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Introduction

Super-resolution fluorescence imaging methods have 
created enormous excitement in recent years since they 
break the resolution barrier imposed by optical diffrac-
tion. Among these methods are a class of single-molecule 
localisation microscopy (SMLM) techniques such as 
photo-activated localisation microscopy (PALM) (Betzig 
et  al. 2006) and (direct) stochastic optical reconstruction 
microscopy ((d)STORM) (Rust et  al. 2006; Heilemann 
et al. 2008). Here, signal from closely spaced fluorophores, 
which would otherwise be unresolvable, are separated tem-
porally from each other by employing photo-activatable or 
photo-switchable fluorophores (e.g. fluorescent proteins 
in PALM) or by exploiting long-lived dark states to cycle 
molecules on and off (dSTORM). Once a sparse set of 
molecules has been activated, for example by using a very 
low-powered UV-activating laser, individual molecules are 
imaged on a sensitive CCD camera and the molecules are 
subsequently bleached before a new subset of molecules 
are activated and the process repeated. The raw images 
are, therefore, sets of individual, approximately Gaussian, 
point spread functions (PSFs), each one derived from a sin-
gle molecule. The centre of each PSF can then be found 
by fitting a two-dimensional Gaussian function; a process 
that can typically achieve an uncertainty on the localisa-
tion of individual molecules of only 20–30 nm. Repeating 
this process for all molecules in the data set results in a list 
of the x and y coordinates of all the fluorescent molecules 
within the field-of-view. In order to generate good signal-
to-noise, the illumination is often provided in the form of a 
total internal reflection fluorescence microscope evanescent 
wave that restricts the axial dimensions of the imaged vol-
ume to below around 100 nm, meaning the final detected 
coordinates are typically treated as two-dimensional point 
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patterns, although recently schemes for the three-dimen-
sional acquisition, and analysis of data have been devel-
oped (Huang et al. 2008; Pavani et al. 2009; Xu et al. 2012).

Unlike other forms of super-resolution microscopy 
imaging such as stimulated emission depletion micros-
copy (STED) (Hell and Wichmann 1994; Vicidomini et al. 
2011), the data derived from SMLM is not in the form of 
a conventional fluorescence image—that is, a pixelated 
array of intensity values. Instead, the data consist of a list 
of the x and y coordinates of individual molecules, each 
with an individual associated uncertainty, which is usu-
ally calculated theoretically based on the photon count, 
PSF width and background (Thompson et al. 2002). It is, 
therefore, necessary to develop new techniques to analyse 
such data sets and quantify cellular structures. One of the 
most common requirements is to detect molecular cluster-
ing since biological function can be inferred from protein 
complexes. Analysis methods for clustering include Rip-
ley’s K-function (Owen et al. 2010; Ripley 1977) and the 
related technique of pair-correlation analysis (Sengupta 
et al. 2011; Veatch et al. 2012), both of which can provide 
information on the length scale of molecular clustering. 
Using local point pattern analysis such as Getis and Frank-
lin’s (G&F) method (Getis and Franklin 1987), it is possi-
ble to construct ‘maps’ of molecular clustering from which 
a richer variety of cluster parameters such as shape can be 
extracted (Rossy et al. 2013; Williamson et al. 2011). This 
method has been used extensively to characterise cluster-
ing of proteins at the cell surface, in particular during T 
cell signalling in which the formation of protein micro-
clusters is a key feature. The method was also recently 
demonstrated for three-dimensional data sets (Owen et al. 
2013).

In the G&F method, the number of molecules within a 
specified distance of each molecule is counted. This num-
ber is normalised by the total molecular density of the 
analysed region, meaning each molecule can be assigned 
a clustering value, termed the L value, according to the 
relative local molecular density at that position, which is 
independent of the overall average molecular density. This 
is useful as it accounts for variations such as the number 
of collected frames or the protein expression level. These 
values, together with the x and y coordinates, can then be 
interpolated to generate a two-dimensional cluster ‘heat 
map’ to which a threshold can be applied in order to extract 
key cluster statistics. There have been a number of recent 
reports of algorithms designed to test for co-localisation 
in SMLM data sets all of which offer a number of advan-
tages and disadvantages. These include the cross-variant 
of the pair-correlation (PC) method previously discussed 
and the coordinate-based co-localisation analysis (CBC) 
of Malkusch et  al. (Sengupta et  al. 2011; Malkusch et  al. 
2012; Annibale et  al. 2012). The PC analysis method has 

the advantage of intrinsically accounting for the multiple 
blinking (re-excitation) of fluorescent molecules whereas 
here, this blinking is corrected for before the co-localisa-
tion analysis. Our method also allows co-localisation to 
be measured without fitting cross-correlation curves and 
requiring calibration data for the number of blinks per mol-
ecule. The method presented here is more similar to the 
CBC method, however, the use of a specific search radius 
rather than a weighted distribution function allows the user 
to use a biologically driven hypothesis to interrogate the 
data for specific scale clusters. In addition this, coupled 
with the application of a cluster threshold, allows intuitive 
parameters such as the number of molecules of one species 
overlapping with clusters of the other to be extracted. Here, 
we show that when analysing two-colour SMLM data, 
a combined univariate and bivariate G&F analysis can-
not only detect clustering of each species individually as 
described above but also quantify the co-clustering behav-
iour of the two species. This is demonstrated using both 
simulated and cellular data.

Method

Values of L(r) are calculated for each species by counting 
the number of its own species contained within a circle of 
radius r nm centred on each molecule. Similarly, values of 
L(r)cross are calculated for each species by counting the 
number of the opposite species contained within a circle of 
radius r nm centred on each molecule (Fig. 1). The value of 
L(r) or L(r)cross is given by:

where A is the analysed area, n is the total number of points 
in that area and dij is the distance between point i and point 
j. In this example, clustering will be examined on a spatial 
scale of r = 50 nm. To account for edge effects, a 50 nm 
buffer region was calculated around each region which 
was cropped out from the final analysis. The user-selected 
value for r (in this case 50 nm) determines the size scale 
of structures which the point pattern is interrogated for 
by the analysis algorithm. In this example, therefore, the 
method will search for co-localisation of points on 50 nm 
length scales. Smaller length scales can be selected, how-
ever, since the localisation precision of each point is of 
the order of 20–30 nm, this sets the lower limit for length 
scales that can be investigated. The method can also be 
applied to larger length scales, for example to detect cluster 
co-localisation on 100 or 200 nm length scales that may be 
of interest depending on the biological application. Pseudo-
coloured cluster maps were generated by interpolating 
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the L(r) values onto a 5  nm resolution grid as previously 
described (Owen et al. 2010). Linear trend lines in the scat-
ter plots were generated using linear least squares fitting 
(MATLAB).

Clustered data for each channel was simulated by gener-
ating 100 points per cluster in a Gaussian distribution over-
laid with a completely spatially random (CSR) background 
(400 points). Four cases were considered—that clusters of 
the two species completely overlap, that clusters of each 
species completely avoid each other, that one species is 
clustered but the other is a CSR distribution or two CSR 
distributions.

To demonstrate the method with real data, two cases 
were examined. Jurkat T cell synapses were generated on 
coverslips coated with anti-CD3 and anti-CD28 antibod-
ies according to previously published protocols suitable for 
SMLM imaging (Rossy et  al. 2013). Jurkat T cells were 
cultured in RPMI1640 media supplemented by 10 % foe-
tal calf serum at 37  °C in a 5  % CO2 atmosphere. Cells 
were dropped onto glass coverslips coated with anti-CD3 
and anti-CD28 and allowed to form synapses for 10 min. 
Synapses were then fixed for 10 min at 37 °C using a 4 % 
paraformaldehyde solution. To demonstrate high co-local-
isation, cells were transfected with a fluorescent fusion 
construct of the kinase Lck simultaneously fused to the 
photo-switchable fluorescent protein PS-CFP2 and the 

photoactivatable protein PA-mCherry using an Invitrogen 
NEON transfection system. As a negative co-localisation 
control, Lck-PS-CFP2 was imaged with the phosphatase 
CD45 labelled with Dylight 639 by immunostaining as 
previously described (Rossy et  al. 2013). For Dylight 
639 labelling, cells were fixed and permeabilized with 
100  μg/ml lysolecithin (Sigma). Labelling was then per-
formed using an anti-CD45 primary antibody (rabbit, cat# 
10559, 1:200, Abcam) followed by a DyLight 639 labelled 
anti-rabbit antibody (cat# 111-495-047, 1:100, Jackson 
ImmunoResearch). To achieve blinking of DyLight 639 
for dSTORM imaging, cells were placed in an oxygen-
scavenging, reducing buffer composed of 25 mM HEPES, 
25 mM glucose, 5 % glycerol, 0.05 mg/ml glucose oxidase 
and 0.025  mg/ml horseradish peroxidase supplemented 
with 75 mM cysteamine (all from Sigma).

Cells were imaged on a Zeiss Elyra PS-1 PALM micro-
scope with a 1.46 NA objective with 20 % of 488 nm laser 
power, 15 % of 561 nm and 0.5 % of 405 nm for PS-CFP2 
and PA-mCherry and 100  % of 641  nm for Dylight 639. 
For PS-CFP2 and PA-mCherry, the signal was split and 
collected on two EMCCD cameras simultaneously (Andor 
iXon). Dylight 639 and PS-CFP2 images were recorded 
sequentially. Channel alignment was performed with Zen 
(Zeiss) using at least three 200 nm gold colloids per image.

Molecular blinking from re-excited molecules can cause 
cluster artefacts in single-molecule microscopy. Small 
organic molecules are known to undergo repeated cycles 
of activation during dSTORM imaging, and the fluores-
cent protein mEos2 was recently shown to also display re-
excitation behaviour (Annibale et al. 2010), which is likely 
also the case for PS-CFP2. To overcome these effects, we 
applied the off-gap method in which molecules that are re-
excited in the same location within a certain time (the off-
gap) are grouped and counted as the same molecule. Here, 
the total number of localisations in a field-of-view is plot-
ted as a function of off-gap for a representative data set. As 
the off-gap increases, the total number of localisations falls 
as individual blinks are grouped into a single localisation. 
The optimal off-gap is then selected as the value where 
a further increase no longer has any significant effect in 
decreasing the total number of localisations. This method 
has been shown to be effective in removing re-excited mol-
ecules from further analysis (Annibale et al. 2011a, b). In 
this case, the selected off-gap was 300 ms for PS-CFP2 and 
PA-mCherry and 1 s for DyLight 639.

Results and discussion

We first analysed four simulated data sets consisting of one 
data set with overlapping and one data set with exclud-
ing clusters on a background of randomly distributed 

Fig. 1   Calculations of L(50) and L(50)cross. L(50) for each of the 
green and red species are calculated by counting the number of the 
same species within a 50 nm radius while ignoring the second spe-
cies. L(50)cross is calculated by counting the number of the opposite 
species within a 50 nm radius while ignoring the self-species
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molecules, a data set where one species is clustered and 
the other randomly distribution and a data set where both 
species are randomly distributed (Fig.  2). Using only the 
standard univariate G&F analysis, cluster maps were gen-
erated, pseudo-coloured and merged (Fig. 2a). These were 
then analysed using Pearson’s correlation coefficient as is 
often used in standard two-colour fluorescence microscopy 
data (Bolte and Cordeliere 2006) (Fig. 2b). In the case of 
perfectly overlapping clusters, this method generates a high 
Pearson’s correlation coefficient of 0.74. However, for the 
case of excluding clusters where a negative correlation 
coefficient would be expected, only a very small negative 
value is generated (−0.03). Clusters of one channel against 
a CSR distribution in the other generate a positive value of 
0.18 whereas two random distributions resulted in a value 
close to zero (0.02). Hence, this method is biased towards 
detecting co-clustering. In addition, it does not generate 
data on the number of molecules that reside within clusters 
of the other species.

Next, we calculated the L(50) and L(50)cross values for 
each molecule and plotted these as a scatter plot. Figure 3 is 
taken from a representative data set of a T cells expressing 
Lck with two different fluorescent proteins. As previously 

Fig. 2   Univariate G&F analysis applied to four simulated data sets—
overlapping clusters, excluding clusters, clusters paired with a ran-
dom distribution and two random distributions. a Images showing the 
locations of individual-simulated molecules, pseudo-coloured cluster 

maps of the red and green channels and merged images showing the 
degree of cluster overlap (yellow). Areas represent 2 × 2 μm simu-
lated regions b Pearson’s correlation coefficient of the four distribu-
tions

Fig. 3   Illustration of a combined univariate and bivariate G&F analy-
sis at a spatial scale of r  =  50  nm for Lck-PS-CFP2 and Lck-PA-
mCherry transfected into T cells. L(50) represents clustering within the 
same species and L(50)cross clustering with the second species. The 
pseudo-colour represents the number of individual molecules at each 
position. Clustering thresholds of L(50) and L(50)cross of 50 are indi-
cated by black lines that segments the plot into four quadrants (A–D)
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reported, Lck is not randomly distributed (Rossy et  al. 
2013) in these cells resulting in L(50) values above random 
distributions. Here, we plotted the L(50) and L(50)cross 
values in such a manner that the x-axis (L(50)) denotes how 
clustered a molecule is with its own species (Lck-PS-CFP2 
in this case) and the y-axis (L(50)cross) shows to what 
extent it is within a cluster of the opposite species (Lck-PS-
CFP2 with Lck-PA-mCherry in this case). The colour code 
denotes the number of molecules with the same L(50) and 
L(50)cross value. As previously demonstrated, these values 
can be thresholded to categorise molecules as either being 
in or out of clusters. In this example, for Lck co-transfected 
into T cells as either a PS-CFP2 (green) or a PA-mCherry 
(red) construct, a threshold of 50 is applied to L(50) and 
L(50)cross in order to divide the plot into four quadrants. 
Note that like the value for r, which determines the size 
scale of clusters that are examined, the value of the thresh-
old applied to the data is also a user-defined parameter. This 
selection determines the value of the local molecular den-
sity above which molecules are considered as being inside 

clusters. Selecting a lower threshold will assign more mol-
ecules to clusters, and less dense objects will be counted as 
clusters. Conversely, a high threshold will only select the 
densest regions as being clusters. The value for the thresh-
old used here is simply an example—whether less dense 
objects (lower threshold), or only high density areas (high 
threshold) should be selected depends on the biologically 
informed hypothesis.

Figure  3 shows these data for the PS-CFP2 molecules 
only. For this data set, 47  % of green molecules exist in 
green clusters (Quadrants B and D) whereas 39 % of green 
molecules exist within red clusters (C + D). Where these 
overlap, 17 % of green molecules exist simultaneously in 
both green and red clusters (Quadrant D). Fifty-two per 
cent of green molecules exist in green OR red clusters 
(B + C), whereas 69 % exist in green AND/OR red clusters 
(B + C + D). This leaves the remainder, 31 %, which are 
not in green or red clusters (A).

We next applied this method to the four simulated 
data sets previously examined (Fig.  4). In the case of 

Fig. 4   Combined univariate and bivariate G&F analysis of four simulated possible cluster configurations showing the scatter plots for each 
channel together with trendline
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overlapping clusters, applying a threshold of L(50) = 200 
revealed that 46 % of red molecules were found in red clus-
ters (quadrant B + D) (simulated data was generated with 
50  % of red molecules in clusters). With this threshold, 
46  % of red molecules were also found in green clusters 
(quadrant C  +  D), consistent with there being complete 
overlap. Specifically, 45 % of molecules were in quadrant 
D, indicating they were associated simultaneously with 
both red and green clusters, 54 % were not associated with 
clusters at all leaving only 1 % which were associated with 
red OR green clusters (B + C). Similar results are found 
when examining the statistics for the green molecules. The 
co-clustering can also been observed in the significant posi-
tive correlation (trendline) between the values of L(50) and 
L(50)cross.

In the case of excluding clusters, the method correctly 
determined that no red molecules (0  %) exist simultane-
ously in both red and green clusters (D). Red molecules 
were still detected in red clusters (28 %) (B + D), however, 
only a small fraction (1 %) was found where the red CSR 
background overlaps with green clusters (C). Also, in this 
case, no positive correlation between the values of L(50) 
and L(50)cross is observed in the trendline. Similar results 
are found when examining the statistics for the green mol-
ecules. In the third case where green molecules were clus-
tered and red ones randomly distributed, only green mol-
ecules were found to be clustered, whereas red molecules 
were not (Quadrant B). In this case, the scatter plots for 
the red and green channels were now asymmetric. In the 
green case, high self-clustering was still observed above 

L(50) =  200 (Quadrant B), however, no green molecules 
were found in red clusters and indeed quadrants C  +  D 
contained 0 % of green molecules. For the red CSR case, 
Quadrant B contained 0 % of molecules as expected, how-
ever, 2 % of the red CSR distribution happened to overlap 
with the green clusters (C). In the final case of two CSR 
distributions, all points were correctly found in Quadrant 
A and the plots for the red and green channel were again 
similar.

Finally, we demonstrate the method in T cells. Figure 5a 
shows data derived from the tandem construct Lck-PS-
CFP2-PA-mCherry. The individual cluster maps from the 
PS-CFP2 and PA-mCherry channels are also shown. These 
two maps have a Pearson’s correlation coefficient of 0.05, 
indicating again the difficulty of applying this analysis to 
SMLM data. Also shown are the univariate and bivariate 
scatter plots for the PS-CFP2 (green) channel and the PA-
mCherry (red) channel. Using a threshold of L(50) =  80, 
7 % of PS-CFP2 molecules reside simultaneously in both 
PS-CFP2 and PA-mCherry clusters (D). The number is 
similar (6  %) when analysing the PA-mCherry species. 
Five per cent of PS-CFP2 molecules reside in clusters of 
one OR another colour (B + C). The value for PA-mCherry 
is 4  %. The degree of cluster overlap is also illustrated 
by the positive correlation between L(50) and L(50)cross 
shown in the trendline.

Next, we examined data derived from Lck-PS-CFP2 and 
CD45 labelled with Dylight 639 (Fig. 5b). This showed that 
the Pearson correlation coefficient was also 0.05. However, 
it was found that only 2  % of PS-CFP2 molecules reside 

Fig. 5   Cluster maps and scatter plots for T cells transfected with Lck-PS-CFP2-PA-mCherry (a) or Lck-PS-CFP2 and CD45-Dylight 639 (b)
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simultaneously in both PS-CFP2 and Dylight 639 clus-
ters (D), almost thrice lower than the Lck-PS-CFP2-PA-
mCherry case. These represent just 10 % of the total clus-
tered PS-CFP2 molecules. For the Dylight 639 molecules, 
2  % reside simultaneously in pS-CFP2 and Dylight 639 
clusters. In this case, the trendline does not show any sig-
nificant correlation between L(50) and L(50)cross. While 
the absolute numbers of co-localised molecules may seem 
low, in interpreting these data, one ought to consider that it 
is unlikely that two fluorescent proteins or indeed two fluo-
rophores have the identical detection probability. There-
fore, co-clustering of a fusion protein containing two fluo-
rophores also reflects the relative detection probability of 
these fluorophores (including the probabilities that both are 
folded correctly, generate sufficient photons to be detected 
and so on). It should be noted that these values also depend 
on the cluster assignment of each species individually 
(and therefore on the choice of threshold) and on the spa-
tial scale being discussed—on what length scale are they 
co-localised (and therefore depends on the choice of r). In 
the case of PS-CFP2 + DyLight 639, the physical size of 
the primary and secondary antibody must be considered 
together with the labelling efficiency of both antibodies. 
Hence, Lck-PS-CFP2 co-clustering with CD45 Dylight 639 
has to be interpreted in the context of Lck-PS-CFP2-PA-
mCherry. Taking into account that the clustering of Lck-
PS-CFP2-PA-mCherry is relatively low (A + B + C = 93 
and 94 % for the green and red channels, respectively), we 
can conclude that Lck and CD45 co-clustering is lower 
than Lck clustering with self. Hence, it is unlikely that Lck 
and CD45 cluster together.

Conclusion

Super-resolution SMLM microscopy methods such as 
PALM and dSTORM generate pointillistic data sets of 
molecular coordinates rather than traditional fluorescence 
intensity images. These data sets, therefore, have to be sta-
tistically interrogated in order to detect features such as 
molecular clusters. For single channel data, clustering has 
previously been analysed using pair-correlation techniques 
(Sengupta et  al. 2011; Sengupta and Lippincott-Schwartz 
2012), Ripley’s K-function (Owen et al. 2010) or Getis and 
Franklin’s local point pattern analysis (Rossy et  al. 2013; 
Williamson et  al. 2011). Here, we have demonstrated a 
combined univariate and bivariate version of Getis and 
Franklin’s analysis to quantify the degree of co-clustering 
in two channel point pattern data. The method was applied 
to simulated data that showed either co-localised clusters, 
excluding clusters or CSR distributions and was found to 
be more reliable in detecting co-clustering than the use of 
Pearson’s correlation coefficient applied to the individual 

channel cluster maps. The method was also applied to data 
derived from activated T cells transfected with fluorescent 
fusion constructs of the kinase Lck and the phosphatase 
CD45. In principle, the method is extensible to more than 
two fluorescent species, to three-dimensional data sets and 
to live cell PALM experiments.
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