units or in other 
nucleolar structures.

Reproduction of rDNA

Replication of rDNA should be viewed in connection with 
two circumstances: the great number of the gene copies 
in the cell and the ongoing transcription, which may even 
intensify during S phase (Gorski et al. 2008). Accordingly, 
each cycling cell must have means to avoid two significant 
dangers. On the one hand, the multiple tandemly repeated 
rDNA arrays may be recombination hotspots and thus pre-
sent a potential source of genomic instability (Stults et al. 
2009; Ide et  al. 2010). This risk is probably diminished 
by alternation of silenced and active repeats in each array 
(Santoro 2005, 2014).

On the other hand, collision of the swiftly running rep-
lication and transcription machineries (reviewed in Magda-
lou et  al. 2014) must be prevented, which requires a spe-
cial spatio-temporal arrangement of replication. Thus, in 
yeast cells, each rDNA repeat has one potential origin of 
replication, and clusters of synchronously firing origins are 
separated by a few units with silent origins (Pasero et  al. 
2002). Besides, there is an efficient fork barrier situated at 
the 3′ end of each transcription unit; it arrests the upstream 
moving of the forks, which prevents collision of replication 
and transcription complexes (Brewer and Fangman 1988; 
Linskens and Huberman 1988; reviewed in Rothstein et al. 
2000).

In human cells, rDNA replication may be initiated all 
over the IGS and even upon the genes (Lebofsky and Ben-
simon 2005), though the potential origins situated upstream 
of the transcribed region are used more frequently (Little 
et al. 1993; Yoon et al. 1995; Gencheva et al. 1996; Scott 
et  al. 1997). The replication forks may terminate and 

Fig. 2   A schematic representa-
tion of nucleolus-associated 
DNA. Nu nucleolus, Np nucleo-
plasm, RC chromosome carry-
ing ribosomal genes (ribosomal 
chromosome), Cen centromere, 
PR proximal flanking region, 
DR distal flanking region, NRC 
non-ribosomal chromosome, 
FC/DFC FC/DFC unit—the 
center of rDNA transcription 
consisting of fibrillar center 
(FC) surrounded with dense 
fibrillar component (DFC). 
Green dots represent granular 
component of the nucleolus
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converge at variable sites throughout the rDNA repeat 
(Little et al. 1993). Fork barriers exist (Gerber et al. 1997; 
Akamatsu and Kobayashi 2015), but often fail to stop the 
progress of DNA polymerase complex, so that replication 
proceeds at far distances in both directions (Edenberg and 
Huberman 1975; Lebofsky and Bensimon 2005). Neigh-
boring origins fire within 60 min of each other; the distance 
between them varies from tens of kilobases to a couple 
hundred kilobases, with an average of 80 kb (Lebofsky and 
Bensimon 2005). In such conditions, additional mecha-
nisms must be engaged to protect genome stability. Sepa-
ration of rRNA gene transcription and replication domains 
probably could make up for the relaxed timing and spac-
ing (Pliss et  al. 2005). Such separation may be achieved 
by regulation at the level of FC/DFC units; indeed, in vivo 
observations indicate that transcription is suspended in the 
units involved in the replication (Smirnov et al. 2014; also 
our new data prepared for publication).

Non‑ribosomal DNA in nucleoli

Clusters of rDNA repeats, which include the transcribed 
and non-transcribed parts, are usually regarded as the 
founders of nucleoli. But this role may be shared by the 
regions of the same chromosomes adjacent to NORs (Gon-
zalez et  al. 1989, 1992; Kaplan et  al. 1993) (Fig.  2). In 
human cells, these regions have a very similar structure 
upon all five acrocentric chromosomes (Floutsakou et  al. 
2013). The proximal flanking sequences, which are posi-
tioned in the neighborhood of centromeres, consist largely 
of satellite DNA, frequently undergo recombination, and 
have numerous analogues in other parts of the genome. In 
contrast, the distal sequences, which are situated closer to 
the telomeres, exhibit low segmental duplication, but con-
tain chromatin signature characteristic of promoters, as 
well as putative genes, interspersed among marks associ-
ated with heterochromatin. These sequences may regulate 
the activity of the NORs and participate in the structural 
organization of the nucleoli by anchoring rDNA to perinu-
cleolar chromatin (Floutsakou et al. 2013).

Microscopic studies have shown that various other 
parts of the genome may regularly or occasionally find 
their way to the nucleoli. In different cell types and spe-
cies, satellite DNA of centromeres is a common compo-
nent of the perinucleolar shell of condensed late replicat-
ing chromatin and appears also in the interior of nucleoli 
(Comings 1980; Manuelidis 1984; Manuelidis and Bor-
den 1988; Haaf and Schmid 1989, 1991; Bartholdi 1991; 
Billia and Deboni 1991; Ochs and Press 1992; Léger 
et al. 1994; Carvalho et al. 2001; Wong et al. 2007). Par-
ticularly, centromeres of chromosomes with a lower con-
tent of G-dark bands tend to be localized at the nucleolus 

(Carvalho et al. 2001). Telomeres, together with telomer-
ase components (Rawlins and Shaw 1990; Vourc’h et al. 
1993; Armstrong et  al. 2001; Zhang et  al. 2004), terri-
tories of human chromosomes 1, 9, and Y (Stahl et  al. 
1976; Léger et  al. 1994), as well as parts of acrocentric 
chromosomes (Kalmárová et al. 2008; Pliss et al. 2015), 
are often found within or very close to nucleoli. Data of 
3C analysis suggest that ribosomal genes may interact 
with repetitive sequences belonging to other chromo-
somes (O’Sullivan et  al. 2009). Functional significance 
of this interaction is not clear.

Abundant data have been recently obtained by sequence 
analysis of nucleolus-associated domains (NADs), which 
represent the entire DNA content of isolated nucleoli 
(Németh et al. 2010; van Koningsbruggen et al. 2010). In 
the studies of human cells, it was found that NADs, not 
counting the ribosomal genes, constitute about 4 % of the 
genome and include sequences from all chromosomes. The 
bulk of these domains consists of AT-rich sequences, satel-
lite repeats (mainly alpha-, beta-, GAATG/CATTC types), 
members of the zinc-finger, olfactory receptor defensin and 
immunoglobulin protein-coding gene families, transcrip-
tionally active 5S rRNA genes, and tRNA genes (Matera 
et  al. 1995; Thompson et  al. 2003; van Koningsbruggen 
et al. 2010; Németh et al. 2010). Analysis of the transcrip-
tional status and chromatin feature showed that NADs con-
tain mainly inactive chromosomal regions (Németh and 
Längst 2011; van Koningsbruggen et al. 2010).

There is still an uncertainty about the composition of 
NADs. The often used term “nucleolar association” is 
somewhat ambiguous; it embraces sequences of two essen-
tially different compartments, nucleolar interior and nucle-
olar periphery, since these are swept together in methods 
based on the isolation of nucleoli. Besides, this isolation 
requires breaking of NOR-bearing and perhaps some other 
chromosomes, which may introduce further errors. This 
problem has been partly solved by using in situ hybridiza-
tion to confirm the data of deep sequencing (van Konings-
bruggen et al. 2010).

Factors directing various DNA sequences toward the 
nucleolus, as well as consequences of the perinucleo-
lar positioning, have become a focus of intensive study 
recently (reviewed in Padeken and Heun 2014; also 
reviewed in Matheson and Kaufman 2015). Localization 
of NADs in the perinucleolar region is correlated with 
heterochromatin formation and transcriptional silencing 
(Zhang et al. 2007; Pandey et al. 2008; Mohammad et al. 
2008; Fedoriw et  al. 2012; Jakociunas et  al. 2013; Yang 
et al. 2015). Thus, the inactivating center of X chromosome 
(Xic) is associated with nucleoli (Zhang et al. 2007). Dele-
tion of Xic locus reduces this association (Csankovszki 
et  al. 2001). Remarkably, admittance to the perinucleolar 
region is not guaranteed by the DNA sequence, for only 
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inactive X chromosome is found among the NADs (Zhang 
et al. 2007).

The proteins involved in NAD localization often also 
regulate rDNA transcription and/or nucleolar structure. For 
example, CTCF (Yusufzai et al. 2004; van de Nobelen et al. 
2010; Huang et  al. 2013), NCL (Roger et  al. 2003; Rick-
ards et al. 2007; Cong et al. 2012), NPM1 (Murano et al. 
2008), and Ki-67 (Rahmanzadeh et  al. 2007; Booth et  al. 
2014) all regulate transcription of ribosomal genes. Like-
wise, depletion of modulo (NCL) in flies disrupts nucleolar 
structure as demonstrated by immunofluorescence (Pade-
ken et  al. 2013), and after depletion of Ki-67 in human 
cells, their nucleoli become fewer and smaller (Booth et al. 
2014).

Long noncoding RNAs (lncRNAs) seem to be essential 
for regulation of structure and function of the perinucleolar 
region (Mohammad et  al. 2008; Jacob et  al. 2013; Pade-
ken and Heun 2014; Matheson and Kaufman 2015). One 
of such lncRNAs produced by a locus situated on inactive 
X (Xi) chromosome was named Firre (Yang et  al. 2010). 
Firre is required for normal perinucleolar positioning of 
the mouse Xi (Yang et al. 2015). This protein binds CTCF, 
which may regulate both the silencing of Xi and its associa-
tion with nucleolus (Hacisuleyman et al. 2014; Yang et al. 
2015).

By attracting various segments of chromatin, constrain-
ing their mobility, and removing them from the transcrip-
tionally active environment, nucleoli, together with nuclear 
periphery, play an essential part in the dynamic organiza-
tion of the genome (Berger et al. 2008; Matheson and Kauf-
man 2015). Clustering around nucleoli might contribute to 
a more stable positioning of the DNA elements (Padeken 
and Heun 2014). Experiments with late replication labeling 
(Cremer and Cremer 2001) and GFP-tagged histones (van 
Koningsbruggen et  al. 2010) indicate that after mitosis, 
perinucleolar chromatin partly returns to the nucleoli and 
partly moves to the nuclear lamina. Thus, composition of 
the perinucleolar region shows a degree of stability, though 
it may exchange components with lamina-associated 
domains (LADs) (van Koningsbruggen et al. 2010; Németh 
and Längst 2011; Kind et al. 2013).

“Invisibility” of nucleolar DNA

It can be seen from the aforesaid that nucleoli contain dif-
ferent sorts of DNA in both loose and condensed states 
(Fig. 2). But for some reason, we do not observe in nucleoli 
the alternation of dense and sparse chromatin foci which 
is typical for nucleoplasm. Moreover, it is well known that 
on preparations of cells stained with DAPI or other DNA 
markers, nucleoli usually appear as dark holes (Fig. 3). The 

intranucleolar signal is extremely weak, though exceed-
ing the background. We find a similar pattern in distribu-
tion of various histones revealed by antibodies or as GFP 
constructs (e.g., Müller et  al. 2007). This shows a striking 
contrast with results of in situ hybridization staining of tran-
scribed and non-transcribed rDNA (e.g., Junera et al. 1995) 
or immunostaining for such DNA-binding proteins as UBF 
or TTF-1. Replication signal observed after incorporation 
of various nucleotides also has an amazingly low intensity 
within nucleoli (e.g., O’Keefe et al. 1992), especially during 
early S phase, when transcriptionally active ribosomal genes 
are replicated. Dimitrova (2011) attempted to explain this 
phenomenon by suggesting that certain parts of rDNA may 
leave nucleoli, get replicated in nucleoplasm or at nucleo-
lar periphery, and afterward return to their former positions. 
But study of incorporated nucleotides in vivo (Smirnov et al. 
2014) revealed no significant exchange of DNA between 
nucleoli and nucleoplasm or nucleolar periphery.

Even electron microscopy studies fail to clarify the 
matter. Thus, osmium amine reaction on ultrathin sec-
tions (Derenzini et al. 2006) reveals patches of condensed 
DNA in nucleoli, comparable with those in nucleoplasm. 
But only a pale homogenous staining appears in the area 
of fibrillary centers; the supposedly coiled DNA of active 
ribosomal genes is scarcely detected.

Bearing these data in mind, we will consider the follow-
ing hypotheses:

Fig. 3   DAPI staining of a HeLa cell nucleus. Confocal section. The 
signal is hardly detectable in the entire nucleolus and in some small 
areas of nucleoplasm
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1.	 Special biophysical properties of nucleoli.

Since the intranucleolar space is characterized by extremely 
crowded condition, all processes in it are strongly influ-
enced by short-range entropic forces which compel mac-
romolecules to “crystallize” into nanostructures (Hancock 
2014). One consequence of this may be redistribution of 
electric charges and low permeability of the nucleolus for 
DNA staining reagents, as well as certain antibodies, GFP 
constructs, etc. This hypothesis appears to be the easiest to 
verify experimentally.

2.	 Peculiar structure of chromatin in the nucleolus.

The state of rDNA chromatin may be “unusual.” At any 
rate, standard ChIP protocol proves to be rather inefficient 
when applied to nucleolar components (Prieto and McStay 
2008). This hypothesis, as well as the previous one, sug-
gests that DNA is present in nucleoli in sufficient quantity, 
but for some reason eludes detection.

3.	 Extremely low concentration of DNA in the nucleolus.

It would be the simplest explanation of the phenomenon: 
There is just too little DNA to be detected. But does this 
view agree with the facts? For one thing, DNA is not homo-
geneously distributed in the nucleolar volume, but forms 
foci of variable density, which may be seen on the elec-
tronograms. On the other hand, the average concentration 
of DNA in the nucleoli does not seem to be particularly 
low. As we have seen, cca 4 % of human genome belong to 
NADs. Although the larger part of this may be represented 
by DNA sequences in the perinucleolar region (Fig.  2), 
NORs alone constitute roughly 1  % of human genome 
(about 30 Mb) (Németh and Längst 2011). To this, we must 
add those non-ribosomal NADs which are known to be 
intranucleolar, e.g., Alu, Kpn elements, pentameric arrays 
of chromosome 15 (Kaplan et al. 1993), centromeres (Ochs 
and Press 1992), together with the adjacent regions. “Core 
nucleoli” obtained from isolated nuclei by centrifugation 
and extensive nuclease treatment are deprived of ribosomal 
genes, yet still contain about 1 % of the total nuclear DNA 
(Bolla et al. 1985). Thus, nucleoli will claim about 2 % of 
human genome. But how much is the volume occupied by 
this DNA? Since mammalian cells typically contain 2–3 
nucleoli with average diameter of 1–3 μm (e.g., Smetana 
et  al. 2006), and average diameter of the nucleus in such 
cells is about 6 μm (Alberts et al. 2002), the ratio of nucle-
olar volume to the volume of the nucleus lies between 4 
and 40  %. These estimates indicate that mean value of 
DNA concentration in nucleoplasm is generally higher than 
in nucleoli. Nevertheless, the differences are not so great as 

to account for the extraordinary low intensity of DAPI or 
replication labeling.

Thus, none of the three examined hypotheses seems con-
clusive. Perhaps, their combination will provide a solution 
in the future. But for the present, the invisibility of DNA in 
the nucleolus still remains a riddle.
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